Advertisement

Secondary Metabolites from Endophytic Fungi: Chemical Diversity and Application

  • Himani Meena
  • Sairengpuii Hnamte
  • Busi SiddhardhaEmail author
Chapter
Part of the Fungal Biology book series (FUNGBIO)

Abstract

Two major challenges facing the world today are antibiotic resistance, an emerging threat to human health, and, in agriculture, deterioration in crop yields due to pathogenic microorganisms, which is a primary issue for viable food production in developing countries. Microorganisms present in the environment play a beneficial role in overcoming these two major problems. Endophytic fungi are ubiquitous microorganisms existing within the interior region of plants in a symbiotic relation. They inhabit the space beneath the epidermal layer of plant tissue, obtain their nutrition from the plants, and enhance host plant growth. They synthesize a variety of biologically active compounds with diverse biological activities such as insecticidal, antioxidant, cytotoxic, antibacterial, antiviral, antifungal and antimalarial compounds. The secondary metabolites produced by endophytic fungi are phenols, alkaloids, polyketides, quinones, steroids, enzymes, and peptides, which possess higher therapeutic value. This chemical diversity also protects host plants from pathogens by inhibiting plant pathogen growth and boosting host immune system to amplify plant defense mechanisms. The endophytic fungi and their secondary metabolites have a beneficial role to play in the field of medicine and agriculture. Recent research has shown that endophytes acquire genes from host plants for bioactive compound production. Activation of silent biosynthetic pathways and epigenetic modifications are some of the strategies that enhance endophytic fungal potential for the production of secondary metabolites. Systematic research is required to discover the chemical ecology behind the natural bioactive compound synthesis.

Keywords

Antibiotic resistance Pathogenicity Endophytic fungi Secondary fungal metabolite Metabolic pathways Genomic approach Pharmaceuticals 

References

  1. Akone SH, Mandi A, Kurtan T, Hartmann R, Lin W, Daletos G, Proksch P (2016) Inducing secondary metabolite production by the endophytic fungus Chaetomium sp. through fungale bacterial co-culture and epigenetic modification. Tetrahedron 72:6340–6347CrossRefGoogle Scholar
  2. Anitha KPGU, Mythili S (2017) Antioxidant and hepatoprotective potentials of novel endophytic fungus Achaetomium sp., from Euphorbia hirta. Asian Pac J Trop Med 10(6):588–593CrossRefGoogle Scholar
  3. Bai J, Mu R, Dou M, Yan D, Liu B, Wei Q, Wan J, Tang Y, Hu Y (2018) Epigenetic modification in histone deacetylase deletion strain of Calcarisporiumarbuscula leads to diverse diterpenoids. Acta Pharm Sin B 8(4):687–697.  https://doi.org/10.1016/j.apsb.2017.12.012 PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bai J, Guo F, Wang R, Chen G, Li Z, Shao M, Xue C, Hua H (2017) Asperterzine, a symmetric aromatized derivative of epipolythiodioxopiperazine, from the endophytic fungus Aspergillusterreus PR-P-2. Chin J Chem 29:535–537CrossRefGoogle Scholar
