Secondary Metabolites from Marine Endophytic Fungi: Emphasis on Recent Advances in Natural Product Research

  • P. V. Bramhachari
  • S. Anju
  • Ganugula Mohana Sheela
  • T. Raja Komaraiah
  • Peddaboina Venkataiah
  • A. M. V. N. Prathyusha
Part of the Fungal Biology book series (FUNGBIO)


The marine environment is endowed with novel and rich sources of structural and functional metabolites that have prospective biomedical applications. Several marine plants, algae, and invertebrates are known to have a huge number of fungal endophytes. Until now, only a few marine-derived fungal endophytes have been identified as producers of bioactive secondary metabolites compared to the inhabitants of higher plants. These fungal endophytes were recently documented to produce a plethora of signature molecules for exploitation in industry, agriculture, and medicine. Endophytic fungi associated with marine hosts are acquiring increasing importance as promising sources of structural and biological natural products. This review presents knowledge on secondary metabolites isolated from algae in marine habitats, coral and sponge-associated endophytic fungi with a special emphasis on secondary metabolite production. The data presented in this review presents knowledge on secondary metabolites isolated from algae in marine habitats, coral and sponge-associated endophytic fungi.


Marine fungi Endophytes Secondary metabolites Natural product research 



The author gratefully acknowledges Krishna University for its encouragement and support.

Conflict of Interest We declare we don’t have any conflict of interest.


