Advertisement

Endophytic Fungi and Their Enzymatic Potential

  • Rashmi Mishra
  • J. S. Kushveer
  • P. Revanthbabu
  • V. Venkateswara SarmaEmail author
Chapter
Part of the Fungal Biology book series (FUNGBIO)

Abstract

A complex network of interactions between fungal endophytes and their hosts results in production of various kinds of primary and secondary metabolites. Research on enzymatic capability of endophytic fungi may lead to many applications to mankind. Exploitation of the enzymes in textile, beverage, food, confectionary, and leather industries has been extensively undertaken since long. Further, production of hydrolytic and oxidative extracellular enzymes by endophytic fungi for their defense is also an interesting property from ecological point of view. Evidencing a saprophytic lifestyle also gives a mechanistic lifestyle pattern of endophytes. Bioremediation and biotransformation also are eminent examples of enzymatic roles of endophytic fungi as they do not result in any unwanted products due to their specificity and often stereoselective nature. Patterns of enzyme production also indicate the mode of energy source utilized by endophytic fungi, along with their ecological roles and probable origin with insights into mycelial generation and colonization. The stability of endophytic fungal enzymes and their wide applications in various industrial, pharmaceutical, and scientific communities can be a scope to our growing needs in the present era. Our confined understanding of evolutionary significance of these endophytes with their respective hosts has led to inadequate exploitation of endophytes. However, there is a resounding necessity to investigate the hidden potentials of the endophytic fungi. In this chapter, the information on enzymatic potential of endophytic fungi is consolidated and discussed.

Keywords

Biobleaching Biopulping Bioremediation Biotransformation Decolorization Secondary metabolites 

Notes

Acknowledgements

The Department of Biotechnology, Pondicherry University is thanked for providing the facilities.

References

  1. Abourashed EA, Hufford CD (1996) Microbial transformation of artemether. J Nat Prod 59:251–253CrossRefGoogle Scholar
  2. Alberto RN, Costa AT, Polonio JC, Santos MS, Rhoden SA, Azevedo JL, Pamphile JA (2016) Extracellular enzymatic profiles and taxonomic identification of endophytic fungi isolated from four plant species. Genet Mol Res 15(4)Google Scholar
  3. Alves Macedo G, Soberón Lozano MM, Pastore GM (2003) Enzymatic synthesis of short chain citronellyl esters by a new lipase from Rhizopus sp. Electron J Biotechnol 6:3–4CrossRefGoogle Scholar
  4. Amirita A, Sindhu P, Swetha J, Vasanthi NS, Kannan KP (2012) Enumeration of endophytic fungi from medicinal plants and screening of extracellular enzymes. World J Sci Technol 2:13–19Google Scholar
  5. Anbu P, Gopinath SCB, Chaulagain BP, Lakshmipriya T (2017) Microbial enzymes and their applications in industries and medicine 2016. BioMed Res Int 2017:2195808PubMedPubMedCentralCrossRefGoogle Scholar
  6. Arnold AE (2007) Understanding the diversity of foliar endophytic fungi: progress, challenges, and frontiers. Fungal Biol Rev 21:51–66CrossRefGoogle Scholar
  7. Asselin BL, Whitin JC, Coppola DJ, Rupp IP, Sallan SE, Cohen HJ (1993) Comparative pharmacokinetic studies of three asparaginase preparations. J Clin Oncol 11:1780–1786PubMedPubMedCentralCrossRefGoogle Scholar
  8. Ayob FW, Simarani K (2016) Endophytic filamentous fungi from a Catharanthus roseus: identification and its hydrolytic enzymes. Saudi Pharm J 24:273–278PubMedPubMedCentralCrossRefGoogle Scholar
  9. Baldauf SL, Palmer JD (1993) Animals and fungi are each other’s closest relatives: congruent evidence from multiple proteins. Proc Natl Acad Sci 90:11558–11562PubMedCrossRefPubMedCentralGoogle Scholar
  10. Batool T, Makky EA, Jalal M, Yusoff MM (2016) A comprehensive review on L-asparaginase and its applications. Appl Biochem Biotechnol 178:900–923PubMedCrossRefPubMedCentralGoogle Scholar
  11. Benjamin S, Pandey A (1998) Candida rugosa lipases: molecular biology and versatility in biotechnology. Yeast 14:1069–1087PubMedCrossRefPubMedCentralGoogle Scholar
  12. Bezerra JDP, Santos MGS, Svedese VM, Lima DMM, Fernandes MJS, Paiva LM, Souza-Motta CM (2012) Richness of endophytic fungi isolated from Opuntia ficus-indica Mill.(Cactaceae) and preliminary screening for enzyme production. World J Microbiol Biotechnol 28:1989–1995PubMedCrossRefPubMedCentralGoogle Scholar