  5. Cai R, Chen S, Long Y, Li C, Huang X, She Z (2017) Depsidones from Talaromycesstipitatus SK-4, an endophytic fungus of themangrove plant Acanthus ilicifolius. Phytochem Lett 20:196–199CrossRefGoogle Scholar
  6. Cerezo SS, Montiel NM, Sanchez JG, Perez-y-Terron R, Contreras RDM (2018) Gibberellin biosynthesis and metabolism: a convergent route for plants, fungi and bacteria. Microbial Res 208:85–98CrossRefGoogle Scholar
  7. Chandrasekaran R, Revathi K, Senthil-Nathan S, Kalaivani K, Hunter WB, Duraipandiyan V, Al-Dhabi NA, Esmail GA (2018) Eco-friendly formulation of wild Bacillus thuringiensis secondary metabolites through molecular characterization against the lepidopteranpest. Physiol Mol Plant Path 101:93–104CrossRefGoogle Scholar
  8. Chen LL, Kong FD, Wang P, Yuan JZ, Guo ZK, Wang H, Dai HI, Mei WL (2017) Two new tremulanesesquiterpenes from a mangrove endophytic fungus, Coriolopsis sp. J5. Chin J Chem 28:222–225Google Scholar
  9. Dannert CS (2015) Biosynthesis of Terpenoid natural products in fungi. Adv Biochem Eng Biotechnol 148:19–61Google Scholar
  10. Depke T, Franke R, Bronstrup B (2017) Clustering of MS2 spectra using unsupervised methods to aid the identification of secondary metabolites from Pseudomonas aeruginosa. J Chromatogr B 1071:19–28CrossRefGoogle Scholar
  11. Duana R, Zhoua H, Yang Y, Li H, Dong J, Li X, Chen G, Zhao L, Ding Z (2016) Antimicrobial meroterpenoids from the endophytic fungus Penicillium sp. T2-8 associated with Gastrodiaelata. Phytochem Lett 18:197–201CrossRefGoogle Scholar
  12. Durao P, Balbontin R, Gordo I (2018) Evolutionary mechanisms shaping the maintenance of antibiotic resistance. Trends Microbiol 26(8):677–691.  https://doi.org/10.1016/j.tim.2018.01.005 PubMedCrossRefGoogle Scholar
  13. Feitosa ADO, Dias ACS, Ramos GDC, Bitencourt HR, Siqueira JES, Marinho PSB, Barison A, Ocampos FMM, Marinho AMR (2016) Lethality of cytochalasin B and other compounds isolated from fungus Aspergillus sp. (Trichocomaceae) endophyte of Bauhinia guianensis (Fabaceae). Rev Argent Microbiol 48(3):259–263PubMedGoogle Scholar
  14. Felicio RD, Pavao GB, Oliveira ALL, Erbert C, Conti R, Pupo MT, Furtado NAJC, Ferreira EG, Lotufo LVC, Young MCM, Yokoya NS, Debonsi HM (2015) Antibacterial, antifungal and cytotoxic activities exhibited by endophytic fungi from the Brazilian marine red alga Bostrychiatenella (Ceramiales). Rev Bras Farmacogn 25:641–650CrossRefGoogle Scholar
  15. Ganesh PS, Rai VR (2018) Attenuation of quorum-sensing-dependent virulence factors and biofilm formation by medicinal plants against antibiotic resistant Pseudomonas aeruginosa. J Tradit Complement Med 8:170–177CrossRefGoogle Scholar
  16. Gao L, Narita K, Ozaki T, Kumakura N, Gan P, Minami A, Liu C, Lei X, Shirasu K, Oikawa H (2018) Identification of novel sesterterpenes by genome mining of phytopathogenic fungi Phoma and Colletotrichumsp. Tetrahedron Lett 59:1136–1139CrossRefGoogle Scholar
  17. Gholami S, Mohammad T, Sohrabi N (2017) Comparison of biofilm formation and antibiotic resistance pattern of Pseudomonas aeruginosa in human and environmental isolates. Microb Pathog 109:94–98PubMedCrossRefGoogle Scholar
