Advertisement

Introduction

  • Lijun Chang
  • Lu Qin
Chapter
Part of the Springer Series in the Data Sciences book series (SSDS)

Abstract

With the rapid development of information technology such as social media, online communities, and mobile communications, huge volumes of digital data are accumulated with data entities involving complex relationships. These data are usually modelled as graphs in view of the simple yet strong expressive power of graph model; that is, entities are represented by vertices and relationships are represented by edges.

References

  1. 1.
    James Abello, Mauricio G. C. Resende, and Sandra Sudarsky. Massive quasi-clique detection. In Proc. of LATIN’02, pages 598–612, 2002.Google Scholar
  2. 3.
    Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. Linear-time enumeration of maximal k-edge-connected subgraphs in large networks by random contraction. In Proc. CIKM’13, pages 909–918, 2013.Google Scholar
  3. 4.
    Albert Angel, Nick Koudas, Nikos Sarkas, and Divesh Srivastava. Dense subgraph maintenance under streaming edge weight updates for real-time story identification. PVLDB, 5(6):574–585, 2012.Google Scholar
  4. 10.
    Fei Bi, Lijun Chang, Xuemin Lin, and Wenjie Zhang. An optimal and progressive approach to online search of top-k influential communities. PVLDB, 11(9):1056–1068, 2018.Google Scholar
  5. 11.
    S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang. Complex networks: Structure and dynamics. Physics Reports, 424(4–5):175–308, 2006.MathSciNetCrossRefGoogle Scholar
  6. 12.
    Paolo Boldi and Sebastiano Vigna. The WebGraph framework I: Compression techniques. In Proc. of WWW’04, pages 595–601, 2004.Google Scholar
  7. 16.
    Lijun Chang, Xuemin Lin, Lu Qin, Jeffrey Xu Yu, and Wenjie Zhang. Index-based optimal algorithms for computing Steiner components with maximum connectivity. In Proc. of SIGMOD’15, 2015.Google Scholar
  8. 17.
    Lijun Chang, Jeffrey Xu Yu, Lu Qin, Xuemin Lin, Chengfei Liu, and Weifa Liang. Efficiently computing k-edge connected components via graph decomposition. In Proc. SIGMOD’13, pages 205–216, 2013.Google Scholar
  9. 18.
    Moses Charikar. Greedy approximation algorithms for finding dense components in a graph. In Proc. APPROX’00, pages 84–95, 2000.Google Scholar
  10. 22.
    Jonathan Cohen. Trusses: Cohesive subgraphs for social network analysis, 2008.Google Scholar
  11. 23.
    Alessio Conte, Donatella Firmani, Caterina Mordente, Maurizio Patrignani, and Riccardo Torlone. Fast enumeration of large k-plexes. In Proc. of KDD’17, pages 115–124, 2017.Google Scholar
  12. 24.
    Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms (3. ed.). MIT Press, 2009.Google Scholar
  13. 33.
    David Gibson, Ravi Kumar, and Andrew Tomkins. Discovering large dense subgraphs in massive graphs. In Proc. of VLDB’05, pages 721–732, 2005.Google Scholar
  14. 35.
    A. V. Goldberg. Finding a maximum density subgraph. Technical report, Berkeley, CA, USA, 1984.Google Scholar
  15. 41.
    Xin Huang, Hong Cheng, Lu Qin, Wentao Tian, and Jeffrey Xu Yu. Querying k-truss community in large and dynamic graphs. In Proc. of SIGMOD’14, pages 1311–1322, 2014.Google Scholar
  16. 42.
    Xin Huang, Laks V. S. Lakshmanan, and Jianliang Xu. Community search over big graphs: Models, algorithms, and opportunities. In Proc. of ICDE’17, pages 1451–1454, 2017.Google Scholar
  17. 46.
    M. Kitsak, L. K. Gallos, S. Havlin, F. Liljeros, L. Muchnik, H. E. Stanley, and H. A. Makse. Identification of influential spreaders in complex networks. Nature Physics, 6:888–893, 2010.CrossRefGoogle Scholar
