Endophytic Fungi: Role in Phosphate Solubilization

  • Preeti Mehta
  • Rashmi Sharma
  • Chayanika Putatunda
  • Abhishek Walia
Part of the Fungal Biology book series (FUNGBIO)


Phosphorus (P) is the primary nutrient element needed for overall plant growth and crop productivity. The global farming practices are majorly dependent on the use of synthetic phosphate fertilizers. But the cost of synthetic fertilizers, their associated negative impact on human and environment, and frequent precipitation and immobilization of phosphorus in soil have led agriculturalists to look for alternative strategies that could enhance plant growth by maintaining soluble phosphorus pool in soil. Microbial communities, including fungi, possess the ability for phosphate solubilization and mineralization. In soil, P-solubilizing fungi constitute about 0.1–0.5% of the total fungal populations. Among them endophytic fungi are the major contributors. Endophytes represent the soil microbial population that can colonize plants without inducing any apparent disease symptoms. The major endophytic P-solubilizing fungi belong to the genera Penicillium, Aspergillus, Piriformospora, Curvularia, and another class of endophytic symbionts arbuscular mycorrhizal (AM) fungi. P-solubilizing endophytic fungi are more competitive and aggressive colonizers than non-endophytic microbes. Considering the vast array of benefits of using endophytic fungi for plant P nutrition, this chapter focuses on the role of endophytic and mycorrhizal fungi in P-solubilization and mineralization, their mechanisms involved, development and mode of application of endophytic fungal inoculants, and their various mechanisms of plant growth promotion and crop productivity.


Endophytic fungi AM fungi Phosphate solubilization Growth promotion 


  1. Abd-Alla MH, Omar SA, Omar SA (2001) Survival of rhizobia/bradyrhizobia and a rockphosphate-solubilizing fungus Aspergillus niger on various carriers from some agroindustrial wastes and their effects on nodulation and growth of faba bean and soybean. J Plant Nutr 24:261–272CrossRefGoogle Scholar
  2. Ahmad N, Shahab S (2011) Phosphate solubilization: their mechanism genetics and application. Int J Microbiol 9:4408–4412Google Scholar
  3. Akintokun AK, Akande GA, Akintokun PO, Popoola TOS, Babalola AO (2007) Solubilization of insoluble phosphate by organic acid producing fungi isolated from Nigerian soil. Int J Soil Sci 2:301–307CrossRefGoogle Scholar
  4. Alkan N, Gadkar V, Coburn J, Yarden O, Kapulnik Y (2004) Quantification of arbuscular mycorrhizal fungus Glomus intradices in host tissue using real-time polymerase chain reaction. New Phytol 161:877–885CrossRefGoogle Scholar
  5. Altomare C, Norvell WA, Björkman T, Harman GE (1999) Solubilization of phosphates and micronutrients by the plant growth-promoting and biocontrol fungus Trichoderma harzianum Rifai 1295-22. Appl Environ Microbiol 65:2926–2933PubMedPubMedCentralGoogle Scholar
  6. Azevedo JL, Maccheroni Junior W, Pereira JO, Araújo WL (2000) Endophytic microrganisms: a review on insect control and recent advances on tropical plants. Electron J Biotechnol 3:40–65CrossRefGoogle Scholar
  7. Bagyaraj DJ, Manjunath A (1980) Selection of a suitable host for mass production of arbuscular mycorrhizal inoculum. Plant Soil 55:495–498CrossRefGoogle Scholar
  8. Bécard G, Pfeffer PE (1993) Status of nuclear division in arbuscular mycorrhizal fungi during in vitro development. Protoplasma 174:62–68CrossRefGoogle Scholar
  9. Behera BC, Singdevsachan SK, Mishra RR, Dutta SK, Thatoi HN (2014) Diversity, mechanism and biotechnology of phosphate solubilizing microorganisms in mangrove—a review. Biocatal Agric Biotechnol 3:97–110CrossRefGoogle Scholar
  10. Berruti A, Lumini E, Balestrini R, Bianciotto V (2016) Arbuscular mycorrhizal fungi as natural biofertilizers: Let’s benefit from past successes. Front Microbiol 6:1559PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bevege DI (1968) A rapid technique for clearing tannins and staining intact roots for detection of mycorrhizas caused by Endogone spp. & some records of infection in Australasian plants. Trans Br Mycol Soc 51:808–810CrossRefGoogle Scholar
  12. Bianciotto V, Bandi C et al (1996) An obligately endosymbiotic mycorrhizal fungus itself harbors obligately intracellular bacteria. Appl Environ Microbiol 62:3005–3010PubMedPubMedCentralGoogle Scholar
  13. Bolan NS, Currie LD, Baskaran S (1996) Assessment of the influence of phosphate fertilizers on the microbial activity of pasture soils. Biol Fertil Soils 21:284–292CrossRefGoogle Scholar
