Higher-Order Structure-Based Graph Decomposition

  • Lijun Chang
  • Lu Qin
Part of the Springer Series in the Data Sciences book series (SSDS)


Higher-order structures, also known as motifs or graphlets, have been recently used to successfully locate dense regions that cannot be detected otherwise by edge-centric methods [8, 89, 90].


  1. 2.
    Esra Akbas and Peixiang Zhao. Truss-based community search: a truss-equivalence based indexing approach. PVLDB, 10(11):1298–1309, 2017.Google Scholar
  2. 8.
    Austin R. Benson, David F. Gleich, and Jure Leskovec. Higher-order organization of complex networks. Science, 353(6295):163–166, 2016.CrossRefGoogle Scholar
  3. 20.
    Norishige Chiba and Takao Nishizeki. Arboricity and subgraph listing algorithms. SIAM J. Comput., 14(1):210–223, 1985.MathSciNetCrossRefGoogle Scholar
  4. 21.
    Shumo Chu and James Cheng. Triangle listing in massive networks and its applications. In Proc. of KDD’11, pages 672–680, 2011.Google Scholar
  5. 22.
    Jonathan Cohen. Trusses: Cohesive subgraphs for social network analysis, 2008.Google Scholar
  6. 24.
    Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms (3. ed.). MIT Press, 2009.Google Scholar
  7. 25.
    Maximilien Danisch, Oana Balalau, and Mauro Sozio. Listing k-cliques in sparse real-world graphs. In Proc. of WWW’18, 2018.Google Scholar
  8. 35.
    A. V. Goldberg. Finding a maximum density subgraph. Technical report, Berkeley, CA, USA, 1984.Google Scholar
  9. 37.
    Oded Green, Lluís-Miquel Munguía, and David A. Bader. Load balanced clustering coefficients. In Proc. of PPAA’14, pages 3–10, 2014.Google Scholar
  10. 39.
    Xiaocheng Hu, Miao Qiao, and Yufei Tao. I/o-efficient join dependency testing, Loomis-Whitney join, and triangle enumeration. J. Comput. Syst. Sci., 82(8):1300–1315, 2016.MathSciNetCrossRefGoogle Scholar
  11. 40.
    Xiaocheng Hu, Yufei Tao, and Chin-Wan Chung. Massive graph triangulation. In Proc. of SIGMOD’13, pages 325–336, 2013.Google Scholar
  12. 41.
    Xin Huang, Hong Cheng, Lu Qin, Wentao Tian, and Jeffrey Xu Yu. Querying k-truss community in large and dynamic graphs. In Proc. of SIGMOD’14, pages 1311–1322, 2014.Google Scholar
  13. 43.
    Alon Itai and Michael Rodeh. Finding a minimum circuit in a graph. SIAM J. Comput., 7(4):413–423, 1978.MathSciNetCrossRefGoogle Scholar
  14. 47.
    Matthieu Latapy. Main-memory triangle computations for very large (sparse (power-law)) graphs. Theor. Comput. Sci., 407(1–3):458–473, 2008.MathSciNetCrossRefGoogle Scholar
  15. 60.
    Michael Mitzenmacher, Jakub Pachocki, Richard Peng, Charalampos E. Tsourakakis, and Shen Chen Xu. Scalable large near-clique detection in large-scale networks via sampling. In Proc. of KDD’15, pages 815–824, 2015.Google Scholar
  16. 64.
    Mark Ortmann and Ulrik Brandes. Triangle listing algorithms: Back from the diversion. In Proc. of ALENEX’14, pages 1–8, 2014.Google Scholar
  17. 65.
    Rasmus Pagh and Francesco Silvestri. The input/output complexity of triangle enumeration. In Proc. of PODS’14, pages 224–233, 2014.Google Scholar
  18. 67.
    Ha-Myung Park and Chin-Wan Chung. An efficient mapreduce algorithm for counting triangles in a very large graph. In Proc. of CIKM’13, pages 539–548, 2013.Google Scholar
  19. 68.
    Ha-Myung Park, Francesco Silvestri, U. Kang, and Rasmus Pagh. Mapreduce triangle enumeration with guarantees. In Proc. of CIKM’14, pages 1739–1748, 2014.Google Scholar
  20. 76.
    Ahmet Erdem Sariyüce and Ali Pinar. Fast hierarchy construction for dense subgraphs. PVLDB, 10(3):97–108, 2016.Google Scholar
  21. 77.
    Ahmet Erdem Sariyüce and Ali Pinar. Peeling bipartite networks for dense subgraph discovery. In Proc. of WSDM’18, pages 504–512, 2018.Google Scholar
  22. 78.
    Ahmet Erdem Sariyüce, C. Seshadhri, Ali Pinar, and Ümit V. Çatalyürek. Finding the hierarchy of dense subgraphs using nucleus decompositions. In Proc. of WWW’15, pages 927–937, 2015.Google Scholar
  23. 79.
    Thomas Schank and Dorothea Wagner. Finding, counting and listing all triangles in large graphs, an experimental study. In Proc. of WEA’05, pages 606–609, 2005.Google Scholar
  24. 83.
    Julian Shun and Kanat Tangwongsan. Multicore triangle computations without tuning. In Proc. of ICDE’15, pages 149–160, 2015.Google Scholar
  25. 86.
    Siddharth Suri and Sergei Vassilvitskii. Counting triangles and the curse of the last reducer. In Proc. of WWW’11, pages 607–614, 2011.Google Scholar
  26. 89.
    Charalampos E. Tsourakakis. The k-clique densest subgraph problem. In Proc. of WWW’15, pages 1122–1132, 2015.Google Scholar
  27. 90.
    Charalampos E. Tsourakakis, Jakub Pachocki, and Michael Mitzenmacher. Scalable motif-aware graph clustering. In Proc. of WWW’17, pages 1451–1460, 2017.Google Scholar
  28. 92.
    Jia Wang and James Cheng. Truss decomposition in massive networks. PVLDB, 5(9):812–823, 2012.Google Scholar
  29. 103.
    Yuanyuan Zhu, Hao Zhang, Lu Qin, and Hong Cheng. Efficient mapreduce algorithms for triangle listing in billion-scale graphs. Distributed and Parallel Databases, 35(2):149–176, 2017.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Lijun Chang
    • 1
  • Lu Qin
    • 2
  1. 1.School of Computer ScienceThe University of SydneySydneyAustralia
  2. 2.Centre for Artificial IntelligenceUniversity of Technology SydneySydneyAustralia

Personalised recommendations