Advertisement

Communication Protocols for the IoT-Based Smart Grid

  • Sotirios K. GoudosEmail author
  • Panagiotis Sarigiannidis
  • Panagiotis I. Dallas
  • Sofoklis Kyriazakos
Chapter
Part of the Power Systems book series (POWSYS)

Abstract

The Internet of Things (IoT) is the communications paradigm that can provide the potential of ultimate communication. The IoT paradigm describes communication not only human to human (H2H) but also machine to machine (M2M) without the need of human interference. The Smart Grid (SG) is the new paradigm that enables highly efficient energy production, transport, and consumption along the whole chain, from the source to the user. SG is the combination of the classical power grid with emerging communication and information technologies. IoT based smart grid will be one of the largest instantiation of the IoT in the next future. In this chapter, we examine, review and present the current IoT enabler technologies for smart grid applications, starting from the physical layer to the application and data layer.

References

  1. 1.
    NIST framework and roadmap for smart grid interoperability standards (2014)Google Scholar
  2. 2.
    3GPP: Tr 45.820 cellular system support for ultra-low complexity and low throughput internet of things (CIoT), (release 13). Technical report (2015)Google Scholar
  3. 3.
    3GPP: 3GPP roadmap and NB-IoT time relation (2016)Google Scholar
  4. 4.
    3GPP: Ts 36.802, evolved universal terrestrial radio access (E-UTRA); NB-IoT; technical report for BS and UE radio transmission and reception (release 13). Technical report (2016)Google Scholar
  5. 5.
    Agiwal, M., Roy, A., Saxena, N.: Next generation 5G wireless networks: a comprehensive survey. IEEE Commun. Surv. Tutor. 18(3), 1617–1655 (2016)CrossRefGoogle Scholar
  6. 6.
    Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., Ayyash, M.: Internet of things: a survey on enabling technologies, protocols, and applications. IEEE Commun. Surv. Tutor. 17(4), 2347–2376 (2015)CrossRefGoogle Scholar
  7. 7.
    Andreev, S., Galinina, O., Pyattaev, A., Gerasimenko, M., Tirronen, T., Torsner, J., Sachs, J., Dohler, M., Koucheryavy, Y.: Understanding the IoT connectivity landscape: a contemporary M2M radio technology roadmap. IEEE Commun. Mag. 53(9), 32–40 (2015).  https://doi.org/10.1109/MCOM.2015.7263370CrossRefGoogle Scholar
  8. 8.
    Aust, S., Prasad, R.V., Niemegeers, I.G.M.M.: IEEE 802.11ah: advantages in standards and further challenges for sub 1 GHz Wi-Fi. In: IEEE International Conference on Communications, pp. 6885–6889 (2012)Google Scholar
  9. 9.
    Baos-Gonzalez, V., Afaqui, M., Lopez-Aguilera, E., Garcia-Villegas, E.: IEEE 802.11ah: a technology to face the IoT challenge. Sensors (Switzerland) 16(11) (2016).  https://doi.org/10.3390/s16111960CrossRefGoogle Scholar
  10. 10.
    Barnaghi, P., Wang, W., Henson, C., Taylor, K.: Semantics for the internet of things: early progress and back to the future. Int. J. Semant. Web Inf. Syst. 8(1), 1–21 (2012)CrossRefGoogle Scholar
  11. 11.
    Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Sci. Am. (2001)Google Scholar
  12. 12.
    Bonino, D., Procaccianti, G.: Exploiting semantic technologies in smart environments and grids: emerging roles and case studies. Sci. Comput. Program. 95(P1), 112–134 (2014).  https://doi.org/10.1016/j.scico.2014.02.018CrossRefGoogle Scholar
  13. 13.
    Bor, M.C., Roedig, U., Voigt, T., Alonso, J.M.: Do LoRa low-power wide-area networks scale? In: Proceedings of the 19th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems, MSWiM’16, pp. 59–67. ACM, New York, NY, USA (2016)Google Scholar
  14. 14.