  14. Bonfante-Fasolo P, Faccio A, Perotto S, Schubert A (1990) Correlation between chitin distribution and cell wall morphology in the mycorrhizal fungus Glomus versiforme. Mycol Res 94:157–165CrossRefGoogle Scholar
  15. Bothe H, Klingner A, Kaldorf M, Schmitz O, Esch H, Hundeshagen B, Kernebeck H (1994) Biochemical approaches to the study of plant–fungal interactions in arbuscular mycorrhiza. Experientia 50:919–923CrossRefGoogle Scholar
  16. Burggraaf AJP, Beringer JE (1989) Absence of nuclear-DNA synthesis in vesicular arbuscular mycorrhizal fungi during in vitro development. New Phytol 111:25–33CrossRefGoogle Scholar
  17. Chanclud E, Morel JB (2016) Plant hormones: a fungal point of view. Mol Plant Pathol 17:289–1297CrossRefGoogle Scholar
  18. Chanway CP (1996) Endophytes: they’re not just fungi. Can J Bot 74:321–322CrossRefGoogle Scholar
  19. Chatli AS, Beri V, Sidhu BS (2008) Isolation and characterisation of phosphate solubilizing microorganisms from the cold desert habitat of Salix alba Linn. in trans Himalayan region of Himachal Pradesh. Indian J Microbiol 48:267–273PubMedPubMedCentralCrossRefGoogle Scholar
  20. Chauhan A, Guleria S, Walia A, Mahajan R, Verma S, Shirkot CK (2014) Isolation and characterization of Bacillus sp. with their effect on growth of tomato seedlings. Indian J Agric Biochem 27(2):193–201Google Scholar
  21. Chauhan A, Guleria S, Balgir P, Walia A, Mahajan R, Mehta P, Shirkot CK (2016) Tricalcium phosphate solubilization and nitrogen fixation by newly isolated Aneurinibacillus aneurinilyticus CKMV1 from rhizosphere of Valeriana jatamansi and its growth promotional effect. Braz J Microbiol 48(2):294–304PubMedPubMedCentralCrossRefGoogle Scholar
  22. Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41CrossRefGoogle Scholar
  23. Cunningham JL (1972) A miracle mounting fluid for permanent whole-mounts of microfungi. Mycologia 64:906–911CrossRefGoogle Scholar
  24. Deguchi S, Matsuda Y, Takenaka C, Sugiura Y, Ozawa H, Ogata Y (2017) Proposal of a new estimation method of colonization rate of arbuscular mycorrhizal fungi in the roots of Chengiopanax sciadophylloides. Mycobiology 45(1):15–19PubMedPubMedCentralCrossRefGoogle Scholar
  25. Delp G, Smith SE, Baker SJ (2000) Isolation by differential display of three partial cDNAs potentially coding for proteins from the VA mycorrhizal Glomus intraradices. Mycol Res 104:293–300CrossRefGoogle Scholar
  26. Deshmukh S, Hückelhoven R, Schäfer P, Imani J, Sharma M, Weiß M, Waller F, Kogel KH (2006) The root endophytic fungus Piriformospora indica requires host cell death for proliferation during mutualistic symbiosis with barley. Proc Natl Acad Sci USA 103:18450–18457PubMedCrossRefPubMedCentralGoogle Scholar
  27. Dickson S, Kolesik P (1999) Visualization of mycorrhizal structures and quantification of their surface area and volume using laser scanning confocal microscopy. Mycorrhiza 9:205–213CrossRefGoogle Scholar
  28. Dickson S, Schweiger P, Smith SA, Söderström B, Smith S (2003) Paired arbuscules in the Arum-type arbuscular mycorrhizal symbiosis with Linum usitatissimum. Can J Bot 81:457–463CrossRefGoogle Scholar
  29. Duponnois R, Kisa M, Plenchette C (2006) Phosphate solubilizing potential of the nematofungus Arthrobotrys oligospora. J Plant Nutr Soil Sci 169:280–282CrossRefGoogle Scholar
  30. Efthymiou A, Grønlund M, Müller-Stover DS, Jakobsen I (2018) Augmentation of the phosphorus fertilizer value of biochar by inoculation of wheat with selected Penicillium strains. Soil Biol Biochem 116:139–147CrossRefGoogle Scholar
  31. Farrar K, Bryant D, Cope-Selby N (2014) Understanding and engineering beneficial plant–microbe interactions: plant growth promotion in energy crops. Plant Biotechnol J 12(9):1193–1206PubMedPubMedCentralCrossRefGoogle Scholar
  32. Ferrol N, Miguel-Barea J, Azcon-Aguilar C (2000) The plasma membrane H+-ATPase gene family in arbuscular mycorrhizal fungus Glomus mosseae. Curr Genet 37:112–118PubMedCrossRefGoogle Scholar
  33. Franken P (2012) The plant strengthening root endophyte Piriformospora indica: potential application and the biology behind. Appl Microbiol Biotechnol 96:1455–1464PubMedPubMedCentralCrossRefGoogle Scholar
  34. Frey B, Buser HR, Schuepp H (1992) Identification of ergosterol in vesicular-arbuscular mycorrhizae. Biol Fert Soils 13:229–234CrossRefGoogle Scholar
  35. Füzy A, Biró I, Kovács R, Takács T (2015) Estimation of am fungal colonization—comparability and reliability of classical methods. Acta Microbiol Immunol Hung 62:435–451PubMedCrossRefGoogle Scholar