  13. Bezerra JDP, Nascimento CCF, Barbosa R do N, da Silva DCV, Svedese VM, Silva-Nogueira EB, Gomes BS, Paiva LM, Souza-Motta CM (2015) Endophytic fungi from medicinal plant Bauhinia forficata: Diversity and biotechnological potential. Braz J Microbiol 46:49–57PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bhagobaty RK, Joshi SR (2012) Enzymatic activity of fungi endophytic on five medicinal plant species of the pristine sacred forests of Meghalaya, India. Biotechnol Bioprocess Eng 17:33–40CrossRefGoogle Scholar
  15. Bhagobaty RK, Joshi SR, Kumar R (2010) Penicillium verruculosum RS7PF: a root fungal endophyte associated with an ethno-medicinal plant of the indigenous tribes of Eastern India. Afr J Microbiol Res 4:766–770Google Scholar
  16. Borges W, Borges KB, Bonato PS, Said S, Pupo MT (2009) Endophytic fungi: natural products, enzymes and biotransformation reactions. Curr Org Chem 13:1137–1163CrossRefGoogle Scholar
  17. Breen JP (1994) Acremonium endophyte interactions with enhanced plant resistance to insects. Annu Rev Entomol 39:401–423CrossRefGoogle Scholar
  18. Brühlmann F, Leupin M, Erismann KH, Fiechter A (2000) Enzymatic degumming of ramie bast fibers. J Biotechnol 76:43–50PubMedCrossRefPubMedCentralGoogle Scholar
  19. Bryant MK, Schardl CL, Hesse U, Scott B (2009) Evolution of a subtilisin-like protease gene family in the grass endophytic fungus Epichloë festucae. BMC Evol Biol 9:168PubMedPubMedCentralCrossRefGoogle Scholar
  20. Chadha N, Prasad R, Varma A (2015) Plant promoting activities of fungal endophytes associated with tomato roots from central Himalaya, India and their interaction with Piriformospora indica. Int J Pharm Bio Sci 6:333–343Google Scholar
  21. Choi YW, Hodgkiss IJ, Hyde KD (2005) Enzyme production by endophytes of Brucea javanica. J Agric Technol 1:55–66Google Scholar
  22. Chow Y, Ting ASY (2015) Endophytic L-asparaginase-producing fungi from plants associated with anticancer properties. J Adv Res 6:869–876PubMedCrossRefPubMedCentralGoogle Scholar
  23. Corrêa RCG, Rhoden SA, Mota TR, Azevedo JL, Pamphile JA, de Souza CG, Polizeli Mde L, Bracht A, Peralta RM (2014) Endophytic fungi: expanding the arsenal of industrial enzyme producers. J Ind Microbiol Biotechnol 41:1467–1478PubMedCrossRefPubMedCentralGoogle Scholar
  24. Costa-Silva TA, Nogueira MA, Fernandes Souza CR, Oliveira WP, Said S (2011) Lipase production by endophytic fungus Cercospora kikuchii: stability of enzymatic activity after spray drying in the presence of carbohydrates. Dry Technol 29:1112–1119CrossRefGoogle Scholar
  25. Dai C, Tian L, Zhao Y, Chen Y, Xie H (2010) Degradation of phenanthrene by the endophytic fungus Ceratobasidum stevensii found in Bischofia polycarpa. Biodegradation 21:245–255PubMedCrossRefPubMedCentralGoogle Scholar
  26. El-Bondkly AMA (2012) Molecular identification using ITS sequences and genome shuffling to improve 2-deoxyglucose tolerance and xylanase activity of marine-derived fungus, Aspergillus sp. NRCF5. Appl Biochem Biotechnol 167:2160–2173PubMedCrossRefPubMedCentralGoogle Scholar
  27. El-Gendy MMA (2010) Keratinase production by endophytic Penicillium spp. Morsy1 under solid-state fermentation using rice straw. Appl Biochem Biotechnol 162:780–794PubMedCrossRefPubMedCentralGoogle Scholar
  28. Escudero N, Ferreira SR, Lopez-Moya F, Naranjo-Ortiz MA, Marin-Ortiz AI, Thornton CR, Lopez-Llorca LV (2016) Chitosan enhances parasitism of Meloidogyne javanica eggs by the nematophagous fungus Pochonia chlamydosporia. Fungal Biol 120:572–585PubMedCrossRefPubMedCentralGoogle Scholar
  29. Fatima N, Kondratyuk TP, Park E-J, Marler LE, Jadoon M, Qazi MA, Mehboob Mirza H, Khan I, Atiq N, Chang LC (2016) Endophytic fungi associated with Taxus fuana (West Himalayan Yew) of Pakistan: potential bio-resources for cancer chemopreventive agents. Pharm Biol 54:2547–2554PubMedCrossRefPubMedCentralGoogle Scholar
  30. Fillat Ú, Martín-Sampedro R, Macaya-Sanz D, Martín JA, Ibarra D, Martínez MJ, Eugenio ME (2016) Screening of eucalyptus wood endophytes for laccase activity. Process Biochem 51:589–598CrossRefGoogle Scholar
  31. Fouda AH, Hassan SE-D, Eid AM, Ewais EE-D (2015) Biotechnological applications of fungal endophytes associated with medicinal plant Asclepias sinaica (Bioss.). Ann Agric Sci 60:95–104Google Scholar