  18. Gupta PD, Birdi TJ (2017) Development of botanicals to combat antibiotic resistance. J Ayurveda Integr Med 8:266–275PubMedPubMedCentralCrossRefGoogle Scholar
  19. Heinig U, Scholz S, Jennewein S (2013) Getting to the bottom of Taxol biosynthesis by fungi. Fungal Divers 60:161–170CrossRefGoogle Scholar
  20. Hernandez-Flores JL, Perez JC, Gutierrez CS, Hernandez AC, Alonsoc GS, Hernandez SP, Gomez SR, Fernandez F, Loske AM, Guillen JC (2018) pMEX01, a 70 kb plasmid isolated from Escherichia coli that confers resistance to multiple β-lactam antibiotics. Braz J Microbiol 49(3):569–574.  https://doi.org/10.1016/j.bjm.2017.11.002 PubMedPubMedCentralCrossRefGoogle Scholar
  21. Hu Y, Zhang J, Liu D, Guo J, Liu T, Xin Z (2017) Pencitrin and pencitrinol, two new citrinin derivatives from an endophytic fungus Penicilliumcitrinumsalicorn 46. Phytochem Lett 22:229–234CrossRefGoogle Scholar
  22. Indrianingsih AW, Tachibana S (2017) α-Glucosidase inhibitor produced by an endophytic fungus, Xylariaceae sp. QGS 01 from Quercusgilva Blume. Food Sci Hum Wellness 6:88–95CrossRefGoogle Scholar
  23. Jaillard M, Belkum AV, Cady KC, Creely D, Shortridge D, Blanc B, Barbu EM, Dunne WM Jr, Zambardi G, Enright M, Mugnier N, Le Priol C, Schicklin S, Guigon G, Veyrieras JB (2017) Correlation between phenotypic antibiotic susceptibility and the resistome in Pseudomonas aeruginosa. Int J Antimicrob Agents 50:210–218PubMedCrossRefGoogle Scholar
  24. Jones-Dias D, Carvalho AS, Moura IB, Manageiro V, Igrejas G, Caniça M, Matthiesen R (2017) Quantitative proteome analysis of an antibiotic resistant Escherichia coli exposed to tetracycline reveals multiple affected metabolic and peptidoglycan processes. J Proteome 156:20–28CrossRefGoogle Scholar
  25. Khan MIH, Sohrab MH, Rony SR, Tareq FS, Hasan CM, Mazid MA (2016) Cytotoxic and antibacterial naphthoquinones from an endophytic fungus, Cladosporium sp. Toxicol Rep 3:861–865PubMedPubMedCentralCrossRefGoogle Scholar
  26. Khater S, Anand S, Mohanty D (2016) Insilico methods for linking genes and secondary metabolites: the way forward. Synth Syst Biotechnol 1:80–88PubMedPubMedCentralCrossRefGoogle Scholar
  27. Kozlovsky AG, Zhelifonova VP, Antipova TV (2013) Biologically active metabolites of Penicillium fungi. J Org Biomol Chem 1:11–21Google Scholar
  28. Lee TAJ, Medema MH (2016) Computational strategies for genome-based natural product discovery and engineering in fungi. Fungal Genet Biol 89:29–36PubMedCrossRefGoogle Scholar
  29. Li YF, Tsai KJS, Harvey CGB, Li JJ, Ary BE, Berlew EE, Boehman BL, Findley DM, Friant AG, Gardner CA, Gould MP, Ha JH, Lilley BK, McKinstry EL, Nawal S, Parry RC, Rothchild KW, Silbert SD, Tentilucci MD, Thurston AM, Wai RB, Yoon Y, Aiyar RS, Medema MH, Hillenmeyer ME, Charkoudian LK (2016) Comprehensive curation and analysis of fungal biosynthetic gene clusters of published natural products. Fungal Genet Biol 89:18–28PubMedPubMedCentralCrossRefGoogle Scholar
  30. Li CS, Yang BJ, Turkson J, Cao S (2017) Anti-proliferative ambuic acid derivatives from Hawaiian endophytic fungus Pestalotiopsis sp. FT172. Phytochemistry 140:77–82PubMedPubMedCentralCrossRefGoogle Scholar