    Bormann, C., Castellani, A.P., Shelby, Z.: CoAP: an application protocol for billions of tiny internet nodes. IEEE Internet Comput. 16(2), 62–67 (2012)CrossRefGoogle Scholar
  15. 15.
    Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, F.: Extensible markup language (XML) 1.0 (fifth edition). Technical report, World Wide Web Consortium (2008)Google Scholar
  16. 16.
    Bui, N., Castellani, A.P., Casari, P., Zorzi, M.: The internet of energy: a web-enabled smart grid system. IEEE Netw. 26(4), 39–45 (2012).  https://doi.org/10.1109/MNET.2012.6246751CrossRefGoogle Scholar
  17. 17.
    Chen, J.J., Liang, J.M., Chen, Z.Y.: Energy-efficient uplink radio resource management in LTE-advanced relay networks for internet of things. In: 2014 International Wireless Communications and Mobile Computing Conference (IWCMC), pp. 745–750 (2014).  https://doi.org/10.1109/IWCMC.2014.6906449
  18. 18.
    Cohen, D.: 5G and the IoT: 5 trends and implications. Microw. J. 59(9), 44–48 (2016)Google Scholar
  19. 19.
    Crosby, G.V., Vafa, F.: Wireless sensor networks and LTE-A network convergence. In: 38th Annual IEEE Conference on Local Computer Networks, pp. 731–734 (2013)Google Scholar
  20. 20.
    Dateki, T., Seki, H., Minowa, M.: From LTE-advanced to 5g: mobile access system in progress. Fujitsu Sci. Tech. J. 52(2), 97–102 (2016)Google Scholar
  21. 21.
    Dean, M., et al.: Owl web ontology language reference (2004)Google Scholar
  22. 22.
    Díaz-Zayas, A., García-Pérez, C.A., Recio-Pérez, Á.M., Merino, P.: 3GPP standards to deliver LTE connectivity for IoT. In: 2016 IEEE First International Conference on Internet-of-Things Design and Implementation (IoTDI), pp. 283–288 (2016)Google Scholar
  23. 23.
    Ericsson: 5G radio access, white paper, UEN 284 23-3204 Rev C. Technical report, Ericsson (2016)Google Scholar
  24. 24.
    Ericsson: Ericsson Mobility Report June 2017. White paper (2017). https://www.ericsson.com/en/mobility-report
  25. 25.
    Fensel, D., Bussler, C., Maedche, A.: Semantic web enabled web services. In: ISWC 2002. LNCS, vol. 2342, pp. 1–2. Springer, Berlin Heidelberg (2002)zbMATHGoogle Scholar
  26. 26.
    Fettweis, G.P.: 5G and the future of IoT. In: 42nd European Solid-State Circuits Conference, ESSCIRC 2016, vol. 2016-October, pp. 21–24. IEEE Computer Society (2016)Google Scholar
  27. 27.
    Foster, P.R., Burberry, R.A.: Antenna problems in RFID systems. In: IEE Colloquium on RFID Technology (Ref. No. 1999/123), pp. 31–35 (1999)Google Scholar
  28. 28.
    Frank, R., Bronzi, W., Castignani, G., Engel, T.: Bluetooth low energy: an alternative technology for vanet applications. In: 11th Annual Conference on Wireless on-Demand Network Systems and Services, IEEE/IFIP WONS 2014 - Proceedings, pp. 104–107 (2014)Google Scholar
  29. 29.
    Gabbar, H., Eldessouky, A., Runge, J.: Applications of energy semantic networks (2016).  https://doi.org/10.1016/B978-0-12-805343-0.00013-9CrossRefGoogle Scholar
  30. 30.
    Gavrilovska, L., Rakovic, V., Atanasovski, V.: Visions towards 5G: technical requirements and potential enablers. Wirel. Pers. Commun. 87(3), 731–757 (2016)CrossRefGoogle Scholar
  31. 31.