  1. Almeida C, Kehraus S, Prudêncio M, König GM (2011) Marilones AC, phthalides from the sponge-derived fungus Stachylidium sp. Beilstein J Org Chem 7:1636–1642CrossRefGoogle Scholar
  2. Alvin A, Miller KI, Neilan BA (2014) Exploring the potential of endophytes from medicinal plants as sources of antimycobacterial compounds. Microbiol Res 169(7):483–495CrossRefGoogle Scholar
  3. Aly AH, Debbab A, Proksch P (2011). Fungal endophytes: unique plant inhabitants with great promises. Applied microbiology and biotechnology, 90(6):1829–1845Google Scholar
  4. AUS, IVNN, WON, SUAP, & MUSHROOMS, E. (2007). Isolation of new secondary metabolites from spongeassociated and plant-derived endophytic fungiGoogle Scholar
  5. Berdy J (2005) Bioactive microbial metabolites. J Antibiot 58(1):1CrossRefGoogle Scholar
  6. Bhimba BV, Franco DAD, Mathew JM, Jose GM, Joel EL, Thangaraj M (2012) Anticancer and antimicrobial activity of mangrove derived fungi Hypocrea lixii VB1. Chin J Nat Med 10(1):77–80CrossRefGoogle Scholar
  7. Blunt JW et al (2008) Marine natural products. Nat Prod Rep 25:35–94CrossRefGoogle Scholar
  8. Blunt JW, Copp BR, Keyzers RA, Munro MH, Prinsep MR (2013) Marine natural products. Nat Prod Rep 30(2):237–323CrossRefGoogle Scholar
  9. Blunt J, Copp B, Keyzers R, Munro M, Prinsep M (2015) Marine natural products. Nat Prod Rep 32:116–211CrossRefGoogle Scholar
  10. Brader G et al (2014) Metabolic potential of endophytic bacteria. Curr Opin Biotechnol 27:30–37CrossRefGoogle Scholar
  11. Brakhage AA, Schroeckh V (2011) Fungal secondary metabolites–strategies to activate silent gene clusters. Fungal Genet Biol 48(1):15–22CrossRefGoogle Scholar
  12. Bringmann G, Lang G, Gulder TAM, Hideyuki H, Mühlbacher J, Maksimenka K, Steffens S, Schaumann K, Stöhr R, Wiese J, Imhoff JF, Perovi-Ottstadt S, Boreiko O, Müller WEG (2005) The first sorbicillinoid alkaloids, the antileukemic sorbicillactones A and B, from a sponge derived Penicillium chrysogenum strain. Tetrahedron 61:7252–7265CrossRefGoogle Scholar
  13. Bugni TS, Ireland CM (2004) Marine-derived fungi: a chemically and biologically diverse group of micro-organisms review. Nat Prod Rep 21:143–163CrossRefGoogle Scholar
  14. Carroll G (1988) Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont. Ecology 69(1):2–9CrossRefGoogle Scholar
  15. Cui CM, Li XM, Li CS, Proksch P, Wang BG (2010a) Cytoglobosins A−G, cytochalasans from a marine-derived endophytic fungus, Chaetomium globosum QEN-14. J Nat Prod 73(4):729–733CrossRefGoogle Scholar
  16. Cui CM, Li XM, Meng L, Li CS, Huang CG, Wang BG (2010b) 7-Nor-ergosterolide, a pentalactone-containing norsteroid and related steroids from the marine-derived endophytic Aspergillus ochraceus EN-31. J Nat Prod 73(11):1780–1784CrossRefGoogle Scholar
  17. Damare S, Singh P, Raghukumar S (2012) Biotechnology of marine fungi. Biology of marine fungi. Springer, Berlin, Heidelberg, pp 277–297CrossRefGoogle Scholar
  18. Debbab A, Aly AH, Lin WH, Proksch P (2010) Bioactive compounds from marine bacteria and fungi. Microb Biotechnol 3(5):544–563CrossRefGoogle Scholar
  19. Debbab A, Aly AH, Proksch P (2011) Bioactive secondary metabolites from endophytes and associated marine derived fungi. Fungal Divers 49(1):1CrossRefGoogle Scholar
  20. Donia MS et al (2011) Accessing the hidden majority of marine natural products through metagenomics. ChemBioChem 12(8):1230–1236CrossRefGoogle Scholar
  21. Du FY, Li XM, Li CS, Shang Z, Wang BG (2012) Cristatumins A–D, new indole alkaloids from the marine-derived endophytic fungus Eurotium cristatum EN-220. Bioorg Med Chem Lett 22(14):4650–4653CrossRefGoogle Scholar
  22. Ebel R (2006) Secondary metabolites from marine derived fungi. In: Proksch P, Müller WEG (eds) Frontiers in marine biotechnology. Horizon Scientific Press, Norwich, pp 73–143Google Scholar
  23. Ebel R (2010) Terpenes from marine-derived fungi. Mar Drugs 8(8):2340–2368CrossRefGoogle Scholar
  24. Elsebai MF, Kehraus S, Gütschow M, Koenig GM (2010) Spartinoxide, a new enantiomer of A82775C with inhibitory activity toward HLE from the marine-derived Fungus Phaeosphaeria spartinae. Nat Prod Commun 5(7):1071–1076PubMedGoogle Scholar
  25. Firáková S, Šturdíková M, Múčková M (2007) Bioactive secondary metabolites produced by microorganisms associated with plants. Biologia 62(3):251–257CrossRefGoogle Scholar
  26. Gao SS, Li XM, Du FY, Li CS, Proksch P, Wang BG (2010) Secondary metabolites from a marine-derived endophytic fungus Penicillium chrysogenum QEN-24S. Mar Drugs 9(1):59–70CrossRefGoogle Scholar
  27. Gerwick W, Moore B (2012) Lessons from the past and charting the future of marine natural products drug discovery and chemical biology. Chem Biol 19:85–98CrossRefGoogle Scholar