  31. Liu T, Greenslade A, Yang S (2017a) Levels of rhizome endophytic fungi fluctuate in Paris polyphylla var. yunnanensis as plants age. Plant Divers 39:60–64PubMedCrossRefGoogle Scholar
  32. Liu X, Guan X, Xing F, Lv C, Dai X, Liu Y (2017b) Effect of water activity and temperature on the growth of Aspergillusflavus, the expression of aflatoxin biosynthetic genes and aflatoxinproduction in shelled peanuts. Food Control 82:325–332CrossRefGoogle Scholar
  33. Liu J, Wang X, Pu H, Liu S, Kan J, Jin C (2017c) Recent advances in endophytic exopolysaccharides: production, structural characterization, physiological role and biological activity. Carbohydr Polym 157:1113–1124PubMedCrossRefGoogle Scholar
  34. Loftus RW, Dexter F, Robinson ADM (2018) Methicillin-resistant Staphylococcus aureus has greater risk of transmission in the operating room than methicillin-sensitive S. aureus. Am J Infect Control 46(5):520–525.  https://doi.org/10.1016/j.ajic.2017.11.002 PubMedCrossRefGoogle Scholar
  35. Lou J, Yu R, Wang X, Mao Z, Fu L, Liu Y, Zhou L (2016) Alternariol 9-methyl ether from the endophytic fungus Alternaria sp. Samif01 and its bioactivities. Braz J Microbiol 47:96–101PubMedPubMedCentralCrossRefGoogle Scholar
  36. Loureiro C, Medema MH, Oost JV, Sipkema D (2018) Exploration and exploitation of the environment for novel specialized metabolites. Curr Opin Biotechnol 5:206–213CrossRefGoogle Scholar
  37. Luo K, Rocheleau H, Qi PF, Zheng YL, Zhao HY, Ouellet T (2016) Indole-3-acetic acid in Fusarium graminearum: identification of biosynthetic pathways and characterization of physiological effects. Fungal Biol 120(9):1135–1145PubMedCrossRefGoogle Scholar
  38. Luo Y, Yi W, Yao Y, Zhu N, Qin P (2018) Characteristic diversity and antimicrobial resistance of Salmonella from gastroenteritis. J Infect Chemother 24:251–255PubMedCrossRefGoogle Scholar
  39. Malhadas C, Malheiro R, Pereira JP, Pinho PG, Baptista P (2017) Antimicrobial activity of endophytic fungi from olive tree leaves. World J Microbiol Biotechnol 33:46PubMedCrossRefGoogle Scholar
  40. Matsuda Y, Awakawa T, Mori T, Abe I (2016) Unusual chemistries in fungal meroterpenoid biosynthesis. Curr Opin Chem Biol 31:1–7PubMedCrossRefGoogle Scholar
  41. Minarni, Artika IM, Julistiono H, Bermawie N, Riyanti EI, Hasim, Hasan AEZ (2017) Anticancer activity test of ethyl acetate extract of endophytic fungi isolated from soursop leaf (Annonamuricata L.). Asian Pac J Trop Med 10(6):566–571PubMedCrossRefGoogle Scholar
  42. Mishra VK, Passari AK, Chandra P, Leo VV, Kumar B, Gupta VK, Singh BP (2017a) Determination and production of antimicrobial compounds by Aspergillus clavatonanicus strain MJ31, an endophytic fungus from Mirabilis jalapa L. using UPLC-ESI-MS/MS and TD GC-MS. PLoS One 12(10):1–24.  https://doi.org/10.1371/journal.pone.0186234 CrossRefGoogle Scholar
  43. Mishra VK, Passari AK, Leo VV, Singh BP (2017b) Molecular diversity and detection of endophytic fungi based on their antimicrobial biosynthetic genes. In: Singh BP, Gupta VK (eds) Molecular markers in mycology, fungal biology. Springer International Publishing, Switzerland, pp 1–35.  https://doi.org/10.1007/978-3-319-34106-4_1 CrossRefGoogle Scholar