  32. Gilbert M, Yaguchi M, Watson DC, Wong KKY, Breuil C, Saddler JN (1993) A comparison of two xylanases from the thermophilic fungi Thielavia terrestris and Thermoascus crustaceus. Appl Microbiol Biotechnol 40:508–514PubMedCrossRefPubMedCentralGoogle Scholar
  33. Godfrey T, West S (1996) Textiles. In: Industrial enzymology. Macmillan Press, London, pp 360–371Google Scholar
  34. Govindappa M, Farheen H, Chandrappa CP, Rai RV, Raghavendra VB (2016) Mycosynthesis of silver nanoparticles using extract of endophytic fungi, Penicillium species of Glycosmis mauritiana, and its antioxidant, antimicrobial, anti-inflammatory and tyrokinase inhibitory activity. Adv Nat Sci Nanosci Nanotechnol 7:35014CrossRefGoogle Scholar
  35. Grinhut T, Hadar Y, Chen Y (2007) Degradation and transformation of humic substances by saprotrophic fungi: processes and mechanisms. Fungal Biol Rev 21:179–189CrossRefGoogle Scholar
  36. Harnpicharnchai P, Champreda V, Sornlake W, Eurwilaichitr L (2009) A thermotolerant β-glucosidase isolated from an endophytic fungi, Periconia sp., with a possible use for biomass conversion to sugars. Protein Expr Purif 67:61–69PubMedCrossRefPubMedCentralGoogle Scholar
  37. Hendriksen HV, Pedersen S, Bisgard-Frantzen H (1999) A process for textile warp sizing using enzymatically modified starches. Patent application WO 99:35325Google Scholar
  38. Illmer P, Schinner F (1995) Solubilization of inorganic calcium phosphates—solubilization mechanisms. Soil Biol Biochem 27:257–263CrossRefGoogle Scholar
  39. Jaeger K-E, Reetz MT (1998) Microbial lipases form versatile tools for biotechnology. Trends Biotechnol 16:396–403PubMedCrossRefPubMedCentralGoogle Scholar
  40. Jain P, Aggarwal V, Sharma A, Pundir RK (2012) Isolation, production and partial purification of protease from an endophytic Acremonium sp. J Agric Technol 8:1979–1989Google Scholar
  41. Jalgaonwala RE, Mahajan RT (2011) Evaluation of hydrolytic enzyme activities of endophytes from some indigenous medicinal plants. J Agric Technol 7:1733–1741Google Scholar
  42. Jalgaonwala RE, Mahajan RT (2014) Production of anticancer enzyme asparaginase from endophytic Eurotium Sp. isolated from rhizomes of Curcuma longa. Eur J Exp Biol 4:36–43Google Scholar
  43. Kalyanasundaram I, Nagamuthu J, Srinivasan B, Pachayappan A, Muthukumarasamy S (2015) Production, purification and characterisation of extracellular L-asparaginase from salt marsh fungal endophytes. World J Pharm Pharmac Sci 4:663–677Google Scholar
  44. Kanokratana P, Chantasingh D, Champreda V, Tanapongpipat S, Pootanakit K, Eurwilaichitr L (2008) Identification and expression of cellobiohydrolase (CBHI) gene from an endophytic fungus, Fusicoccum sp.(BCC4124) in Pichia pastoris. Protein Expr Purif 58:148–153PubMedCrossRefPubMedCentralGoogle Scholar
  45. Katoch M, Salgotra A, Singh G (2014) Endophytic fungi found in association with Bacopa monnieri as potential producers of industrial enzymes and antimicrobial bioactive compounds. Braz Arch Biol Technol 57:714–722CrossRefGoogle Scholar
  46. Kaur P, Saxena SG (2014) Screening of endophytic fungi for production of Asparaginase enzyme. Thapar University, PatialaGoogle Scholar
  47. Khaldi N, Seifuddin FT, Turner G, Haft D, Nierman WC, Wolfe KH, Fedorova ND (2010) SMURF: genomic mapping of fungal secondary metabolite clusters. Fungal Genet Biol 47:736–741PubMedPubMedCentralCrossRefGoogle Scholar
  48. Khan AL, Waqas M, Hussain J, Al-Harrasi A, Hamayun M, Lee I-J (2015) Phytohormones enabled endophytic fungal symbiosis improve aluminum phytoextraction in tolerant Solanum lycopersicum: an examples of Penicillium janthinellum LK5 and comparison with exogenous GA 3. J Hazard Mater 295:70–78PubMedCrossRefPubMedCentralGoogle Scholar
  49. Khan AL, Al-Harrasi A, Al-Rawahi A, Al-Farsi Z, Al-Mamari A, Waqas M, Asaf S, Elyassi A, Mabood F, Shin J-H (2016) Endophytic fungi from Frankincense tree improves host growth and produces extracellular enzymes and indole acetic acid. PLoS One 11:e0158207PubMedPubMedCentralCrossRefGoogle Scholar
  50. Kottwitz B, Upadek H, Carrer G (1994) Application and benefits of enzymes in detergents. Chim Oggi 12:21–24Google Scholar
  51. Kusari S, Spiteller M (2011) Are we ready for industrial production of bioactive plant secondary metabolites utilizing endophytes? Nat Prod Rep 28:1203–1207PubMedCrossRefPubMedCentralGoogle Scholar