  18. 48.
    Victor E. Lee, Ning Ruan, Ruoming Jin, and Charu C. Aggarwal. A survey of algorithms for dense subgraph discovery. In Managing and Mining Graph Data, pages 303–336. 2010.Google Scholar
  19. 49.
    Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection. http://snap.stanford.edu/data, June 2014.
  20. 55.
    F. D. Malliaros, M.-E. G. Rossi, and M. Vazirgiannis. Locating influential nodes in complex networks. Scientific Reports, 6, 2016.Google Scholar
  21. 57.
    Fragkiskos D. Malliaros and Michalis Vazirgiannis. Graph-based text representations: Boosting text mining, nlp and information retrieval with graphs. In Proc. of EMNLP’17, 2017.Google Scholar
  22. 59.
    David W. Matula and Leland L. Beck. Smallest-last ordering and clustering and graph coloring algorithms. J. ACM, 30(3):417–427, 1983.MathSciNetCrossRefGoogle Scholar
  23. 71.
    Ryan A. Rossi and Nesreen K. Ahmed. The network data repository with interactive graph analytics and visualization. In Proc. of AAAI’15, 2015.Google Scholar
  24. 72.
    François Rousseau and Michalis Vazirgiannis. Main core retention on graph-of-words for single-document keyword extraction. In Proc. of ECIR’15, pages 382–393, 2015.Google Scholar
  25. 73.
    Yousef Saad. Iterative methods for sparse linear systems. SIAM, 2003.CrossRefGoogle Scholar
  26. 76.
    Ahmet Erdem Sariyüce and Ali Pinar. Fast hierarchy construction for dense subgraphs. PVLDB, 10(3):97–108, 2016.Google Scholar
  27. 80.
    Pablo San Segundo, Alvaro Lopez, and Panos M. Pardalos. A new exact maximum clique algorithm for large and massive sparse graphs. Computers & Operations Research, 66:81–94, 2016.MathSciNetCrossRefGoogle Scholar
  28. 81.
    Stephen B. Seidman. Network structure and minimum degree. Social Networks, 5(3):269–287, 1983.MathSciNetCrossRefGoogle Scholar
  29. 82.
    Stephen B. Seidman and Brian L. Foster. A graph-theoretic generalization of the clique concept. The Journal of Mathematical Sociology, 6(1):139–154, 1978.MathSciNetCrossRefGoogle Scholar
  30. 84.
    Mauro Sozio and Aristides Gionis. The community-search problem and how to plan a successful cocktail party. In Proc. of KDD’10, pages 939–948, 2010.Google Scholar
  31. 88.
    Antoine J.-P. Tixier, Fragkiskos D. Malliaros, and Michalis Vazirgiannis. A graph degeneracy-based approach to keyword extraction. In Proc. of EMNLP’16, pages 1860–1870, 2016.Google Scholar
  32. 89.
    Charalampos E. Tsourakakis. The k-clique densest subgraph problem. In Proc. of WWW’15, pages 1122–1132, 2015.Google Scholar
  33. 91.
    Michalis Vazirgiannis. Graph of words: Boosting text mining tasks with graphs. In Proc. of WWW’17, page 1181, 2017.Google Scholar
  34. 92.
    Jia Wang and James Cheng. Truss decomposition in massive networks. PVLDB, 5(9):812–823, 2012.Google Scholar
  35. 93.
    Jim Webber. The top 5 use cases of graph databases (white paper), 2015.Google Scholar
  36. 99.
    Long Yuan, Lu Qin, Xuemin Lin, Lijun Chang, and Wenjie Zhang. I/O efficient ECC graph decomposition via graph reduction. PVLDB, 9(7):516–527, 2016.Google Scholar
  37. 102.
    Rui Zhou, Chengfei Liu, Jeffrey Xu Yu, Weifa Liang, Baichen Chen, and Jianxin Li. Finding maximal k-edge-connected subgraphs from a large graph. In Proc. of EDBT’12, 2012.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Lijun Chang
    • 1
  • Lu Qin
    • 2
  1. 1.School of Computer ScienceThe University of SydneySydneyAustralia
  2. 2.Centre for Artificial IntelligenceUniversity of Technology SydneySydneyAustralia

Personalised recommendations