  36. Gaiero JR, McCall CA, Thompson KA, Day NJ, Best AS, Dunfield KE (2013) Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am J Bot 100(9):1738–1750PubMedCrossRefGoogle Scholar
  37. Gallaud I (1905) Etudes sur les mycorrhizas endotrophs. Rev Gen Bot 17:5–500Google Scholar
  38. Garg N, Chandel S (2010) Arbuscular mycorrhizal networks: process and functions. A review. Agron Sustain Dev 30:581–599CrossRefGoogle Scholar
  39. Gehring CA, Mueller RC, Whitham TG (2006) Environmental and genetic effects on the formation of ectomycorrhizal and arbuscular mycorrhizal associations in cottonwoods. Oecologia 149:158–164PubMedCrossRefGoogle Scholar
  40. Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular-arbuscular infection in roots. New Phytol 84:489–500CrossRefGoogle Scholar
  41. Goldstein AH, Liu ST (1987) Molecular cloning and regulation of a mineral phosphate solubilizing gene from Erwinia herbicola. Nat Biotechnol 5:72–74CrossRefGoogle Scholar
  42. Gulati A, Rahi P, Vyas P (2008) Characterization of phosphate-solubilizing fluorescent Pseudomonads from the rhizosphere of seabuckthorn growing in the cold deserts of Himalayas. Curr Microbiol 56:73–79PubMedCrossRefGoogle Scholar
  43. Guleria S, Sharma K, Walia A, Chauhan A, Shirkot CK (2014) Population and functional diversity of phosphate solubilizing bacteria from apricot (Prunus Armeniaca) of mid and high regions of Himachal Pradesh. Bioscan 9(2):1435–1443Google Scholar
  44. Gupta VG, Rodriguez-Couto S (2018) New and future developments in microbial biotechnology and bioengineering: Penicillium system properties and applications. Elsevier, New York, pp 270–271Google Scholar
  45. Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species-opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56PubMedCrossRefGoogle Scholar
  46. Harrier LA (2001) The arbuscular mycorrhizal symbiosis: a molecular review of the fungal dimension. J Exp Bot 52:469–478PubMedCrossRefGoogle Scholar
  47. Harrison MJ, van Buuren ML (1995) A phosphate transporter from mycorrhizal fungus Glomus versiforme. Nature 378:626–629PubMedCrossRefGoogle Scholar
  48. Heijnen CE, Hok-A-Hin CH, van Veen JA (1992) Improvements to the use of bentonite clay as a protective agent, increasing survival levels of bacteria introduced into soil. Soil Biol Biochem 24:533–538CrossRefGoogle Scholar
  49. Hijri M, Sanders IR (2004) The arbuscular mycorrhizal fungus Glomus intraradices is haploid and has a small genome size in the lower limit of eukaryotes. Fungal Genet Biol 41(2):253–261PubMedCrossRefPubMedCentralGoogle Scholar
  50. Hijri M, Redecker D et al (2002) Identification and isolation of two ascomycete fungi from spores of the arbuscular mycorrhizal fungus Scutellospora castanea. Appl Environ Microbiol 68:4567–4573PubMedPubMedCentralCrossRefGoogle Scholar
  51. Hinsinger P, Bengough AG, Vetterlein D, Young IM (2009) Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil 321:117–152CrossRefGoogle Scholar
  52. Hosny M, Pais de Barros JP, Gianinazzi-Pearson V, Dulieu H (1997) Base composition of DNA from glomalean fungi: high amounts of methylated cytosine. Fungal Genet Biol 22:103–111PubMedCrossRefPubMedCentralGoogle Scholar
  53. Hosny M, Gianinazzi-Pearson V, Dulieu H (1998) Nuclear DNA contents of eleven fungal species in Glomales. Genome 41:422–428CrossRefGoogle Scholar
  54. Hung LL, Sylvia DM (1998) Production of vesicular-arbuscular mycorrhizal fungus inoculum in aeroponic culture. Appl Environ Microbiol 54:353–357Google Scholar
  55. Igual JM, Valverde A, Cervantes E, Velazquez E (2001) Phosphate solubilizing bacteria as inoculants for agriculture: use of update molecular techniques in their study. Agron Sustain Dev 21:561–568Google Scholar
  56. IJdo M, Cranenbrouck S, Declerck S (2011) Methods for large-scale production of AM fungi: past, present,and future. Mycorrhiza 21:1–16PubMedCrossRefPubMedCentralGoogle Scholar
  57. Illmer PA, Schinner F (1995) Solubilization of inorganic calcium phosphates solubilization mechanisms. Soil Biol Biochem 27:257–263CrossRefGoogle Scholar
  58. Jones KA, Burges HD (1998) Technology of formulation and application. In: Burges HD (ed) Formulation of microbial biopesticides: beneficial microorganisms, nematodes and seed treatments. Kluwer Academic Publishers, Dordrecht, pp 7–30CrossRefGoogle Scholar
  59. Khan MR, Khan SM (2002) Effects of root-dip treatment with certain phosphate solubilizing microorganism on the Fusarial wilt of tomato. Bioresour Technol 85:213–215PubMedCrossRefPubMedCentralGoogle Scholar
  60. Khan MS, Zaidi A, Wani PA (2007) Role of phosphate solubilizing microorganisms in sustainable agriculture. A review. Agron Sustain Dev 27:29–43CrossRefGoogle Scholar