  52. Kusari S, Singh S, Jayabaskaran C (2014) Biotechnological potential of plant-associated endophytic fungi: hope versus hype. Trends Biotechnol 32:297–303CrossRefGoogle Scholar
  53. Lee JM, Tan WS, Ting ASY (2014) Revealing the antimicrobial and enzymatic potentials of culturable fungal endophytes from tropical pitcher plants (Nepenthes spp.). Mycosphere 5:364–377CrossRefGoogle Scholar
  54. Li H-Y, Wei D-Q, Shen M, Zhou Z-P (2012) Endophytes and their role in phytoremediation. Fungal Divers 54:11–18CrossRefGoogle Scholar
  55. Lii SBW, Wong C, Al-Obaidi JR, Rahmad N, Mujahid A, Mueller M (2017) Ability of endophytic fungi isolated from Nepenthes ampullaria to degrade polyurethane. Malay J Microbiol 13:172–179Google Scholar
  56. Lindstrom JT, Belanger FC (1994) Purification and characterization of an endophytic fungal proteinase that is abundantly expressed in the infected host grass. Plant Physiol 106:7–16PubMedPubMedCentralCrossRefGoogle Scholar
  57. Lindstrom JT, Sun S, Belanger FC (1993) A novel fungal protease expressed in endophytic infection of Poa species. Plant Physiol 102:645–650PubMedPubMedCentralCrossRefGoogle Scholar
  58. Lisboa HCF, Biasetto CR, de MJB, Araújo ÂR, Silva DHS, Teles HL, Trevisan HC (2013) Endophytic fungi producing of esterases: evaluation in vitro of the enzymatic activity using pH indicator. Braz J Microbiol 44:923–926PubMedCrossRefPubMedCentralGoogle Scholar
  59. López-Otín C, Bond JS (2008) Proteases: multifunctional enzymes in life and disease. J Biol Chem 283:30433–30437PubMedPubMedCentralCrossRefGoogle Scholar
  60. Lumyong S, Lumyong P, McKenzie EHC, Hyde KD (2002) Enzymatic activity of endophytic fungi of six native seedling species from Doi Suthep-Pui National Park, Thailand. Can J Microbiol 48:1109–1112PubMedCrossRefPubMedCentralGoogle Scholar
  61. Maat J, Roza M, Verbakel J, da SH, da Silva MJS, Bosse M, Egmond MR, Hagemans MLD, Gorcom R, Hessing JGM (1992) Xylans and xylanases. In: Progress in biotechnology. Elsevier Science, Amsterdam, p 349Google Scholar
  62. Manasa C, Nalini MS (2014) L-Asparaginase activity of fungal endophytes from Tabernaemontana heyneana wall (apocynaceae), endemic to the Western Ghats (India). Int Scholarly Res Notices 2014Google Scholar
  63. Maria GL, Sridhar KR, Raviraja NS (2005) Antimicrobial and enzyme activity of mangrove endophytic fungi of southwest coast of India. J Agric Technol 1:67–80Google Scholar
  64. Marlida Y, Saari N, Hassan Z, Radu S, Bakar J (2000) Purification and characterization of sago starch-degrading glucoamylase from Acremonium sp. endophytic fungus. Food Chem 71:221–227CrossRefGoogle Scholar
  65. Marlida Y, Delfita R, Adnadi P, Ciptaan G (2010) Isolation, characterization and production of phytase from endophytic fungus its application for feed. Pak J Nutr 9:471–474CrossRefGoogle Scholar
  66. Martín-Rodríguez AJ, Reyes F, Martín J, Pérez-Yépez J, León-Barrios M, Couttolenc A, Espinoza C, Trigos Á, Martín VS, Norte M (2014) Inhibition of bacterial quorum sensing by extracts from aquatic fungi: first report from marine endophytes. Mar Drugs 12:5503–5526PubMedPubMedCentralCrossRefGoogle Scholar
  67. Masumi S, Mirzaei S, Kalvandi R, Zafari D (2014) Asparaginase and amylase activity of thyme endophytic fungi. J Crop Protect 3:655–662Google Scholar
  68. Mayerhofer MS, Fraser E, Kernaghan G (2015) Acid protease production in fungal root endophytes. Mycologia 107:1–11PubMedCrossRefPubMedCentralGoogle Scholar
  69. Medema MH, Blin K, Cimermancic P, de Jager V, Zakrzewski P, Fischbach MA, Weber T, Takano E, Breitling R (2011) antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res 39:W339–W346PubMedPubMedCentralCrossRefGoogle Scholar
  70. Mhatre A, Narwankar R, Rawat A, Tembadmani K, Mishra S (2017) Characterization of endophytic fungi from medicinal plants for application in therapeutic enzyme extraction. In: Current perspectives in sustainable environment management. SIES Indian Institute of Environment Management, Nerul, pp 230–239Google Scholar
  71. Mishra R, Sarma VV (2017) Mycoremediation of heavy metal and hydrocarbon pollutants by endophytic fungi. In: Mycoremediation and environmental sustainability. Springer, Berlin, pp 133–151CrossRefGoogle Scholar
