Natural Products from Endophytic Fungi: Synthesis and Applications

  • Parasuraman Paramanantham
  • Subhaswaraj Pattnaik
  • Busi Siddhardha
Part of the Fungal Biology book series (FUNGBIO)


Endophytic microorganisms inhabit plants without affecting the host physiological processes. Among the different groups of endophytic organisms, endophytic fungi remain the primary source of novel bioactive natural products with diverse chemical origins. However, the major drawback is that the majority of endophytic fungi are used in diversity studies irrespective of their potential biotechnological applications. Endophytic fungi represent an inexhaustible reservoir of novel bioactive metabolites with widespread applications and have attracted considerable interest in extensive exploration for the purpose of developing potential biomedical and agricultural applications. Endophytic fungi have an inherent property of mimicking plant-associated metabolic pathways (polyketide, shikimate, and mevalonate) for the synthesis of various bioactive metabolites independently of the host plant. Bioactive natural products from endophytic fungi are attracting considerable attention for exploiting their potential in multifaceted applications in the fields of agriculture, medicine, and pharmaceuticals. The natural products obtained from endophytic fungi have a profound importance in disease management against phytopathogens, since they control abiotic stress tolerance, and potential biomedical applications as antimicrobial, antimalarial, anticancer, antitumor, cytotoxic, anti-quorum sensing, and anti-biofilm agents. The role of fungal-derived metabolites in agricultural sector in increasing yields and maintaining product quality also lends a new dimension to its potential. The intervention of high-throughput strategies and metagenomic approaches to identify specific gene clusters in fungal endophytes for increased production of bioactive metabolites will provide novel avenues for current drug discovery programs for both the agricultural and healthcare sectors in the near future.


Endophytic fungus Natural product Metabolic pathway Antimicrobial Anticancer 


  1. Akone SH, Mandi A, Kurtan T, Hartmann R, Lin W, Daletos G, Proksch P (2016) Inducing secondary metabolite production by the endophytic fungus Chaetomium sp. through fungalebacterial co-culture and epigenetic modification. Tetrahedron 72:6340–6347CrossRefGoogle Scholar
  2. Alvin A, Miller KI, Neilan BA (2014) Exploring the potential of endophytes from medicinal plants as sources of antimycobacterial compounds. Microbiol Res 169:483–495PubMedCrossRefGoogle Scholar
  3. Aly AH, Edrada-Ebel RA, Wray V, Muller WEG, Kozytska S, Hentschel U, Proksch P, Ebel R (2008) Bioactive metabolites from the endophytic fungus Ampelomyces sp. isolated from the medicinal plant Urospermum picroides. Phytochemistry 69:1716–1725PubMedCrossRefGoogle Scholar
  4. Arnold AE (2007) Understanding the diversity of foliar endophytic fungi: progress, challenges, and frontiers. Fungal Biol Rev 21:51–66CrossRefGoogle Scholar
  5. Brackman G, Cos P, Maes L, Nelis HJ, Coenye T (2011) Quorum sensing inhibitors increase the susceptibility of bacterial biofilms to antibiotics in vitro and in vivo. Antimicrob Agents Chemother 55(6):2655–2661PubMedPubMedCentralCrossRefGoogle Scholar