  61. Khan MS, Zaidi A, Ahemad M, Oves M, Wani PA (2010) Plant growth promotion by phosphate solubilizing fungi—current perspective. Arch Agron Soil Sci 56(1):73–98CrossRefGoogle Scholar
  62. Khan AL, Hussain J, Al-Harrasi A, Al-Rawahi A, Lee IJ (2015) Endophytic fungi: resource for gibberellins and crop abiotic stress resistance. Crit Rev Biotechnol 35:62–74PubMedCrossRefPubMedCentralGoogle Scholar
  63. Kormanik PP, McGraw AC (1982) Quantification of vesiculararbuscular mycorrhizae in plant roots. In: Schenck NC (ed) Methods and principles of mycorrhizal research. The American Phytopathological Society, St. Paul, pp 37–45Google Scholar
  64. Koske RE, Tessier B (1983) A convenient permanent slide mounting medium. Mycol Soc Am Newsletter 34:59Google Scholar
  65. Krishnaraj PU, Goldstein AH (2001) Cloning of a Serratia marcescence DNA fragment that induces quinoprotein glucose dehydrogenase mediated gluconic acid production Escherichia coli in the presence of stationary phase Serratia marcescence. FEMS Microbiol Lett 205(2):215–220PubMedCrossRefPubMedCentralGoogle Scholar
  66. Kucey RMN (1983) Phosphate solubilizing bacteria and fungi in various cultivated and virgin Alberta soils. Can J Soil Sci 63:671–678CrossRefGoogle Scholar
  67. Kuhn G, Hijri M et al (2001) Evidence for the evolution of multiple genomes in arbuscular mycorrhizal fungi. Nature 414:745–748PubMedCrossRefPubMedCentralGoogle Scholar
  68. Kumar A (2016) Phosphate solubilizing bacteria in agriculture biotechnology: diversity, mechanism and their role in plant growth and crop yield. Intern J Adv Res 4(4):116–124CrossRefGoogle Scholar
  69. Kumar A, Rai LC (2015) Proteomic and biochemical basis for enhanced growth yield of Enterobacter sp. LCR1 on insoluble phosphate medium. Microbiol Res 170:195–204PubMedCrossRefPubMedCentralGoogle Scholar
  70. Kumar A, Guleria S, Mehta P, Walia A, Chauhan A, Shirkot CK (2015) Plant growth promoting traits of phosphate solubilizing rhizobacteria isolated from seabuckthorn growing in cold desert region of trans-Himalayas and evaluating their potential on growth of tomato seedlings. Acta Physiol Plantarum 37(3):1–12CrossRefGoogle Scholar
  71. Kundu BS, Gaur AC (1981) Effect of single and composite cultures on rock phosphate solubilization. Haryana Agric Univ J Res 11:559–562Google Scholar
  72. Lanfranco L, Garnero L, Bonfante P (1999a) Chitin synthase genes in the arbuscular mycorrhizal fungus Glomus vbrsiforme: full sequence of a gene encoding a class IV chitin synthase. FEMS Microbio Lett 170:59–67CrossRefGoogle Scholar
  73. Lanfranco L, Vallino M, Bonfante P (1999b) Expression of chitin synthase genes in the arbuscular mycorrhizal fungus Gigaspora margarita. New Phytol 142:347–354CrossRefGoogle Scholar
  74. Lin TF, Huang HI, Shen FT, Young CC (2006) The protons of gluconic acid are the major factor responsible for the dissolution of tricalcium phosphate by Burkholderia cepacia CC-A174. Bioresour Technol 7:957–960CrossRefGoogle Scholar
  75. Lum MR, Li Y, Larue TA, David-Schwartz R, Kapulnik Y, Hirsch A (2002) Investigation of four classes of non-nodulating white clover (Melilotus alba annua Desr.) mutants and their responses to arbuscular-mycorrhizal fungi. Integr Comp Biol 42:295–303PubMedCrossRefPubMedCentralGoogle Scholar
  76. Lynch JM (1983) Soil biotechnology: microbiological factors in crop productivity. Blackwell Scientific Publications, OxfordGoogle Scholar
  77. MacDonald RM, Lewis M (1978) The occurrences of some acid phosphatases and dehydrogenases in the vesicular arbuscular mycorrhizal fungus Glomus mosseae. New Phytol 80:135–141CrossRefGoogle Scholar
  78. Maliha R, Samina K, Najma A, Sadia A, Farooq L (2004) Organic acids production and phosphate solubilization by phosphate solubilizing microorganisms under in vitro conditions. Pakistan J Biol Sci 7:187–196CrossRefGoogle Scholar
  79. Malviya J, Singh K, Joshi V (2011) Effect of phosphate solubilizing fungi on growth and nutrient uptake of ground nut (Arachis hypogaea) plants. Adv Biores 2(2):110–113Google Scholar
  80. Mandyam K, Loughin T, Jumpponen A (2010) Isolation and morphological and metabolic characterization of common endophytes in annually burned tallgrass prairie. Mycologia 102:813–821PubMedCrossRefPubMedCentralGoogle Scholar
  81. Martinazzo R, Santos DR, Gatiboni LC, Brunetto G, Kaminski J (2007) Fósforo microbiano no solo sob sistema plantio direto em resposta à adição de fosfato solúvel. Rev Bras Cienc Solo 31:563–570CrossRefGoogle Scholar