  28. Golinska P, Wypij M, Agarkar G, Rathod D, Dahm H, Rai M (2015) Endophytic actinobacteria of medicinal plants: diversity and bioactivity. Antonie Van Leeuwenhoek 108(2):267–289CrossRefGoogle Scholar
  29. Hasan S, Ansari MI, Ahmad A, Mishra M (2015) Major bioactive metabolites from marine fungi: a review. Bioinformation 11(4):176CrossRefGoogle Scholar
  30. Hertweck C (2009) Hidden biosynthetic treasures brought to light. Nat Chem Biol 5:450–452CrossRefGoogle Scholar
  31. Höller U, Wright AD, Matthee GF, Konig GM, Draeger S, Hans-Jürgen AUST, Schulz B (2000) Fungi from marine sponges: diversity, biological activity and secondary metabolites. Mycol Res 104(11):1354–1365CrossRefGoogle Scholar
  32. Hulikere MM, Joshi CG, Ananda D, Poyya J, Nivya T (2016) Antiangiogenic, wound healing and antioxidant activity of Cladosporium cladosporioides (Endophytic Fungus) isolated from seaweed (Sargassum wightii). Mycology 7(4):203–211CrossRefGoogle Scholar
  33. Kennedy J, Flemer B, Jackson S, Lejon D, Morrissey J, O’Gara F et al (2010) Marine metagenomics: new tools for the study and exploitation of marine microbial metabolism. Mar Drugs 8:608–628CrossRefGoogle Scholar
  34. Kjer J, Debbab A, Aly AH, Proksch P (2010) Methods for isolation of marine-derived endophytic fungi and their bioactive secondary products. Nat Protoc 5(3):479CrossRefGoogle Scholar
  35. König J, Seithel A, Gradhand U, Fromm MF (2006a) Pharmacogenomics of human OATP transporters. Naunyn-Schmiedeberg’s archives of pharmacology, 372(6), 432–443Google Scholar
  36. König GM, Kehraus S, Seibert SF, Abdel-Lateff A, Müller D (2006b) Natural products from marine organisms and their associated microbes. ChemBioChem 7(2):229–238Google Scholar
  37. Kralj A, Kehraus S, Krick A, Eguereva E, Kelter G, Maurer M et al (2006) Arugosins G and H: prenylated polyketides from the marine-derived fungus Emericellanidulans var. acristata. J Nat Prod 69(7):995–1000CrossRefGoogle Scholar
  38. Kusari S, Lamshöft M, Spiteller M (2009) Aspergillus fumigatus Fresenius, an endophytic fungus from Juniperus communis L. Horstmann as a novel source of the anticancer pro-drug deoxypodophyllotoxin. J Appl Microbiol 107:1019–1030CrossRefGoogle Scholar
  39. Leal M, Puga J, Serôdio J, Gomes N, Calado R (2012) Trends in the discovery of new marine natural products from invertebrates over the last two decades–where and what are we bioprospecting? PLoS One 7:e30580CrossRefGoogle Scholar
  40. Lee YM, Li H, Hong J, Cho HY, Bae KS, Kim MA et al (2010) Bioactive metabolites from the sponge-derived fungus Aspergillus versicolor. Arch Pharm Res 33(2):231–235CrossRefGoogle Scholar
  41. Li Y, Li X, Son BW (2005) Antibacterial and radical scavenging epoxycyclohexenones and aromatic polyols from a marine isolate of the fungus Aspergillus. Nat Prod Sci 11:136–138Google Scholar
  42. Li X, Li XM, Xu GM, Li CS, Wang BG (2014) Antioxidant metabolites from marine alga-derived fungus Aspergillus wentii EN-48. Phytochem Lett 7:120–123CrossRefGoogle Scholar
  43. Li HL, Li XM, Li X, Wang CY, Liu H, Kassack MU, Meng LH, Wang BG (2017) Antioxidant Hydroanthraquinones from the marine algal-derived endophytic fungus Talaromyces islandicus EN-501. J Nat Prod 80(1):162–168CrossRefGoogle Scholar
  44. Liu X et al (2010) Bioprospecting microbial natural product libraries from the marine environment for drug discovery. J Antibiot 63(8):415CrossRefGoogle Scholar
  45. Lösgen S, Schlörke O, Meindl K, Herbst-Irmer R, Zeeck A (2007) Structure and biosynthesis of chaetocyclinones, new polyketides produced by an endosymbiotic fungus. Eur J Org Chem 2007(13):2191–2196CrossRefGoogle Scholar
  46. Maria GL, Sridhar KR, & Raviraja NS (2005) Antimicrobial and enzyme activity of mangrove endophytic fungi of southwest coast of India. Journal of Agricultural technology, 1, 67–80Google Scholar
  47. Marmann A, Aly AH, Lin W, Wang B, Proksch P (2014) Co-cultivation—a powerful emerging tool for enhancing the chemical diversity of microorganisms. Mar Drugs 12(2):1043–1065CrossRefGoogle Scholar
  48. Mishra VK, Passari AK, Chandra P, Leo VV, Kumar B, Gupta VK, Singh BP (2017a) Determination and production of antimicrobial compounds by Aspergillus clavatonanicus strain MJ31, an endophytic fungus from Mirabilis jalapa L. using UPLC-ESI-MS/MS and TD GC-MS. PLoS One 12(10):1–24. Scholar
  49. Mishra VK, Passari AK, Leo VV, Singh BP (2017b) Molecular diversity and detection of endophytic fungi based on their antimicrobial biosynthetic genes. In: Singh BP, Gupta VK (eds) Molecular markers in mycology, fungal biology. Springer International Publishing, Switzerland, pp 1–35. Scholar
  50. Montaser R, Luesch H (2011) Marine natural products: a wave of new drugs? Future Med Chem 3:1475–1489CrossRefGoogle Scholar
  51. Mousa WK, Raizada MN (2013) The diversity of anti-microbial secondary metabolites produced by fungal endophytes: an interdisciplinary perspective. Frontiers in microbiology, 4:65Google Scholar