  6. Buhaescu I, Izzedine H (2007) Mevalonate pathway: a review of clinical and therapeutical implications. Clin Biochem 40(9–10):575–584PubMedCrossRefGoogle Scholar
  7. Cao X, Li J, Zhou L, Xu L, Li J, Zhao J (2007) Determination of diosgenin content of the endophytic fungi from Paris polyphylla var. yunnanensis by using an optimum ELISA. Nat Prod Res Dev 19:1020–1023Google Scholar
  8. Casella TM, Eparvier V, Mandavid H, Bendelac A, Odonne G, Dayan L, Duplais C, Espindola LS, Stien D (2013) Antimicrobial and cytotoxic secondary metabolites from tropical leaf endophytes: isolation of antibacterial agent pyrrocidine C from Lewia infectoria SNB-GTC2402. Phytochemistry 96:370–377PubMedCrossRefGoogle Scholar
  9. Chan YA, Podevels AM, Kevany BM, Thomas MG (2009) Biosynthesis of polyketide synthase extender units. Nat Prod Rep 26(1):90–114PubMedPubMedCentralCrossRefGoogle Scholar
  10. Chaturvedi P, Gajbhiye S, Roy S, Dudhale R, Chowdhary A (2014) Determination of kaemferol in extracts of Fusarium chlamydosporum, an endophytic fungi of Tylophora indica (Asclepeadaceae) and its anti-microbial activity. IOSR J Pharm Biol Sci 9:51–55Google Scholar
  11. Christensen LD, van Gennip M, Jakobsen TH, Alhede M, Hougen HP, Hoiby N, Bjarnsholt T, Givskov M (2012) Synergistic antibacterial efficacy of early combination treatment with tobramycin and quorum-sensing inhibitors against Pseudomonas aeruginosa in an intraperitoneal foreign-body infection mouse model. J Antimicrob Chemother 67(5):1198–1206PubMedCrossRefGoogle Scholar
  12. Cui Y, Yi D, Bai X, Sun B, Zhao Y, Zhang Y (2012) Ginkgolide B produced endophytic fungus (Fusarium oxysporum) isolated from Ginkgo biloba. Fitoterapia 83:913–920PubMedCrossRefGoogle Scholar
  13. Deepika VB, Murali TS, Satyamoorthy K (2016) Modulation of genetic clusters for synthesis of bioactive molecules in fungal endophytes: a review. Microbiol Res 182:125–140PubMedCrossRefGoogle Scholar
  14. Demain AL, Sanchez S (2009) Microbial drug discovery: 80 years of progress. J Antibiot 62:5–16PubMedCrossRefGoogle Scholar
  15. Elsebai MF, Kehraus S, Lindequist U, Sasse F, Shaaban S, Gütschow M, Josten M, Sahl HG, König GM (2011) Antimicrobial phenalenone derivatives from the marine-derived fungus Coniothyrium cereale. Org Biomol Chem 9(3):802–808PubMedCrossRefGoogle Scholar
  16. Feng P, Shang Y, Cen K, Wang C (2015) Fungal biosynthesis of the bibenzoquinone oosporein to evade insect immunity. Proc Natl Acad Sci 112(36):11365–11370PubMedCrossRefGoogle Scholar
  17. Figueroa M, Jarmusch AK, Raja HA, El-Elimat T, Kavanaugh JS, Horswill AR, Cooks RG, Cech NB, Oberlies NH (2014) Polyhydroxyanthraquinones as quorum sensing inhibitors from the guttates of Penicillium restrictum and their analysis by desorption electrospray ionization mass spectrometry. J Nat Prod 77(6):1351–1358PubMedPubMedCentralCrossRefGoogle Scholar
  18. Fouda AH, Hassan SE, Eid AM, Ewais EE (2015) Biotechnological applications of fungal endophytes associated with medicinal plant Asclepias sinaica (Bioss.). Ann Agric Sci 60(1):95–104CrossRefGoogle Scholar
  19. Hardoim PR, van Overbeek LS, Berg G, Pirttila AM, Compant S, Campisano A, Doring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79(3):293–320PubMedPubMedCentralCrossRefGoogle Scholar