  44. Narenkumar J, Sathishkumar K, Sarankumar RK, Murugan K, Rajasekar A (2017) An anticorrosive study on potential bioactive compound produced by Pseudomonas aeruginosa TBH2 against the biocorrosive bacterial biofilm on copper metal. J Mol Liq 243:706–713CrossRefGoogle Scholar
  45. Nieto PA, Pardo-Roa C, Salazar-Echegarai FJ, Tobar HE, Coronado-Arrazola I, Riedel CA, Kalergis MA, Bueno SM (2016) New insights about excisable pathogenicity islands in Salmonella and their contribution to virulence. Microbes Infect 18:302–309PubMedCrossRefGoogle Scholar
  46. Paling FP, Wolkewitz M, Bode LGM, Klein Klouwenberg PMC, Ong DSY, Depuydt P, Bus LD, Sifakis F, Bonten MJM, Kluytmans JAJW (2017) Staphylococcus aureus colonization at ICU admission as a risk factor for developing S. aureus ICU pneumonia. Clin Microbiol Infect 23:49.e9–49.e14CrossRefGoogle Scholar
  47. Pascale A, Vinale F, Manganiello G, Nigro M, Lanzuise S, Ruocco M, Marra R, Lombardi N, Woo SL, Lorito M (2017) Trichoderma and its secondary metabolites improve yield and quality of grapes. Crop Prot 92:176–181CrossRefGoogle Scholar
  48. Peek J, Christendat D (2015) The shikimate dehydrogenase family: functional diversity within a conserved structural and mechanistic framework. Arch Biochem Biophys 566:85–99PubMedCrossRefGoogle Scholar
  49. Phillips-Houlbracq M, Ricarda JD, Foucriera A, Yoder-Himes D, Gaudrya S, Bex J, Messika J, Margetis D, Chatel J, Dobrindt U, Denamur E, Roux D (2018) Pathophysiology of Escherichia coli pneumonia: respective contribution of pathogenicity islands to virulence. Int J Med Microbiol 308:290–296PubMedCrossRefGoogle Scholar
  50. Pinheiro EAA, Pina JRA, Feitosa AO, Carvalho JM, Borges FC, Marinho PSB, Marinho AMR (2017) Bioprospecting of antimicrobial activity of extracts of endophytic fungi from Bauhinia guianensis. Rev Argent Microbiol 49(1):3–6PubMedGoogle Scholar
  51. Polonio JC, Ribeiro MAS, Rhoden SA, Sarragiotto MH, Azevedo JL, Pamphille JA (2016) 3-Nitropropionic acid production by the endophytic Diaporthecitri: molecular taxonomy, chemical characterization, and quantification under pH variation. Fungal Biol 120:1600–1608PubMedCrossRefGoogle Scholar
  52. Prihantini AI, Tachibana S (2017) Antioxidant compounds produced by Pseudocercospora sp. ESL 02, an endophytic fungus isolated from Elaeocarpussylvestris. Asian Pac J Trop Biomed 7(2):110–115CrossRefGoogle Scholar
  53. Ratnaweera PB, Silva ED, Williams DE, Andersen RJ (2015) Antimicrobial activities of endophytic fungi obtained from the arid zone invasive plant Opuntiadillenii and the isolation of equisetin, from endophytic Fusarium sp. BMC Complement Altern Med 15:220PubMedPubMedCentralCrossRefGoogle Scholar
  54. Saetang P, Rukachaisirikul V, Phongpaichit S, Preedanon S, Sakayaroj J, Borwornpinyo S, Seemakhan S, Muanprasat C (2017) Depsidones and an a-pyrone derivative from Simpilcillium sp. PSU-H41, an endophytic fungus from Heveabrasiliensis leaf. Phytochemistry 143:115–123PubMedCrossRefGoogle Scholar