  72. Mishra VK, Passari AK, Singh BP (2016) In vitro antimycotic and biosynthetic potential of fungal endophytes associated with Schima Wallichii. In: Kumar P et al (eds) Current trends in disease diagnostics. Springer International, Cham, pp 367–381CrossRefGoogle Scholar
  73. Mishra VK, Passari AK, Chandra P, Leo VV, Kumar B, Gupta VK, Singh BP (2017) Determination and production of antimicrobial compounds by Aspergillus clavatonanicus strain MJ31, an endophytic fungus from Mirabilis jalapa L. using UPLC-ESI-MS/MS and TD GC-MS. PLoS One 12(10):1–24.  https://doi.org/10.1371/journal.pone.0186234 CrossRefGoogle Scholar
  74. Murali TS (2011) L-asparaginase from marine derived fungal endophytes of seaweeds. Mycosphere 2:147–155Google Scholar
  75. Murthy PS, Naidu MM (2011) Improvement of robusta coffee fermentation with microbial enzymes. Eur J Appl Sci 3:130–139Google Scholar
  76. Muthezhilan R, Vinoth S, Gopi K, Jaffar Hussain A (2014) Dye degrading potential of immobilized laccase from endophytic fungi of coastal sand dune plants. Int J ChemTech Res 6:4154–4160Google Scholar
  77. Nagarajan A, Thirunavukkarasu N, Suryanarayanan TS, Gummadi SN (2014) Screening and isolation of novel glutaminase free L-asparaginase from fungal endophytes. Res J Microbiol 9:163CrossRefGoogle Scholar
  78. Nahas E (1996) Factors determining rock phosphate solubilization by microorganisms isolated from soil. World J Microbiol Biotechnol 12:567–572PubMedCrossRefPubMedCentralGoogle Scholar
  79. Naidu KS (2011) Characterization and purification of protease enzyme. J Appl Pharmaceut Sci 1:107–112Google Scholar
  80. Nakahama K, Imada A, Igarasi S, Tubaki K (1973) Formation of L-asparaginase by Fusarium species. Microbiology 75:269–273Google Scholar
  81. Nath R, Sharma GD, Barooah M (2015) Plant growth promoting endophytic fungi isolated from tea (Camellia sinensis) shrubs of Assam, India. Appl Ecol Environ Res 13:877–891Google Scholar
  82. Neema Job MS, Philip R (2015) Isolation and characterization of endophytic fungi from Avicennia officinalis. Int J Res Biomed Biotechnol 5:4–8Google Scholar
  83. Noor ZM, Ahmad MS, Ariffin ZZ (2016) Purification and characterisation of fibrinolytic enzymes from endophytic fungi and Lignosus rhinocerus. Jurnal Teknologi 78:53–57Google Scholar
  84. Nygren CMR, Edqvist J, Elfstrand M, Heller G, Taylor AFS (2007) Detection of extracellular protease activity in different species and genera of ectomycorrhizal fungi. Mycorrhiza 17:241PubMedCrossRefPubMedCentralGoogle Scholar
  85. Oses R, Valenzuela S, Freer J, Baeza J, Rodríguez J (2006) Evaluation of fungal endophytes for lignocellulolytic enzyme production and wood biodegradation. Int Biodeter Biodegr 57:129–135CrossRefGoogle Scholar
  86. Paice MG, Gurnagul N, Page DH, Jurasek L (1992) Mechanism of hemicellulose-directed prebleaching of kraft pulps. Enzym Microb Technol 14:272–276CrossRefGoogle Scholar
  87. Parvez S, Kang M, Chung H, Cho C, Hong M, Shin M, Bae H (2006) Survey and mechanism of skin depigmenting and lightening agents. Phytother Res 20:921–934PubMedCrossRefPubMedCentralGoogle Scholar
  88. Patel C, Yadav S, Rahi S, Dave A (2013) Studies on biodiversity of fungal endophytes of indigenous monocotaceous and dicotaceous plants and evaluation of their enzymatic potentialities. Int J Sci Res Publ 3:1Google Scholar
  89. Patil MG, Pagare J, Patil SN, Sidhu AK (2015) Extracellular enzymatic activities of endophytic fungi isolated from various medicinal plants. Int J Curr Microbiol App Sci 4:1035–1042Google Scholar
  90. Pavithra N, Sathish L, Ananda K (2012) Antimicrobial and enzyme activity of endophytic fungi isolated from Tulsi. J Pharmaceut Biomed Sci 16:2014Google Scholar
  91. Peng X-W, Chen H-Z (2007) Microbial oil accumulation and cellulase secretion of the endophytic fungi from oleaginous plants. Ann Microbiol 57:239CrossRefGoogle Scholar
  92. Petrini O (1991) Fungal endophytes of tree leaves. In: Microbial ecology of leaves. Springer, Berlin, pp 179–197CrossRefGoogle Scholar
  93. Poling SM, Wicklow DT, Rogers KD, Gloer JB (2008) Acremonium zeae, a protective endophyte of maize, produces dihydroresorcylide and 7-hydroxydihydroresorcylides. J Agric Food Chem 56:3006–3009PubMedCrossRefPubMedCentralGoogle Scholar
  94. Polizeli M, Rizzatti ACS, Monti R, Terenzi HF, Jorge JA, Amorim DS (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67:577–591PubMedCrossRefPubMedCentralGoogle Scholar