  20. Herrmann KM (1995) The shikimate pathway: early steps in the biosynthesis of aromatic compounds. Plant Cell 7(7):907–919PubMedPubMedCentralCrossRefGoogle Scholar
  21. Herrmann KM, Weaver LM (1999) The shikimate pathway. Annu Rev Plant Physiol Plant Mol Biol 50(1):473–503PubMedCrossRefGoogle Scholar
  22. Jalgaonwala RE, Mohite BV, Mahajan RT (2011) A review: natural products from plant associated endophytic fungi. J Microbiol Biotechnol Res 1(2):21–32Google Scholar
  23. Jia M, Chen L, Xin HL, Zheng CJ, Rahman K, Han T, Qin LP (2016) A friendly relationship between endophytic fungi and medicinal plants: a systematic review. Front Microbiol 7:906PubMedPubMedCentralCrossRefGoogle Scholar
  24. Kumara PM, Zuehlke S, Priti V, Ramesha BT, Shweta S, Ravikanth G, Vasudeva R, Santhoshkumar TR, Spiteller M, Uma Shaanker R (2012) Fusarium proliferatum, an endophytic fungus from Dysoxylum binectariferum Hook.f, produces rohitukine, a chromane alkaloid possessing anti-cancer activity. Antonie Van Leeuwenhoek 101(2):323–329CrossRefGoogle Scholar
  25. Kumara PM, Shweta S, Vasanthakumari MM, Sachin N, Manjunatha BL, Jadhav SS, Ravikanth G, Ganeshaiah KN, Shaanker RU (2014) Endophytes and plant secondary metabolite synthesis: molecular and evolutionary perspective. In: Verma VC, Gange AC (eds) Advances in endophytic research. Springer India, New Delhi, pp 177–190CrossRefGoogle Scholar
  26. Kusari S, Lamshoft M, Spiteller M (2009) Aspergillus fumigatus Fresenius, an endophytic fungus from Juniperus communis L. Horstmann as a novel source of the anticancer pro-drug deoxypodophyllotoxin. J Appl Microbiol 107:1019–1030PubMedCrossRefGoogle Scholar
  27. Kusari S, Hertweck C, Spiteller M (2012a) Chemical ecology of endophytic fungi: origins of secondary metabolites. Chem Biol 19:792–798PubMedCrossRefGoogle Scholar
  28. Kusari S, Verma VC, Lamshoeft M, Spiteller M (2012b) An endophytic fungus from Azadirachta indica A. Juss. that produces azadirachtin. World J Microbiol Biotechnol 28:1287–1294PubMedCrossRefGoogle Scholar
  29. Kusari S, Pandey SP, Spiteller M (2013) Untapped mutualistic paradigms linking host plant and endophytic fungal production of similar bioactive secondary metabolites. Phytochemistry 91:81–87PubMedCrossRefGoogle Scholar
  30. Kusari S, Singh S, Jayabaskaran C (2014) Biotechnological potential of plant-associated endophytic fungi: hope versus hype. Trends Biotechnol 32(6):297–303PubMedCrossRefGoogle Scholar
  31. Le Cocq K, Gurr SJ, Hirsch PR, Mauchline TH (2017) Exploitation of endophytes for sustainable agricultural intensification. Mol Plant Pathol 18(3):469–473PubMedCrossRefGoogle Scholar
  32. Lombard J, Moreira D (2011) Origins and early evolution of the mevalonate pathway of isoprenoid biosynthesis in the three domains of life. Mol Biol Evol 28(1):87–99PubMedCrossRefGoogle Scholar
  33. Lugtenberg BJJ, Caradus JR, Johnson LJ (2016) Fungal endophytes for sustainable crop production. FEMS Microbiol Ecol 92(12). Edited by G. Muyzer; pii: fiw194Google Scholar
  34. Lunardelli Negreiros de Carvalho P, de Oliveira Silva E, Aparecida Chagas-Paula D, Honorata Hortolan Luiz J, Ikegaki M (2016) Importance and implications of the production of phenolic secondary metabolites by endophytic fungi: a mini-review. Mini-Rev Med Chem 16(4):259–271CrossRefGoogle Scholar