  82. Mayerhofer MS, Kernaghan G, Harper KA (2012) The effects of fungal root endophytes on plant growth: a meta-analysis. Mycorrhiza 23:119–128PubMedCrossRefPubMedCentralGoogle Scholar
  83. McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115:495–501CrossRefGoogle Scholar
  84. Mehta P, Walia A, Chauhan A, Shirkot CK (2011) Accelerated solubilization of inorganic phosphate and production of antifungal activity in soil by plant growth promoting rhizobacteria isolated from apple rhizosphere. J Mycol Plant Pathol 41(3):342–349Google Scholar
  85. Mehta P, Walia A, Chauhan A, Kulshrestha S, Shirkot CK (2013a) Phosphate solubilization and plant growth promoting potential by stress tolerant Bacillus sp. isolated from rhizosphere of apple orchards in trans Himalayan region of Himachal Pradesh. Ann Appl Biol 163:430–443CrossRefGoogle Scholar
  86. Mehta P, Walia A, Chauhan A, Shirkot CK (2013b) Plant growth promoting traits of phosphate-solubilizing rhizobacteria isolated from apple trees in trans Himalayan region of Himachal Pradesh. Arch Microbiol 195:357–369PubMedCrossRefPubMedCentralGoogle Scholar
  87. Mehta P, Walia A, Kulshrestha S, Chauhan A, Shirkot CK (2013c) Efficiency of plant growth-promoting P-solubilizing Bacillus circulans CB7 for enhancement of tomato growth under net house condition. J Basic Microbiol 53:1–12CrossRefGoogle Scholar
  88. Mehta P, Walia A, Kakkar N, Shirkot CK (2014) Tricalcium phosphate solubilisation by new endophyte Bacillus methylotrophicus CKAM isolated from apple root endosphere and its plant growth-promoting activities. Acta Physiol Plantarum 36:2033–2045CrossRefGoogle Scholar
  89. Mehta P, Walia A, Shirkot CK (2015) Functional diversity of phosphate solubilizing plant growth promoting Rhizobacteria isolated from apple trees in the trans Himalayan Region of Himachal Pradesh, India. Biol Agri Hort 31(4):265–288CrossRefGoogle Scholar
  90. Mendes GO, Moreira de Freitas AL, Pereira OL, da Silva IR, Vassilev NB, Costa MD (2013) Mechanisms of phosphate solubilization by fungal isolates when exposed to different P sources. Ann Microbiol 64:239. CrossRefGoogle Scholar
  91. Mittal V, Singh O, Nayyar H, Kaur J, Tewari R (2008) Stimulatory effect of phosphatesolubilizing fungal strains (Aspergillus awamori and Penicillium citrinum) on the yield of chickpea (Cicer arietinum L. cv. GPF2). Soil Biol Biochem 40:718–727CrossRefGoogle Scholar
  92. Nannipieri P, Giagnoni L, Landi L, Renella G (2011) Role of phosphatase enzymes in soil. In: Bunemann E, Oberson A, Frossard E (eds) Phosphorus in action: biological processes in soil phosphorus cycling, soil biology, vol 26. Springer, Heidelberg, pp 251–244CrossRefGoogle Scholar
  93. Nelofer R, Syed Q, Nadeem M, Bashir F, Mazhar S, Hassan A (2016) Isolation of phosphorus-solubilizing fungus from soil to supplement biofertilizer. Arab J Sci Eng 41:2131–2138CrossRefGoogle Scholar
  94. Neubert K, Mendgen K, Brinkmann H, Wirsel SGR (2006) Only a few fungal species dominate highly diverse mycofloras associated with the common reed. Appl Environ Microbiol 72:1118–1128PubMedPubMedCentralCrossRefGoogle Scholar
  95. Nilgiriwala KS, Alahari A, Rao AS, Apte SK (2008) Cloning and overexpression of an alkaline phosphatase phoK from Sphingomonas sp.BSAR-1 for uranium bioprecipitation from alkaline solution. Appl Environ Microbiol 74:5516–5523PubMedPubMedCentralCrossRefGoogle Scholar
  96. Pal S, Singh HB, Rakshit A (2014) The arbuscular mycorrhizal symbiosis: an underground world wide web. In: Singh DP, Singh HB (eds) Microbial communities for sustainable soil health and ecosystem productivity. Studium Press LLC, Houston, pp 219–253Google Scholar
  97. Pal S, Singh HB, Farooqui A, Rakshit A (2015) Fungal biofertilizers in Indian agriculture: perception, demand and promotion. J Eco-friendly Agric 10:101–113Google Scholar
  98. Panhwar QA, Jusop S, Naher UA, Othman R, Razi MI (2013) Application of potential phosphate-solubilizing bacteria and organic acids on phosphate solubilization from phosphate rock in aerobic rice. Sci World J 2013:272409CrossRefGoogle Scholar
  99. Park KH, Lee CY, Son HJ (2009) Mechanism of insoluble phosphate solubilization by Pseudomonas fluorescens RAF15 isolated from ginseng rhizosphere and its plant growth-promoting activities. Lett Appl Microbiol 49:222–228PubMedCrossRefPubMedCentralGoogle Scholar
  100. Parker DR, Reichmann SM, Crowley DE (2005) Metal chelation in the rhizosphere. In: Zobel RW (ed) Roots and soil management: interactions between roots and the soil. Agronomy monograph, vol 48. American Society of Agronomy, Madison, pp 57–93Google Scholar