  95. Prade RA (1996) Xylanases: from biology to biotechnology. Biotechnol Genet Eng Rev 13:101–132PubMedCrossRefPubMedCentralGoogle Scholar
  96. Pradeep SM, Riaz M, Jagadeesh KS (2010) Screening and characterization of L-asparaginase producing microorganisms from tulsi (Ocimum sanctum L.). Karnataka J Agric Sci 23:660–661Google Scholar
  97. Prathyusha P, Rajitha AB, Satya Prasad K (2015) Diversity and enzymatic activity of foliar endophytic fungi isolated from medicinal plants of Indian dry deciduous forest. Pharm Lett 7:244–251Google Scholar
  98. Priebe S, Linde J, Albrecht D, Guthke R, Brakhage AA (2011) FungiFun: a web-based application for functional categorization of fungal genes and proteins. Fungal Genet Biol 48:353–358PubMedCrossRefPubMedCentralGoogle Scholar
  99. Pritchard PE (1992) Studies on the bread-improving mechanism of fungal alpha-amylase. J Biol Educ 26:12–18CrossRefGoogle Scholar
  100. Rabha AJ, Naglot A, Sharma GD, Gogoi HK, Veer V (2014) In vitro evaluation of antagonism of endophytic Colletotrichum gloeosporioides against potent fungal pathogens of Camellia sinensis. Indian J Microbiol 54:302–309PubMedPubMedCentralCrossRefGoogle Scholar
  101. Rajput K, Chanyal S, Agrawal PK (2016) Optimization of protease production by endophytic fungus, Alternaria alternata isolated from gymnosperm tree-Cupressus torulosa D Don. World J Pharm Pharmaceut Sci 5:1034–1054Google Scholar
  102. Rajulu MBG, Thirunavukkarasu N, Suryanarayanan TS, Ravishankar JP, El Gueddari NE, Moerschbacher BM (2011) Chitinolytic enzymes from endophytic fungi. Fungal Divers 47:43–53CrossRefGoogle Scholar
  103. Rao MB, Tanksale AM, Ghatge MS, Deshpande VV (1998) Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev 62:597–635PubMedPubMedCentralGoogle Scholar
  104. Redecker D, Kodner R, Graham LE (2000) Glomalean fungi from the Ordovician. Science (80–) 289:1920–1921PubMedCrossRefPubMedCentralGoogle Scholar
  105. Reddy PV, Lam CK, Belanger FC (1996) Mutualistic fungal endophytes express a proteinase that is homologous to proteases suspected to be important in fungal pathogenicity. Plant Physiol 111:1209–1218PubMedPubMedCentralCrossRefGoogle Scholar
  106. Robl D, da Silva Delabona P, Mergel CM, Rojas JD, dos Santos Costa P, Pimentel IC, Vicente VA, da Cruz Pradella JG, Padilla G (2013) The capability of endophytic fungi for production of hemicellulases and related enzymes. BMC Biotechnol 13:94PubMedPubMedCentralCrossRefGoogle Scholar
  107. Rubini MR, Silva-Ribeiro RT, Pomella AWV, Maki CS, Araújo WL, Dos Santos DR, Azevedo JL, Cruz R, Romero JV, Cortina Guerrero H (1980) Diversity of endophytic fungal community of cacao (Theobroma cacao L.) and biological control of Crinipellis perniciosa, causal agent of Witches’ Broom disease. CATIE, Turrialba (Costa Rica)Google Scholar
  108. Russell JR, Huang J, Anand P, Kucera K, Sandoval AG, Dantzler KW, Hickman D, Jee J, Kimovec FM, Koppstein D (2011) Biodegradation of polyester polyurethane by endophytic fungi. Appl Environ Microbiol 77:6076–6084PubMedPubMedCentralCrossRefGoogle Scholar
  109. Saikkonen K, Mikola J, Helander M (2015) Endophytic phyllosphere fungi and nutrient cycling in terrestrial ecosystems. Curr Sci 109:121–126Google Scholar
  110. Saran S, Isar J, Saxena RK (2007) A modified method for the detection of microbial proteases on agar plates using tannic acid. J Biochem Biophys Methods 70:697–699PubMedCrossRefPubMedCentralGoogle Scholar
  111. Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661–686CrossRefGoogle Scholar
  112. Sheik S, Chandrashekar KR, Swaroop K, Somashekarappa HM (2015) Biodegradation of gamma irradiated low density polyethylene and polypropylene by endophytic fungi. Int Biodeter Biodegr 105:21–29CrossRefGoogle Scholar
  113. Sherameti I, Shahollari B, Venus Y, Altschmied L, Varma A, Oelmüller R (2005) The endophytic fungus Piriformospora indica stimulates the expression of nitrate reductase and the starch-degrading enzyme glucan-water dikinase in tobacco and Arabidopsis roots through a homeodomain transcription factor that binds to a conserved motif in. J Biol Chem 280:26241–26247PubMedCrossRefPubMedCentralGoogle Scholar
  114. Shubha J, Srinivas C (2017) Diversity and extracellular enzymes of endophytic fungi associated with Cymbidium aloifolium L. Afr J Biotechnol 16:2248–2258Google Scholar