  35. Maeda H, Dudareva N (2012) The shikimate pathway and aromatic amino acid biosynthesis in plants. Annu Rev Plant Biol 63(1):73–105PubMedCrossRefGoogle Scholar
  36. Martín-Rodríguez A, Reyes F, Martín J, Pérez-Yépez J, León-Barrios M, Couttolenc A, Espinoza C, Trigos Á, Martín V, Norte M, Fernández J (2014) Inhibition of bacterial quorum sensing by extracts from aquatic fungi: first report from marine endophytes. Mar Drugs 12(11):5503–5526PubMedPubMedCentralCrossRefGoogle Scholar
  37. Miller KI, Qing C, Sze DMY, Neilan BA (2012) Investigation of the biosynthetic potential of endophytes in traditional Chinese anticancer herbs. PLoS One 7(5):35953CrossRefGoogle Scholar
  38. Mishra VK, Singh G, Passari AK, Yadav MK, Gupta VK, Singh BP (2016a) Distribution and antimicrobial potential of endophytic fungi associated with ethnomedicinal plant Melastoma malabathricum L. J Environ Biol 37(2):229–237PubMedPubMedCentralGoogle Scholar
  39. Mishra VK, Passari AK, Singh BP (2016b) In vitro antimycotic and biosynthetic potential of fungal endophytes associated with Schima Wallichii. In: Kumar P et al (eds) Current trends in disease diagnostics. Springer, Cham, pp 367–381Google Scholar
  40. Mishra VK, Passari AK, Chandra P, Leo VV, Kumar B, Gupta VK, Singh BP (2017a) Determination and production of antimicrobial compounds by Aspergillus clavatonanicus strain MJ31, an endophytic fungus from Mirabilis jalapa L. using UPLC-ESI-MS/MS and TD GC-MS. PLoS One 12(10):1–24. CrossRefGoogle Scholar
  41. Mishra VK, Passari AK, Leo VV, Singh BP (2017b) Molecular diversity and detection of endophytic fungi based on their antimicrobial biosynthetic genes. In: Singh BP, Gupta VK (eds) Molecular markers in mycology, fungal biology. Springer, Cham, pp 1–35. CrossRefGoogle Scholar
  42. Mookherjee A, Singh S, Maiti MK (2018) Quorum sensing inhibitors: can endophytes be prospective sources? Arch Microbiol 200(2):355–369PubMedCrossRefGoogle Scholar
  43. Mousa WK, Schwan A, Davidson J, Strange P, Liu H, Zhou T, Auzanneau FI, Raizada MN (2015) An endophytic fungus isolated from finger millet (Eleusine coracana) produces anti-fungal natural products. Front Microbiol 6:1157PubMedPubMedCentralCrossRefGoogle Scholar
  44. Nair DN, Padmavathy S (2014) Impact of endophytic microorganisms on plants, environment and humans. Sci World J 2014:1–11CrossRefGoogle Scholar
  45. Nirupama R, Chaithra K, Govindappa M, Chandrappa CP, Vinay RB (2011) Antimicrobial and antioxidant activities of endophytes from Tabebuia argentea and identification of anticancer agent (lapachol). J Med Plant Res 5:3643–3652Google Scholar
  46. Nisa H, Kamili AN, Nawchoo IA, Shafi S, Shameem N, Bandh SA (2015) Fungal endophytes as prolific source of phytochemicals and other bioactive natural products: a review. Microb Pathog 82:50–59PubMedCrossRefGoogle Scholar
  47. Parthasarathy R, Sathiyabama M (2014) Gymnemagenin-producing endophytic fungus isolated from a medicinal plant Gymnema sylvestre R.Br. Appl Biochem Biotechnol 172(6):3141–3152PubMedCrossRefGoogle Scholar
  48. Pimentel MR, Molina G, Dionísio AP, Maróstica Junior MR, Pastore GM (2011) The use of endophytes to obtain bioactive compounds and their application in biotransformation process. Biotechnol Res Int 2011:576286PubMedCrossRefGoogle Scholar