    Ghosh, A., Ratasuk, R., Mondal, B., Mangalvedhe, N., Thomas, T.: LTE-advanced: next-generation wireless broadband technology. IEEE Wirel. Commun. 17(3), 10–22 (2010)CrossRefGoogle Scholar
  32. 32.
    Gozalvez, J.: New 3GPP standard for IoT [mobile radio]. IEEE Veh. Technol. Mag. 11(1), 14–20 (2016)CrossRefGoogle Scholar
  33. 33.
    Guinard, D., Trifa, V., Wilde, E.: A resource oriented architecture for the web of things. In: 2010 Internet of Things, IoT (2010)Google Scholar
  34. 34.
    Hazmi, A., Rinne, J., Valkama, M.: Feasibility study of IEEE 802.11ah radio technology for IoT and M2M use cases. In: 2012 IEEE Globecom Workshops, GC Wkshps 2012, pp. 1687–1692 (2012)Google Scholar
  35. 35.
    He, H., Du, Q., Song, H., Li, W., Wang, Y., Ren, P.: Traffic-aware ACB scheme for massive access in machine-to-machine networks. In: 2015 IEEE International Conference on Communications (ICC), pp. 617–622 (2015).  https://doi.org/10.1109/ICC.2015.7248390
  36. 36.
    Hippolyte, J., Howell, S., Yuce, B., Mourshed, M., Sleiman, H., Vinyals, M., Vanhee, L.: Ontology-based demand-side flexibility management in smart grids using a multi-agent system (2016).  https://doi.org/10.1109/ISC2.2016.7580828
  37. 37.
    Hoymann, C., Astely, D., Stattin, M., Wikstrom, G., Cheng, J.F., Hoglund, A., Frenne, M., Blasco, R., Huschke, J., Gunnarsson, F.: LTE release 14 outlook. IEEE Commun. Mag. 54(6), 44–49 (2016)CrossRefGoogle Scholar
  38. 38.
    Huang, Y., Zhou, X.: Generalized data management model of smart grid based on ontology theory. Dianli Xitong Zidonghua/Autom. Electr. Power Syst. 38(9), 114–118 (2014).  https://doi.org/10.7500/AEPS20130608004CrossRefGoogle Scholar
  39. 39.
    Hui, J.W., Culler, D.E.: Extending IP to low-power, wireless personal area networks. IEEE Internet Comput. 12(4), 37–45 (2008)CrossRefGoogle Scholar
  40. 40.
    IEEE: IEEE standard for local and metropolitan area networks-part 15.4: low-rate wireless personal area networks (LR-WPANs) (2011)Google Scholar
  41. 41.
    IEEE-SEP2: 2030.5-2013-IEEE adoption of smart energy profile 2.0 application protocol standard (2013)Google Scholar
  42. 42.
    Jara, A.J., Olivieri, A.C., Bocchi, Y., Jung, M., Kastner, W., Skarmeta, A.F.: Semantic web of things: an analysis of the application semantics for the IoT moving towards the IoT convergence. Int. J. Web Grid Serv. 10(2–3), 244–272 (2014)CrossRefGoogle Scholar
  43. 43.
    Jaradat, M., Jarrah, M., Bousselham, A., Jararweh, Y., Al-Ayyoub, M.: The internet of energy: smart sensor networks and big data management for smart grid. Procedia Comput. Sci. 56, 592–597 (2015).  https://doi.org/10.1016/j.procs.2015.07.250, http://www.sciencedirect.com/science/article/pii/S1877050915017317. (The 10th International Conference on Future Networks and Communications (FNC 2015)/The 12th International Conference on Mobile Systems and Pervasive Computing (MobiSPC 2015) Affiliated Workshops)CrossRefGoogle Scholar
  44. 44.
    Jover, R.P., Murynets, I.: Connection-less communication of IoT devices over LTE mobile networks. In: 2015 12th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), pp. 247–255 (2015).  https://doi.org/10.1109/SAHCN.2015.7338323
  45. 45.
    Kamiya, T., Schneider, J.: Efficient XML interchange (EXI) format 1.0. World Wide Web Consortium (2011)Google Scholar
  46. 46.