  101. Pei-Xiang Y, Li MA, Ming-Hui C, Jia-Quin X, Feng HE, Chang-Qun D, Ming-He M, Dun-Huang F, Yan-Qing D, Fa-Xiang Y (2012) Phosphate solubilizing ability and phylogenetic diversity of bacteria from phosphorus rich soils around Dianchi lake drainage area of China. Pedosphere 22:707–716CrossRefGoogle Scholar
  102. Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161CrossRefGoogle Scholar
  103. Pikovskaya RI (1948) Mobilization of phosphorus in soil in connection with the vital activity of some microbial species. Mikrobiologiya 7:362–370Google Scholar
  104. Prasanna A, Deepa V, Murthy PB, Deecaraman M, Sridhar R, Dhandapani P (2011) Insoluble phosphate solubilization by bacterial strains isolated from rice rhizosphere soils from southern India. Int J Soil Sci 6(2):134–141CrossRefGoogle Scholar
  105. Priyadharsini P, Muthukumar T (2017) The root endophytic fungus Curvularia geniculata from Parthenium hysterophorus roots improves plant growth through phosphate solubilization and phytohormone production. Fungal Ecol 27:69–77CrossRefGoogle Scholar
  106. Radhakrishnan R, Khan AL, Kang SM, Lee IJ (2015) A comparative study of phosphate solubilization and the host plant growth promotion ability of Fusarium verticillioides RK01 and Humicola sp. KNU01 under salt stress. Ann Microbiol 65:585–593CrossRefGoogle Scholar
  107. Rebah FB, Tyagi RD, Prevost D (2002) Wastewater sludge as a substrate for growth and carrier for rhizobia, the effect of storage conditions on survival of Sinorhizobium meliloti. Bioresour Technol 831:45–51Google Scholar
  108. Requena N, Mann P, Hampp R, Franken P (2002) Early developmentally regulated genes in the arbuscular mycorrhizal fungus Glomus mosseae: identification of GmGin1 a novel gene with homology to the C-terminus of metazoan hedgehog proteins. Plant Soil 244:129–139CrossRefGoogle Scholar
  109. Reyes I, Valery A, Valduz Z (2006) Phosphate-solubilizing micro-organisms isolated from rhizospheric and bulk soils of colonizer plants at an abandoned rock phosphate mine. Plant Soil 287:69–75CrossRefGoogle Scholar
  110. Rivera-Cruz MC, Narcía AT, Ballona GC, Kohler J, Caravaca F, Roldán A (2008) Poultry manure and banana waste are effective biofertilizer carriers for promoting plant growth and soil sustainability in banana crops. Soil Biol Biochem 40:3092–3095CrossRefGoogle Scholar
  111. Rodríguez H, Fraga R, Gonzalez T, Bashan Y (2006) Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil 287:15–21CrossRefGoogle Scholar
  112. Rodriguez-Navarro DN, Temprano F, Orive R (1991) Survival of Rhizobium sp. (Hedysarum coronarium L.) on peat-based inoculants and inoculated seeds. Soil Biol Biochem 23:375–379CrossRefGoogle Scholar
  113. Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant-Microbe Interact 19(8):827–837PubMedCrossRefPubMedCentralGoogle Scholar
  114. Sadhana B (2014) Arbuscular mycorrhizal fungi (AMF) as a biofertilizer—a review. Int J Curr Microbiol App Sci 3:384–400Google Scholar
  115. Salzer P, Corbiere H, Boller T (1999) Hydrogen peroxide accumulation in Medicago truncatula roots colonized by the arbuscular mycorrhiza-forming fungus Glomus intraradices. Planta 208:319–325CrossRefGoogle Scholar
  116. Sanders IR (2002) Specificity in the mycorrhizal symbiosis. In: Van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology. Studies in ecology. Springer, Heidelberg, pp 415–437CrossRefGoogle Scholar
  117. Sanders IR, Alt M, Groppe K, Boller T, Wiekman T (1995) Identification of ribosomal DNA polymorphisms among and within spores of the Glomales—application to studies on the genetic diversity of arbuscular mycorrhizal fungal communities. New Phytol 130:419–427CrossRefGoogle Scholar
  118. Sanders IR, Clapp JP et al (1996) The genetic diversity of arbuscular mycorrhizal fungi in natural ecosystems—a key to understanding the ecology and functioning of the mycorrhizal symbiosis. New Phytol 133:123–134CrossRefGoogle Scholar
  119. Schmitz O, Danneberg G, Hundeshagen B, Klingner A, Bothe H (1991) Quantification of vesicular-arbuscular mycorrhiza by biochemical parameters. J Plant Physiol 139:106–114CrossRefGoogle Scholar
  120. Selvakumar G, Kim K, Walitang D, Chanratana M, Kang Y, Chung B, Sa T (2016) Trap culture technique for propagation of arbuscular mycorrhizal fungi using different host plants. Korean J Soil Sci Fertil 49:608–613CrossRefGoogle Scholar
  121. Senthil Kumar CM, Jacob TK, Devasahayam S, Thomas S, Geethu C (2018) Multifarious plant growth promotion by an entomopathogenic fungus Lecanicillium psalliotae. Microbiol Res 207:153–160PubMedCrossRefPubMedCentralGoogle Scholar
  122. Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus 2:587PubMedPubMedCentralCrossRefGoogle Scholar