  49. Pongcharoen W, Rukachaisirikul V, Phongpaichit S, Kuhn T, Pelzing M, Sakayaroj J, Taylor WC (2008) Metabolites from the endophytic fungus Xylaria sp. PSU-D14. Phytochemistry 69:1900–1902PubMedCrossRefGoogle Scholar
  50. Rai M, Rathod D, Agarkar G, Dar M, Brestic M, Pastore GM, Junior MRM (2014) Fungal growth promotor endophytes: a pragmatic approach towards sustainable food and agriculture. Symbiosis 62(2):63–79CrossRefGoogle Scholar
  51. Rajamanikyam M, Vadlapudi V, Amanchy R, Upadhyayula SM (2017) Endophytic fungi as novel resources of natural therapeutics. Braz Arch Biol Technol 60:e17160542CrossRefGoogle Scholar
  52. Rao HCY, Satish S (2015) Genomic and chromatographic approach for the discovery of polyketide antimicrobial metabolites from an endophytic Phomopsis liquidambaris CBR-18. Front Life Sci 8(2):200–207CrossRefGoogle Scholar
  53. Refaei J, Hussein ZAM, Santhanam J (2014) Diversity of type i polyketide synthase genes in a bioactive Phoma sp. endophytic fungus isolated from Cinnamomum molissimum in Malaysia. J Pure Appl Microbiol 8(2):1173–1182Google Scholar
  54. Rodriguez RJ, White JF Jr, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330PubMedCrossRefGoogle Scholar
  55. Santiago C, Sun L, Munro MHG, Santhanam J (2014) Polyketide and benzopyran compounds of an endophytic fungus isolated from Cinnamomum mollissimum: biological activity and structure. Asian Pac J Trop Biomed 4(8):627–632PubMedPubMedCentralCrossRefGoogle Scholar
  56. Silva GH, Zeraik ML, de Oliveira CM, Teles HL, Trevisan HC, Pfenning LH, Nicolli CP, Young MCM, Mascarenhas YP, Abreu LM, Saraiva AC, Medeiros AI, Bolzani VS, Araujo AR (2017) Lactone derivatives produced by a Phaeoacremonium sp., an endophytic fungus from Senna spectabilis. J Nat Prod 80:1674–1678PubMedCrossRefGoogle Scholar
  57. Souza BS, dos Santos TT (2017) Endophytic fungi in economically important plants: ecological aspects, diversity and potential biotechnological applications. J Bioenergy Food Sci 4(2):113–126CrossRefGoogle Scholar
  58. Strobel GA (2003) Endophytes as sources of bioactive products. Microb Infect 5:535–544CrossRefGoogle Scholar
  59. Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67(4):491–502PubMedPubMedCentralCrossRefGoogle Scholar
  60. Suryanarayanan TS (2013) Endophyte research: going beyond isolation and metabolite documentation. Fungal Ecol 6:561–568CrossRefGoogle Scholar
  61. Tricarico P, Crovella S, Celsi F (2015) Mevalonate pathway blockade, mitochondrial dysfunction and autophagy: a possible link. Int J Mol Sci 16(7):16067–16084PubMedPubMedCentralCrossRefGoogle Scholar
  62. Tzin V, Galili G (2010) The biosynthetic pathways for shikimate and aromatic amino acids in Arabidopsis thaliana. Arab Book 8(i):0132Google Scholar
  63. Uzma F, Konappa NM, Chowdappa S (2016) Diversity and extracellular enzyme activities of fungal endophytes isolated from plants of Western Ghats, Karnataka. Egypt J Basic Appl Sci 3:335–342CrossRefGoogle Scholar
  64. Uzma F, Hashem A, Murthy N, Mohan HD, Kamath PV, Singh BP, Venkataramana M, Gupta VK, Siddaiah CN, Chowdappa S, Alqaeawi AA, Abd Allah EF (2018) Endophytic fungi—alternative sources of cytotoxic compounds: a review. Front Pharmacol 9(309):1–37.