  115. Siddikee MA, Zereen MI, Li C-F, Dai C-C (2016) Endophytic fungus Phomopsis liquidambari and different doses of N-fertilizer alter microbial community structure and function in rhizosphere of rice. Sci Rep 6:32270PubMedPubMedCentralCrossRefGoogle Scholar
  116. Smith DJ, Burnham MK, Bull JH, Hodgson JE, Ward JM, Browne P, Brown J, Barton B, Earl AJ, Turner G (1990) Beta-lactam antibiotic biosynthetic genes have been conserved in clusters in prokaryotes and eukaryotes. EMBO J 9:741–747PubMedPubMedCentralCrossRefGoogle Scholar
  117. Soleimani M, Afyuni M, Hajabbasi MA, Nourbakhsh F, Sabzalian MR, Christensen JH (2010) Phytoremediation of an aged petroleum contaminated soil using endophyte infected and non-infected grasses. Chemosphere 81:1084–1090PubMedCrossRefGoogle Scholar
  118. Sorgatto M, Guimarães NCA, Zanoelo FF, Marques MR, Peixoto-Nogueira SC, Giannesi GG (2012) Purification and characterization of an extracellular xylanase produced by the endophytic fungus, Aspergillus terreus, grown in submerged fermentation. Afr J Biotechnol 11:8076–8084CrossRefGoogle Scholar
  119. Strobel GA (2002) Rainforest endophytes and bioactive products. Crit Rev Biotechnol 22:315–333PubMedCrossRefPubMedCentralGoogle Scholar
  120. Sudha V, Govindaraj R, Baskar K, Al-Dhabi NA, Duraipandiyan V (2016) Biological properties of endophytic fungi. Braz Arch Biol Technol 59:e16150436CrossRefGoogle Scholar
  121. Sun X, Guo L-D, Hyde KD (2011) Community composition of endophytic fungi in Acer truncatum and their role in decomposition. Fungal Divers 47:85–95CrossRefGoogle Scholar
  122. Sundarram A, Murthy TPK (2014) α-amylase production and applications: a review. J Appl Environ Microbiol 2:166–175Google Scholar
  123. Sunitha VH, Ramesha A, Savitha J, Srinivas C (2012) Amylase production by endophytic fungi Cylindrocephalum sp. isolated from medicinal plant Alpinia calcarata (Haw.) Roscoe. Braz J Microbiol 43:1213PubMedPubMedCentralCrossRefGoogle Scholar
  124. Sunitha VH, Devi DN, Srinivas C (2013) Extracellular enzymatic activity of endophytic fungal strains isolated from medicinal plants. World J Agric Sci 9:1–9Google Scholar
  125. Suryanarayanan TS, Thirunavukkarasu N, Govindarajulu MB, Gopalan V (2012) Fungal endophytes: an untapped source of biocatalysts. Fungal Divers 54:19–30CrossRefGoogle Scholar
  126. Suto M, Takebayashi M, Saito K, Tanaka M, Yokota A, Tomita F (2002) Endophytes as producers of xylanase. J Biosci Bioeng 93:88–90PubMedCrossRefPubMedCentralGoogle Scholar
  127. Thangavel A, Krishnamoorthy G, Subramanian M, Maruthamuthu M (2013) Seaweed endophytic fungi: a potential source for Glutaminase free L-Asparaginase. Che Sci Rev Lett 2:354–384Google Scholar
  128. Theantana T, Hyde KD, Lumyong S (2009) Asparaginase production by endophytic fungi from Thai medicinal plants: cytoxicity properties. Int J Integr Biol 7:1–8Google Scholar
  129. Thirunavukkarasu N, Jahnes B, Broadstock A, Rajulu MBG, Murali TS, Gopalan V, Suryanarayanan TS (2015) Screening marine-derived endophytic fungi for xylan-degrading enzymes. Curr Sci 109:112–120Google Scholar
  130. Tian X, Schaich KM (2013) Effects of molecular structure on kinetics and dynamics of the trolox equivalent antioxidant capacity assay with ABTS+•. J Agric Food Chem 61:5511–5519PubMedCrossRefPubMedCentralGoogle Scholar
  131. Tiwari K (2015) The future products: endophytic fungal metabolites. J Biodivers Biopros Dev 2:214–2376Google Scholar
  132. Toghueo RMK, Zabalgogeazcoa I, de Aldana BRV, Boyom FF (2017) Enzymatic activity of endophytic fungi from the medicinal plants Terminalia catappa, Terminalia mantaly and Cananga odorata. S Afr J Bot 109:146–153CrossRefGoogle Scholar
  133. Tuppad DS, Shishupala S (2014) Evaluation of endophytic fungi from Butea monosperma for antimicrobial and enzyme activity. J Med Plants Stud 2:38–45Google Scholar
  134. Urairuj C, Khanongnuch C, Lumyong S (2003) Ligninolytic enzymes from tropical endophytic Xylariaceae. Fungal Divers 13:209–219Google Scholar
  135. Uzma F, Konappa NM, Chowdappa S (2016) Diversity and extracellular enzyme activities of fungal endophytes isolated from medicinal plants of Western Ghats, Karnataka. Egypt J Basic Appl Sci 3:335–342CrossRefGoogle Scholar
  136. Uzma F, Hashem A, Murthy N, Mohan HD, Kamath PV, Singh BP, Venkataramana M, Gupta VK, Siddaiah CN, Chowdappa S, Alqaeawi AA, Abd Allah EF (2018) Endophytic fungi—alternative sources of cytotoxic compounds: a review. Front Pharmacol 9(309):1–37. doi:  https://doi.org/10.3389/fphar.2018.00309. CrossRefGoogle Scholar