  123. Sharma R, Walia A, Chauhan A, Shirkot CK (2015) Multi-trait plant growth promoting rhizobacteria from tomato rhizosphere and evaluation of their potential as bioinoculants. App Biol Res 17(2):1–12Google Scholar
  124. Sharma R, Sharma P, Chauhan A, Walia A, Shirkot CK (2017) Plant growth promoting activities of rhizobacteria isolated from Podophyllum hexandrum growing in north-west region of Himalayas. Proc Natl Acad Sci India Sect B Biol Sci 87(4):1443–1457. ISSN: 0369-8211.CrossRefGoogle Scholar
  125. Shin W, Ryu J, Kim Y, Yang J, Madhaiyan M, Sa T (2006) Phosphate solubilization and growth promotion of maize (Zea mays L.) by the rhizosphere soil fungus Penicillium oxalicum. In: 18th World Congress of Soil Science July 9–15, Philadelphia, Pennsylvania, USAGoogle Scholar
  126. Singh BK, Munro S, Potts JM, Millard P (2007) Influence of grass species and soil type on rhizosphere microbial community structure in grassland soils. Appl Soil Ecol 36:147–155CrossRefGoogle Scholar
  127. Singh SR, Singh U, Chaubey AK, Bhat MI (2010) Mycorrhizal fungi for sustainable agriculture—a review. Agric Rev 31:93–104Google Scholar
  128. Smith RS (1995) Inoculant formulations and applications to meet changing needs. In: Tikhonovich IA, Provorov NA, Romanov VI, Newton WE (eds) Nitrogen fixation: fundamentals and applications. Kluwer Academic Publishers, Dordrecht, pp 653–657CrossRefGoogle Scholar
  129. Smith SE, Dickson S (1991) Quantification of active vesicular-arbuscular mycorrhizal infection using image analysis and other techniques. Aust J Plant Physiol 18:637–648Google Scholar
  130. Smith S, Read D (2008) Mycorrhizal symbiosis. Academic Press, New YorkGoogle Scholar
  131. Sreenivasa MN, Bagyaraj DJ (1988) Chloris gayana (Rhodes grass), a better host for the mass production of Glomus fasciculatum. Plant Soil 106:289–290CrossRefGoogle Scholar
  132. Srivastav S, Yadav KS, Kundu BS (2004) Prospects of using phosphate solubilizing Pseudomonas as biofungicide. Indian J Microbiol 44:91–94Google Scholar
  133. Stephens JHG, Rask HM (2000) Inoculant production and formulation. Field Crops Res 65:249–258CrossRefGoogle Scholar
  134. Tisserant B, Gianinazzi-Pearson V, Gianinazzi S, Gollotte A (1993) In planta histochemical staining of fungal alkaline phosphatase activity for analysis of efficient arbuscular mycorrhizal infections. Mycol Res 97:245–250CrossRefGoogle Scholar
  135. Tiwari P, Adholeya A (2002) In vitro co-culture of two AMF isolates Gigaspora margarita and Glomus intraradices on RiT-DNA transformed roots. FEMS Microbiol Lett 206:39–43PubMedCrossRefPubMedCentralGoogle Scholar
  136. Trouvelot A, Kough JL, Gianinazzi-Pearson V (1986) Mesure du taux de mycorhization VA d’un systeme radiculaire. Recherche de methodes d’estimation ayant une signifi cantion fonctionnelle. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological and genetic aspects of mycorrhizae. INRA, Paris, pp 217–221Google Scholar
  137. Van Aarle IM, Olsson PA, Soderstrom B (2001) Microscopic detection of phosphatase activity of saprophytic and arbuscular mycorrhizal fungi using a fluorogenic substrate. Mycologia 93:17–24CrossRefGoogle Scholar
  138. Van der Heijden MGA, Streitwolf-Engel R, Riedl R, Siegrist S, Neudecker A, Ineichen K, Boller T, Wiemken A, Sanders IR (2006) The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland. New Phytol 172:739–752PubMedCrossRefGoogle Scholar
  139. Van Elsas JD, Van Overbeek LS (1993) Bacterial responses to soil stimuli. In: Kjelleberg S (ed) Starvation in bacteria. Plenum Press, New York, pp 55–79CrossRefGoogle Scholar
  140. Varma A, Singh A, Sudha S, Sharma J, Roy A, Kumari M, Rana D, Thakran S, Deka D, Bharti K, Hurek T, Blechert O, Rexer KH, Kost G, Hahn A, Maier W, Walter M, Strack D, Kranner I (2001) Piriformospora indica—an axenically culturable mycorrhiza-like endosymbiotic fungus. In: Hock B (ed) Mycota IX. Springer, Berlin, pp 123–150Google Scholar
  141. Venkateswarlu B, Rao AV, Raina P, Ahmad N (1984) Evaluation of phosphorus solubilization by microorganisms isolated from arid soil. J Indian Soc Soil Sci 32:273–277Google Scholar
  142. Verma S, Varma A, Rexer K, Hassel A, Kost G, Bisen P, Bütehorn B, Franken P (1998) Piriformospora indica, gen. et sp. nov., a new root-colonizing fungus. Mycologia 90:896–903CrossRefGoogle Scholar
  143. Viera A, Glenn MG (1990) DNA content of vesicular-arbuscular mycorrhizal fungal spores. Mycologia 82:263–267CrossRefGoogle Scholar
  144. Vierheilig H, Coughlan AP, Wyss U, Piche Y (1998) Ink and vinegar, a simple staining technique for arbuscular mycorrhizal fungi. Appl Environ Microbiol 64:5004–5007PubMedPubMedCentralGoogle Scholar