  65. Venieraki A, Dimou M, Katinakis P (2017) Endophytic fungi residing in medicinal plants have the ability to produce the same or similar pharmacologically active secondary metabolites as their hosts. Hellenic Plant Protect J 10:51–66CrossRefGoogle Scholar
  66. Venugopalan A, Srivastava S (2015) Endophytes as in vitro production platforms of high value plant secondary metabolites. Biotechnol Adv 33:873–887PubMedCrossRefGoogle Scholar
  67. Verma VC, Lobkovsky E, Gange AC, Singh SK, Prakash S (2011) Piperine production by endophytic fungus Periconia sp. isolated from Piper longum L. J Antibiot 64:427–431PubMedCrossRefGoogle Scholar
  68. Wang XJ, Min CL, Ge M, Zuo RH (2014) An endophytic sanguinarine-producing fungus from Macleaya cordata, Fusarium proliferatum BLH51. Curr Microbiol 68:336–341PubMedCrossRefGoogle Scholar
  69. Wani ZA, Ashraf N, Mohiuddin T, Riyaz-Ul-Hassan S (2015) Plant-endophyte symbiosis, an ecological perspective. Appl Microbiol Biotechnol 99:2955–2965PubMedCrossRefPubMedCentralGoogle Scholar
  70. Waqas M, Khan AL, Hamayun M, Shahzad R, Kang SM, Kim JG, Lee IJ (2015) Endophytic fungi promote plant growth and mitigate the adverse effects of stem rot: an example of Penicillium citrinum and Aspergillus terreus. J Plant Interact 10(1):280–287CrossRefGoogle Scholar
  71. Yao L, Tan C, Song J, Yang Q, Yu L, Li X (2016) Isolation and expression of two polyketide synthase genes from Trichoderma harzianum 88 during mycoparasitism. Braz J Microbiol 47(2):468–479PubMedPubMedCentralCrossRefGoogle Scholar
  72. You X, Feng S, Luo S, Cong D, Yu Z, Yang Z, Zhang J (2013) Studies on a rhein-producing endophytic fungus isolated from Rheum palmatum L. Fitoterapia 85:161–168PubMedCrossRefGoogle Scholar
  73. Yu H, Zhang L, Li L, Zheng C, Guo L, Li W, Sun P, Qin L (2010) Recent developments and future prospects of antimicrobial metabolites produced by endophytes. Microbiol Res 165:437–449PubMedCrossRefGoogle Scholar
  74. Yuan Y, Feng H, Wang L, Li Z, Shi Y, Zhao L, Feng Z, Zhu H (2017) Potential of endophytic fungi isolated from cotton roots for biological control against Verticillium wilt disease. PLoS One 12(1):e0170557PubMedPubMedCentralCrossRefGoogle Scholar
  75. Zhang HW, Song YC, Tan RX (2006) Biology and chemistry of endophytes. Nat Prod Rep 23:753–771PubMedCrossRefGoogle Scholar
  76. Zhang D, Tao X, Chen R, Liu J, Li L, Fang X, Yu L, Dai J (2015) Pericoannosin A, a polyketide synthase–nonribosomal peptide synthetase hybrid metabolite with new carbon skeleton from the endophytic fungus Periconia sp. Org Lett 17(17):4304–4307PubMedCrossRefGoogle Scholar
  77. Zhao J, Zhou L, Wang J, Shan T, Zhong L, Liu X, Gao X (2010) Endophytic fungi for producing bioactive compounds originally from their host plants. In: Mendez-Vilas A (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology. Formatex Research Center, Badajoz, pp 567–576Google Scholar
  78. Zhou J, Bi S, Chen H, Chen T, Yang R, Li M, Fu Y, Jia AQ (2017) Anti-biofilm and antivirulence activities of metabolites from Plectosphaerella cucumerina against Pseudomonas aeruginosa. Front Microbiol 8(MAY):1–17Google Scholar
  79. Zilla MK, Qadri M, Pathania AS, Strobel GA, Nalli Y, Kumar S, Guru SK, Bhushan S, Singh SK, Vishwakarma RA, Riyaz-Ul-Hassan S, Ali A (2013) Bioactive metabolites from an endophytic Cryptosporiopsis sp. inhabiting Clidemia hirta. Phytochemistry 95:291–297PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Parasuraman Paramanantham
    • 1
  • Subhaswaraj Pattnaik
    • 1
  • Busi Siddhardha
    • 1
  1. 1.Department of Microbiology, School of Life SciencesPondicherry UniversityPuducherryIndia

Personalised recommendations