    Kasparick, M., Wunder, G., Jung, P., Maryopi, D.: Bi-orthogonal waveforms for 5G random access with short message support. In: 20th European Wireless Conference, EW 2014, pp. 293–298. VDE VERLAG GMBH (2014)Google Scholar
  47. 47.
    Khan, R., Khan, S.U., Zaheer, R., Khan, S.: Future internet: the internet of things architecture, possible applications and key challenges. In: Proceedings - 10th International Conference on Frontiers of Information Technology, FIT 2012, pp. 257–260 (2012)Google Scholar
  48. 48.
    Khorov, E., Lyakhov, A., Krotov, A., Guschin, A.: A survey on IEEE 802.11ah: an enabling networking technology for smart cities. Comput. Commun. 58, 53–69 (2015).  https://doi.org/10.1016/j.comcom.2014.08.008. (Special Issue on Networking and Communications for Smart Cities)CrossRefGoogle Scholar
  49. 49.
    Kushalnagar, N., Montenegro, G., Schumacher, C.: IPv6 over low-power wireless personal area networks (6lowpans): overview, assumptions, problem statement, and goals. RFC 4919 (2007)Google Scholar
  50. 50.
    Liang, J.M., Chen, J.J., Cheng, H.H., Tseng, Y.C.: An energy-efficient sleep scheduling with QoS consideration in 3GPP LTE-advanced networks for internet of things. IEEE J. Emerg. Sel. Top. Circuits Syst. 3(1), 13–22 (2013)CrossRefGoogle Scholar
  51. 51.
    LoRa Alliance: a technical overview of LoRA and LoRaWAN (2015)Google Scholar
  52. 52.
    Manola, F., Miller, E.: RDF Primer. W3C Recommendation 10 February (2004). http://www.w3.org/TR/rdf-primer/
  53. 53.
    McGuinness, D.L., van Harmelen, F., et al.: Owl web ontology language overview (2004)Google Scholar
  54. 54.
    Mehmood, Y., Görg, C., Muehleisen, M., Timm-Giel, A.: Mobile M2M communication architectures, upcoming challenges, applications, and future directions. Eurasip J. Wirel. Commun. Netw. 2015(1), 1–37 (2015)CrossRefGoogle Scholar
  55. 55.
    Mikhaylov, K., Petäjäjärvi, J., Hänninen, T.: Analysis of capacity and scalability of the LoRA low power wide area network technology. In: European Wireless Conference 2016, EW 2016, pp. 119–124 (2016)Google Scholar
  56. 56.
    Montenegro, G., Kushalnagar, N., Hui, J., Culler, D.: Transmission of IPv6 packets overt IEEE 802.15.4 networks. Internet Engineering Task Force (IETF) (2007)Google Scholar
  57. 57.
    Mosshammer, R., Einfalt, A., Lugmaier, A., Hodges, J., Michahelles, F.: Semantic Annotation Engine for Smart Grid Applications, pp. 132–137 (2015).  https://doi.org/10.1109/IOT.2015.7356557
  58. 58.
    Muñoz, R., Mangues-Bafalluy, J., Vilalta, R., Verikoukis, C., Alonso-Zarate, J., Bartzoudis, N., Georgiadis, A., Payaró, M., Perez-Neira, A., Casellas, R., Martínez, R., Núñez-Martínez, J., Esteso, M.R., Pubill, D., Font-Bach, O., Henarejos, P., Serra, J., Vazquez-Gallego, F.: The CTTC 5G end-to-end experimental platform: integrating heterogeneous wireless/optical networks, distributed cloud, and IoT devices. IEEE Veh. Technol. Mag. 11(1), 50–63 (2016)CrossRefGoogle Scholar
  59. 59.
    Niu, Y., Li, Y., Jin, D., Su, L., Vasilakos, A.V.: A survey of millimeter wave communications (mmwave) for 5G: opportunities and challenges. Wirel. Netw. 21(8), 2657–2676 (2015)CrossRefGoogle Scholar
  60. 60.