  52. Newton GGF, Abraham EP (1955) Cephalosporine C, a new antibiotic containing sulphur and D-α-aminoadipic acid. Nature 175:548CrossRefGoogle Scholar
  53. Ohkawa Y, Miki K, Suzuki T, Nishio K, Sugita T, Kinoshita K, Takahashi K, Koyama K (2010) Antiangiogenic metabolites from a marine-derived fungus, Hypocrea vinosa. J Nat Prod 73(4):579–582CrossRefGoogle Scholar
  54. Osburne MS, Grossman TH, August PR, MacNeil IA (2000) Tapping into microbial diversity for natural products drug discovery. ASM News 66:411–417Google Scholar
  55. Pelaez F (2006) The historical delivery of antibiotics from microbial natural products—can history repeat?. Biochemical pharmacology, 71(7):981–990Google Scholar
  56. Pontius A, Krick A, Mesry R, Kehraus S, Foegen SE, Müller M, Klimo K, Gerhäuser C, König GM (2008) Monodictyochromes A and B, dimeric xanthone derivatives from the marine algicolous fungus Monodictys putredinis. J Nat Prod 71(11):1793–1799CrossRefGoogle Scholar
  57. Qiao MF, Ji NY, Liu XH, Li K, Zhu QM, Xue QZ (2010) Indoloditerpenes from an algicolous isolate of Aspergillus oryzae. Bioorg Med Chem Lett 20:5677–5680CrossRefGoogle Scholar
  58. Reen F, Gutiérrez-Barranquero J, Dobson A, Adams C, O’Gara F (2015) Emerging concepts promising new horizons for marine biodiscovery and synthetic biology. Mar Drugs 13:294–2954Google Scholar
  59. Rocha-Martin J, Harrington C, Dobson A, O’Gara F (2014) Emerging strategies and integrated systems microbiology technologies for biodiscovery of marine bioactive compounds. Mar Drugs 12:3516–3559CrossRefGoogle Scholar
  60. Sarasan M, Puthumana J, Job N, Han J, Lee JS, Philip R (2017) Marine algicolous endophytic fungi—a promising drug resource of the era. J Microbiol Biotechnol 27:1039PubMedGoogle Scholar
  61. Schulz B (2001) Bioactive fungal metabolites–impact and exploitation, 20. British Mycological Society. In: International symposium proceedings, University of Wales, Swansea, UKGoogle Scholar
  62. Schulz B, Boyle C, Draeger S, Römmert AK, Krohn K (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res 106(9):996–1004CrossRefGoogle Scholar
  63. Schulz B, Draeger S, dela Cruz TE, Rheinheimer J, Siems K, Loesgen S et al (2008) Screening strategies for obtaining novel, biologically active, fungal secondary metabolites from marine habitats. Bot Mar 51(3):219–234CrossRefGoogle Scholar
  64. Sogin M, Morrison H, Huber J, Mark Welch D, Huse S, Neal PR et al (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci U S A 103:12115–12120CrossRefGoogle Scholar
  65. Tao L, Zhu F, Qin C, Zhang C, Chen S, Zhang P et al (2015) Clustered distribution of natural product leads of drugs in the chemical space as influenced by the privileged target-sites. Sci Rep 5:9325CrossRefGoogle Scholar
  66. Tsuda M, Kasai Y, Komatsu K, Sone T, Tanaka M, Mikami Y, Kobayashi JI (2004) Citrinadin A, a novel pentacyclic alkaloid from marine-derived fungus Penicillium citrinum. Org Lett 6(18):3087–3089CrossRefGoogle Scholar
  67. Uzma F, Hashem A, Murthy N, Mohan HD, Kamath PV, Singh BP, Venkataramana M, Gupta VK, Siddaiah CN, Chowdappa S, Alqaeawi AA, Abd_Allah EF (2018) Endophytic fungi—alternative sources of cytotoxic compounds: a review. Front Pharmacol 9(309):1–37. Scholar
  68. Wang GY (2006) Diversity and biotechnological potential of the sponge–associated microbial consortia. J Ind Microbiol Biotechnol 33(7):545–551CrossRefGoogle Scholar
  69. Wang F-W (2012) Bioactive metabolites from Guignardia sp., an endophytic fungus residing in Undaria pinnatifida. Chin J Nat Med 10(1):72–76CrossRefGoogle Scholar
  70. Wang S, Li XM, Teuscher F, Li DL, Diesel A, Ebel R et al (2006) Chaetopyranin, a benzaldehyde derivative, and other related metabolites from Chaetomium globosum, an endophytic fungus derived from the marine red alga Polysiphonia urceolata. J Nat Prod 69(11):1622–1625CrossRefGoogle Scholar
  71. Zhang HW, Song YC, Tan RX (2006) Biology and chemistry of endophytes. Nat Prod Rep 23(5):753–771CrossRefGoogle Scholar
  72. Zhang Y, Wang S, Li XM, Cui CM, Feng C, Wang BG (2007) New sphingolipids with a previously unreported 9-methyl-C20-sphingosine moiety from a marine algous endophytic fungus Aspergillus niger EN-13. Lipids 42(8):759–764CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • P. V. Bramhachari
    • 1
  • S. Anju
    • 2
  • Ganugula Mohana Sheela
    • 3
  • T. Raja Komaraiah
    • 4
  • Peddaboina Venkataiah
    • 4
  • A. M. V. N. Prathyusha
    • 1
  1. 1.Department of BiotechnologyKrishna UniversityMachilipatnamIndia
  2. 2.Bhavan’s Vivekananda College of Science, Humanities and CommerceSecunderabadIndia
  3. 3.Department of BiotechnologyVignan UniversityGunturIndia
  4. 4.Department of MicrobiologyKakatiya UniversityWarangalIndia

Personalised recommendations