  145. Vierheilig H, Knoblauch M, Juergensen K, van Bel A, Grundler MW, Piche Y (2001) Imaging arbuscular mycorrhizal structures in living roots of Nicotiana tabacum by light, epifluorescence and confocal laser scanning microscopy. Can J Bot 79:231–237Google Scholar
  146. Vierheilig H, Schweigerb P, Brundrett M (2005) An overview of methods for the detection and observation of arbuscular mycorrhizal fungi in roots. Acta Physiol Plantarum 125:393–404Google Scholar
  147. Vitorino C, Bessa LA, Carvalho LG, Silva FG (2016) Growth promotion mediated by endophytic fungi in cloned seedlings of Eucalyptus grandis x Eucalyptus urophylla hybrids. Afr J Biotechnol 15:2729–2738CrossRefGoogle Scholar
  148. Wahid OA, Mehana TA (2000) Impact of phosphate solubilizing fungi on the yield and phosphorus uptake by wheat and faba bean plants. Microbiol Res 155:221–227PubMedCrossRefPubMedCentralGoogle Scholar
  149. Wakelin SA, Warren RA, Harvey PR, Ryder MH (2004) Phosphate solubilization by Penicillium sp. closely associated with wheat roots. Biol Fertil Soils 40:36–43CrossRefGoogle Scholar
  150. Walia A, Mehta P, Chauhan A, Shirkot CK (2013a) Antagonistic activity of plant growth promoting rhizobacteria isolated from tomato rhizosphere against soil borne fungal plant pathogens. Int J Agri Environ Biotechnol 6(4):587–595Google Scholar
  151. Walia A, Mehta P, Chauhan A, Shirkot CK (2013b) Effect of Bacillus sp. strain CKT1 as inoculum on growth of tomato seedlings under net house conditions. Proc Natl Acad Sci India Sect B Biol Sci 84(1):144–155Google Scholar
  152. Walia A, Guleria S, Chauhan A, Mehta P (2017) Endophytic bacteria: role in phosphate solubilization. In: Maheshwari DK, Annapurna K (eds) Endophytes: crop productivity and protection, sustainable development and biodiversity. Springer, Berlin, pp 1–33Google Scholar
  153. Wang H, Liu S, Zhai L, Zhang J, Ren T, Fan B, Liu H (2015) Preparation and utilization of phosphate biofertilizers using agricultural waste. J Int Agric Adv 14:158–167Google Scholar
  154. Whitelaw MA (2000) Growth promotion of plants inoculated with phosphate solubilizing fungi. Adv Agron 69:99–151CrossRefGoogle Scholar
  155. Widden P (2001) The use of glycerin jelly for mounting stained roots for the observation and quantification of endomycorrhizal fungi. Mycologia 93:1026–1027CrossRefGoogle Scholar
  156. Wood T (1984) Commercialization of arbuscular mycorrhizal fungi inoculum: the reclamation market. In: Williams SE, Allen MF (eds) Arbuscular mycorrhizae and reclamation of arid and semiarid lands. University of Wyoming, Laramie, pp 21–27Google Scholar
  157. Yadav RS, Tarafdar JC (2003) Phytase and phosphatase producing fungi in arid and semi-arid soils and their efficiency in hydrolyzing different organic P compounds. Soil Biol Biochem 35:745–751CrossRefGoogle Scholar
  158. Yi Y, Huang W, Ge Y (2008) Exopolysaccharide: a novel important factor in the microbial dissolution of tricalcium phosphate. World J Microbiol Biotechnol 24:1059–1065CrossRefGoogle Scholar
  159. Yin Z, Shi F, Jiang H, Roberts DP, Chen S, Fan B (2015) Phosphate solubilization and promotion of maize growth by Penicillium oxalicum P4 and Aspergillus niger P85 in a calcareous soil. Can J Microbiol 61(12):913–923PubMedCrossRefGoogle Scholar
  160. Yin Z, Fan B, Roberts DP, Chen S, Shi F, Buyer JS, Jiang H (2017) Enhancement of maize growth and alteration of the rhizosphere microbial community by phosphate-solubilizing fungus Aspergillus aculeatus P93. J Agric Biotechnol 2(2):1–10Google Scholar
  161. Zaidi A, Khan MS (2007) Stimulatory effects of dual inoculation with phosphate solubilizing microorganisms and arbuscular mycorrhizal fungus on chickpea. Austr J Exp Agric 47:1016–1022CrossRefGoogle Scholar
  162. Zaidi A, Khan MS, Amil M (2003) Interactive effect of rhizotrophic microorganisms on yield and nutrient uptake of chickpea (Cicer arietinum L.). Eur J Agron 19:15–21CrossRefGoogle Scholar
  163. Zaidi A, Khan MS, Ahemad M, Oves M, Wani PA et al (2009) Recent advances in plant growth promotion by phosphate-solubilizing microbes. In: Khan MS (ed) Microbial strategies for crop improvement. Springer, Berlin, pp 23–50CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Preeti Mehta
    • 1
  • Rashmi Sharma
    • 2
  • Chayanika Putatunda
    • 2
  • Abhishek Walia
    • 2
  1. 1.Centre of Advance Bioenergy Research, Research & Development Centre, Indian Oil Corporation LimitedFaridabadIndia
  2. 2.Department of MicrobiologyDAV UniversityJalandharIndia

Personalised recommendations