  55. Siri-Udom S, Suwannarach N, Lumyong S (2017) Applications of volatile compounds acquired from Muscodor heveae against white root rot disease in rubber trees (Hevea brasiliensis Müll. Arg.) and relevant allelopathy effects. Fungal Biol 121(6-7):573–581PubMedCrossRefGoogle Scholar
  56. Siahmoshteh F, Esfahani ZH, Spadaro D, Ghahfarokhi MS, Abyaneh MR (2017) Unraveling the mode of antifungal action of Bacillus subtilis and Bacillus amyloliquefaciens as potential biocontrol agents against aflatoxigenic Aspergillus parasiticus. Food Control 89:300–307CrossRefGoogle Scholar
  57. Song HC, Qin D, Han MJ, Wang L, Zhang K, Dong JY (2017) Bioactive 2-pyrone metabolites from an endophytic Phomopsisasparagi SWUKJ5. 2020 of Kadsuraangustifolia. Phytochem Lett 22:235–240CrossRefGoogle Scholar
  58. Sun K, Zhu G, Hao J, Wang Y, Zhu W (2018) Chemical-epigenetic method to enhance the chemodiversity of the marine algicolous fungus, Aspergillusterreus OUCMDZ-2739. Tetrahedron 74:83–87CrossRefGoogle Scholar
  59. Supong K, Thawai C, Choowong W, Kittiwongwattana C, Thanaboripat D, Laosinwattana C, Koohakan P, Parinthawong N, Pittayakhajonwut P (2016) Antimicrobial compounds from endophytic Streptomyces sp. BCC72023 isolated from rice (Oryza sativa L.). Res Microbiol 167:290–298PubMedCrossRefGoogle Scholar
  60. Tang JW, Wang WG, Li A, Yan BC, Chen R, Li ZN, Du X, Sun HD, Pu JX (2017) Polyketides from the endophytic fungus Phomopsis sp. sh917 by using the one strain/many compounds strategy. Tetrahedron 73:3577–3584CrossRefGoogle Scholar
  61. Tohge T, Watanabe M, Hoefgen R, Fernie AR (2013) Shikimate and phenylalanine biosynthesis in the green lineage. Front Plant Sci 4:62.  https://doi.org/10.3389/fpls.2013.00062 PubMedPubMedCentralCrossRefGoogle Scholar
  62. Toledo AV, Franco MEE, Lopez SMY, Troncozo MI, Saparrat MCN, Balatti PA (2017) Melanins in fungi: types, localization and putative biological roles. Physiol Mol Plant Path 99:2–6CrossRefGoogle Scholar
  63. Tyc O, Song C, Dickschat JS, Vos M, Garbeva P (2017) The ecological role of volatile and soluble secondary metabolites produced by soil bacteria. Trends Microbiol 25(4):280–292PubMedCrossRefGoogle Scholar
  64. Upadhyay S, Xu X, Lowry D, Jackson JC, Roberson RW, Lin X (2016) Subcellular compartmentalization and trafficking of the biosynthetic machinery for fungal melanin. Cell Rep 14:2511–2518PubMedPubMedCentralCrossRefGoogle Scholar
  65. Uzma F, Hashem A, Murthy N, Mohan HD, Kamath PV, Singh BP, Venkataramana M, Gupta VK, Siddaiah CN, Chowdappa S, Alqaeawi AA, Abd Allah EF (2018) Endophytic fungi—alternative sources of cytotoxic compounds: a review. Front Pharmacol 9(309):1–37.  https://doi.org/10.3389/fphar.2018.00309 PubMedPubMedCentralCrossRefGoogle Scholar
  66. Valayil JM (2016) Activation of microbial silent gene clusters: genomics driven drug discovery approaches. Biochem Anal Biochem 5:276Google Scholar
  67. Venkateswarulu N, Chari PVB, Basha SKT, Nagaraju C, Vijaya T (2017) Isolation and purification of (E)-3- (2, 3- dihydroxyphenyl) acrylic acid fromendophytic fungi Fusariumequseti EF-32 and its anti-candidal and anticancer activities. Biocatal Agric Biotechnol 11:294–301CrossRefGoogle Scholar