    Nokia: LTE evolution for IoT connectivity. Technical report, Nokia (2016)Google Scholar
  61. 61.
    Olyaei, B.B., Pirskanen, J., Raeesi, O., Hazmi, A., Valkama, M.: Performance comparison between slotted IEEE 802.15.4 and IEEE 802.1 lah in IoT based applications. In: International Conference on Wireless and Mobile Computing, Networking and Communications, pp. 332–337 (2013)Google Scholar
  62. 62.
    Palattella, M.R., Accettura, N., Vilajosana, X., Watteyne, T., Grieco, L.A., Boggia, G., Dohler, M.: Standardized protocol stack for the internet of (important) things. IEEE Commun. Surv. Tutor. 15(3), 1389–1406 (2013)CrossRefGoogle Scholar
  63. 63.
    Palattella, M.R., Dohler, M., Grieco, A., Rizzo, G., Torsner, J., Engel, T., Ladid, L.: Internet of things in the 5G Era: enablers, architecture, and business models. IEEE J. Sel. Areas Commun. 34(3), 510–527 (2016)CrossRefGoogle Scholar
  64. 64.
    Petajajarvi, J., Mikhaylov, K., Hamalainen, M., Iinatti, J.: Evaluation of LoRA LPWAN technology for remote health and wellbeing monitoring. In: International Symposium on Medical Information and Communication Technology, ISMICT, vol. 2016-June (2016)Google Scholar
  65. 65.
    Rao, K.V.S., Nikitin, P.V., Lam, S.F.: Antenna design for UHF RFID tags: a review and a practical application. IEEE Trans. Antennas Propag. 53(12), 3870–3876 (2005)CrossRefGoogle Scholar
  66. 66.
    Ratasuk, R., Mangalvedhe, N., Ghosh, A.: Overview of LTE enhancements for cellular IoT. In: 2015 IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), pp. 2293–2297 (2015)Google Scholar
  67. 67.
    Ratasuk, R., Mangalvedhe, N., Zhang, Y., Robert, M., Koskinen, J.P.: Overview of narrowband IoT in LTE Rel-13. In: 2016 IEEE Conference on Standards for Communications and Networking (CSCN), pp. 1–7 (2016)Google Scholar
  68. 68.
    Ratasuk, R., Vejlgaard, B., Mangalvedhe, N., Ghosh, A.: NB-IoT system for M2M communication. In: 2016 IEEE Wireless Communications and Networking Conference, pp. 1–5 (2016)Google Scholar
  69. 69.
    Rico-Alvarino, A., Vajapeyam, M., Xu, H., Wang, X., Blankenship, Y., Bergman, J., Tirronen, T., Yavuz, E.: An overview of 3GPP enhancements on machine to machine communications. IEEE Commun. Mag. 54(6), 14–21 (2016)CrossRefGoogle Scholar
  70. 70.
    Ruta, M., Scioscia, F., Di Sciascio, E.: Enabling the semantic web of things: framework and architecture. In: 6th IEEE International Conference on Semantic Computing, ICSC 2012, pp. 345–347 (2012)Google Scholar
  71. 71.
    Schwartz, D.G.: From open is semantics to the semantic web: the road ahead. IEEE Intell. Syst. 18(3), 52–58 (2003)CrossRefGoogle Scholar
  72. 72.
    Shelby, Z., Hartke, K., Bormann, C., Frank, B.: Constrained application protocol (CoAP). Internet Engineering Task Force (IETF) RFC 7252 (2014)Google Scholar
  73. 73.
    Skouby, K.E., Lynggaard, P.: Smart home and smart city solutions enabled by 5G, IoT, AAI and CoT services. In: 2014 International Conference on Contemporary Computing and Informatics, IC3I 2014, pp. 874–878. Institute of Electrical and Electronics Engineers Inc. (2014)Google Scholar
  74. 74.