  137. Venkatachalam A, Rajulu G, Thirunavukkarasu N, Suryanarayanan TS (2015) Endophytic fungi of marine algae and seagrasses: a novel source of chitin modifying enzymes. Mycosphere 6:345–355CrossRefGoogle Scholar
  138. Venkatesagowda B, Ponugupaty E, Barbosa AM, Dekker RFH (2012) Diversity of plant oil seed-associated fungi isolated from seven oil-bearing seeds and their potential for the production of lipolytic enzymes. World J Microbiol Biotechnol 28:71–80PubMedCrossRefPubMedCentralGoogle Scholar
  139. Wakelin SA, Warren RA, Harvey PR, Ryder MH (2004) Phosphate solubilization by Penicillium spp. closely associated with wheat roots. Biol Fertil Soils 40:36–43CrossRefGoogle Scholar
  140. Wang JW, Wu JH, Huang WY, Tan RX (2006) Laccase production by Monotospora sp., an endophytic fungus in Cynodon dactylon. Bioresour Technol 97:786–789PubMedCrossRefPubMedCentralGoogle Scholar
  141. Wang Z, Wang Y, Zhang D, Li J, Hua Z, Du G, Chen J (2010) Enhancement of cell viability and alkaline polygalacturonate lyase production by sorbitol co-feeding with methanol in Pichia pastoris fermentation. Bioresour Technol 101:1318–1323PubMedCrossRefPubMedCentralGoogle Scholar
  142. Wipusaree N, Sihanonth P, Piapukiew J, Sangvanich P, Karnchanatat A (2011) Purification and characterization of a xylanase from the endophytic fungus Alternaria alternata isolated from the Thai medicinal plant, Croton oblongifolius Roxb. Afr J Microbiol Res 5:5697–5712Google Scholar
  143. Wong KK, Tan LUL, Saddler JN (1988) Multiplicity of beta-1, 4-xylanase in microorganisms: functions and applications. Microbiol Rev 52:305PubMedPubMedCentralGoogle Scholar
  144. Wu S, Chappell J (2008) Metabolic engineering of natural products in plants; tools of the trade and challenges for the future. Curr Opin Biotechnol 19:145–152PubMedCrossRefPubMedCentralGoogle Scholar
  145. Wu B, Wu L, Chen D, Yang Z, Luo M (2009) Purification and characterization of a novel fibrinolytic protease from Fusarium sp. CPCC 480097. J Ind Microbiol Biotechnol 36:451–459PubMedCrossRefPubMedCentralGoogle Scholar
  146. Wu W, Davis RW, Tran-Gyamfi MB, Kuo A, LaButti K, Mihaltcheva S, Hundley H, Chovatia M, Lindquist E, Barry K (2017) Characterization of four endophytic fungi as potential consolidated bioprocessing hosts for conversion of lignocellulose into advanced biofuels. Appl Microbiol Biotechnol 101:2603–2618PubMedCrossRefPubMedCentralGoogle Scholar
  147. Yan JF, Broughton SJ, Yang SL, Gange AC (2015) Do endophytic fungi grow through their hosts systemically? Fungal Ecol 13:53–59CrossRefGoogle Scholar
  148. Yuan Y, Feng H, Wang L, Li Z, Shi Y, Zhao L, Feng Z, Zhu H (2017) Potential of endophytic fungi isolated from cotton roots for biological control against verticillium wilt disease. PLoS One 12:e0170557PubMedPubMedCentralCrossRefGoogle Scholar
  149. Zaferanloo B, Virkar A, Mahon PJ, Palombo EA (2013) Endophytes from an Australian native plant are a promising source of industrially useful enzymes. World J Microbiol Biotechnol 29:335–345PubMedCrossRefPubMedCentralGoogle Scholar
  150. Zaferanloo B, Bhattacharjee S, Ghorbani MM, Mahon PJ, Palombo EA (2014) Amylase production by Preussia minima, a fungus of endophytic origin: optimization of fermentation conditions and analysis of fungal secretome by LC-MS. BMC Microbiol 14:55PubMedPubMedCentralCrossRefGoogle Scholar
  151. Zaidi KU, Ali AS, Ali SA (2014a) Purification and characterization of melanogenic enzyme tyrosinase from button mushroom. Enzyme Res 2014:120739PubMedPubMedCentralCrossRefGoogle Scholar
  152. Zaidi KU, Ali AS, Ali SA, Naaz I (2014b) Microbial tyrosinases: promising enzymes for pharmaceutical, food bioprocessing, and environmental industry. Biochem Res Int 2014Google Scholar
  153. Zanotto SP, Romano IP, Lisboa LUS, Duvoisin S Jr, Martins MK, Lima FA, Silva SF, Albuquerque PM (2009) Potential application in biocatalysis of mycelium-bound lipases from Amazonian fungi. J Braz Chem Soc 20:1046–1059CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Rashmi Mishra
    • 1
  • J. S. Kushveer
    • 1
  • P. Revanthbabu
    • 1
  • V. Venkateswara Sarma
    • 1
    Email author
  1. 1.Department of BiotechnologyPondicherry UniversityKalapetIndia

Personalised recommendations