  68. Wang Y, Hu P, Pan Y, Zhu Y, Liu X, Che Y, Liu G (2017a) Identification and characterization of the verticillin biosynthetic genecluster in Clonostachys rogersoniana. Fungal Genet Biol 103:25–33PubMedCrossRefGoogle Scholar
  69. Wang CC, Huang SY, Huang SH, Wen ZH, Huang ZY, Liu WS, Wang HMD (2017b) A synthetic biological secondary metabolite, Lycogen TM, produced and extracted from Rhodobactersphaeroides WL-APD911 in an optimizatioal scale-up strategy. Food Sci Hum Wellness 6:195–201CrossRefGoogle Scholar
  70. Wibowo M, Prachyawarakorn V, Aree T, Mahidol C, Ruchirawat S, Kittakoop P (2016) Cytotoxic sesquiterpenes from the endophytic fungus Pseudolagarobasidiumacaciicola. Phytochemistry 122:126–138PubMedCrossRefGoogle Scholar
  71. Xiang L, Gong S, Yang L, Hao J, Xue MF, Zeng FS, Zhang XJ, Shi WQ, Wang H, Yu D (2016) Biocontrol potential of endophytic fungi in medicinal plants from Wuhan botanical garden in China. Biol Control 94:47–55CrossRefGoogle Scholar
  72. Yang Y, Zhao H, Barrero RA, Zhang B, Sun G, Wilson IW, Xie F, Walker KD, Parks JW, Bruce R, Guo G, Chen L, Zhang Y, Huang X, Tang X, Liu H, Bellgard MI, Qiu D, Lai J, Hoffman A (2014) Genome sequencing and analysis of thepaclitaxel-producing endophytic fungus Penicilliumaurantiogriseum NRRL 62431. BMC Genomics 15:69PubMedPubMedCentralCrossRefGoogle Scholar
  73. Zeilinger S, Gruber S, Bansal R, Mukherjee PK (2016) Secondary metabolism in Trichoderma-chemistry meets genomics. Fungal Biol Rev 30:74–90CrossRefGoogle Scholar
  74. Zhang Q, Zhang J, Yang L, Zhang L, Jiang D, Chen W, Li G (2014) Diversity and biocontrol potential of endophytic fungi in Brassica napus. Biol Control 72:98–108CrossRefGoogle Scholar
  75. Zhang X, Zhu Y, Bao L, Gao L, Yao G, Li Y, Yang Z, Li Z, Zhong Y, Li F, Yin H, Qu Y, Qin Y (2016) Putative methyltransferase LaeA and transcription factor CreA are necessary for proper asexual development and controlling secondary metabolic gene cluster expression. Fungal Genet Biol 94:32–46PubMedCrossRefGoogle Scholar
  76. Zhang B, Wijesundara NM, Abbey L, Rupasinghe HSV (2017) Growing medium amendments effect on growth, secondary metabolites and anti-streptococcal activity of two species of Plectranthus. J Appl Res Med Aromat Plants 5:53–59Google Scholar
  77. Zheng YK, Miao CP, Hua-Hong Chen HH, Huang FF, Xia YM, Chen YW, Zhao LX (2017) Endophytic fungi harbored in Panaxnotoginseng: diversity and potential as biological control agents against host plant pathogens of root-rot disease. J Ginseng Res 41:353–360PubMedCrossRefGoogle Scholar
  78. Zouari I, Jlaiel L, Tounsi S, Trigui M (2016) Biocontrol activity of the endophytic Bacillus amyloliquefaciensstrain CEIZ-11 against Pythiumaphanidermatum and purification of its bioactive compounds. Biol Control 100:54–62CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Himani Meena
    • 1
  • Sairengpuii Hnamte
    • 1
  • Busi Siddhardha
    • 1
    Email author
  1. 1.Department of Microbiology, School of Life SciencesPondicherry UniversityKalapetIndia

Personalised recommendations