    Talwar, S., Choudhury, D., Dimou, K., Aryafar, E., Bangerter, B., Stewart, K.: Enabling technologies and architectures for 5G wireless. In: 2014 IEEE MTT-S International Microwave Symposium, IMS 2014. Institute of Electrical and Electronics Engineers Inc. (2014)Google Scholar
  75. 75.
    Tan, L., Wang, N.: Future internet: the internet of things. In: 2010 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE), vol. 5, pp. V5-376–V5-380 (2010).  https://doi.org/10.1109/ICACTE.2010.5579543
  76. 76.
    Taneja, M.: LTE-LPWA networks for IoT applications. In: 2016 International Conference on Information and Communication Technology Convergence (ICTC), pp. 396–399 (2016)Google Scholar
  77. 77.
    Toussaint, J., Rachkidy, N.E., Guitton, A.: Performance analysis of the on-the-air activation in LoRaWAN. In: 2016 IEEE 7th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), pp. 1–7 (2016).  https://doi.org/10.1109/IEMCON.2016.7746082
  78. 78.
    Tuballa, M.L., Abundo, M.L.: A review of the development of smart grid technologies. Renew. Sustain. Energy Rev. 59, 710–725 (2016).  https://doi.org/10.1016/j.rser.2016.01.011CrossRefGoogle Scholar
  79. 79.
    Vahedi, E., Ward, R.K., Blake, I.F.: Performance analysis of RFID protocols: CDMA versus the standard EPC Gen-2. IEEE Trans. Autom. Sci. Eng. 11(4), 1250–1261 (2014)CrossRefGoogle Scholar
  80. 80.
    Want, R.: An introduction to RFID technology. IEEE Pervasive Comput. 5(1), 25–33 (2006)CrossRefGoogle Scholar
  81. 81.
    Want, R.: Near field communication. IEEE Pervasive Comput. 10(3), 4–7 (2011)CrossRefGoogle Scholar
  82. 82.
    Wu, Q., Ding, G., Xu, Y., Feng, S., Du, Z., Wang, J., Long, K.: Cognitive internet of things: a new paradigm beyond connection. IEEE Internet Things J. 1(2), 129–143 (2014)CrossRefGoogle Scholar
  83. 83.
    Wunder, G., Jung, P., Kasparick, M., Wild, T., Schaich, F., Chen, Y., Brink, S.T., Gaspar, I., Michailow, N., Festag, A., Mendes, L., Cassiau, N., Kténas, D., Dryjanski, M., Pietrzyk, S., Eged, B., Vago, P., Wiedmann, F.: 5GNOW: Non-orthogonal, asynchronous waveforms for future mobile applications. IEEE Commun. Mag. 52(2), 97–105 (2014)CrossRefGoogle Scholar
  84. 84.
    Zanella, A., Bui, N., Castellani, A., Vangelista, L., Zorzi, M.: Internet of things for smart cities. IEEE Internet Things J. 1(1), 22–32 (2014)CrossRefGoogle Scholar
  85. 85.
    Zayas, A.D., Merino, P.: The 3GPP NB-IoT system architecture for the internet of things. In: 2017 IEEE International Conference on Communications Workshops (ICC Workshops), pp. 277–282 (2017)Google Scholar
  86. 86.
    Ziegler, S., Crettaz, C., Thomas, I.: IPv6 as a global addressing scheme and integrator for the internet of things and the cloud. In: Proceedings - 2014 IEEE 28th International Conference on Advanced Information Networking and Applications Workshops, IEEE WAINA 2014, pp. 797–802 (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sotirios K. Goudos
    • 1
    Email author
  • Panagiotis Sarigiannidis
    • 2
  • Panagiotis I. Dallas
    • 3
  • Sofoklis Kyriazakos
    • 4
  1. 1.Department of PhysicsAristotle University of ThessalonikiThessalonikiGreece
  2. 2.Department of Informatics and Telecommunications EngineeringUniversity of Western MacedoniaKozaniGreece
  3. 3.Wireless Network Systems DivisionINTRACOM Telecom S.A.AthensGreece
  4. 4.Department of Business Development and TechnologyAarhus UniversityHerningDenmark

Personalised recommendations