Advertisement

Current Perspectives on the Novel Structures and Antioxidant Properties of Mangrove Endophytic Fungal Exopolysaccharides

  • A. M. V. N. Prathyusha
  • Ganugula Mohana Sheela
  • Chanda V. Berde
  • P. V. Bramhachari
Chapter
Part of the Fungal Biology book series (FUNGBIO)

Abstract

Mangrove ecosystems are inhabited by diverse fungal endophytic communities, one of nature’s treasures of the marine biotope. Mangrove fungi comprise mostly marine fungi, and the small group of terrestrial fungi can be classified into saprophytic, parasitic, and symbiotic fungi. Fungi produce high-molecular-weight exopolysaccharides (EPSs) during their metabolic process, which plays a main role in biofilm formation and in the localization of biogeochemical processes within aggregates and sediments. In recent years, marine microbial EPSs gained momentum particularly those originating from mangrove fungi due to a specific marine environment. Mangrove fungal EPSs with unique chemical composition, diversity of structures, and properties were reportedly suitable for biotechnological applications, viz. as natural antioxidants, anticancer drugs, biosorbents, and antimicrobial agents. Knowledge of the structural characterization of EPSs could be essential to understanding the structure–function relationship of molecules. This review emphasizes the diversity of mangrove fungi and the composition, structure, and antioxidant potential of mangrove fungal EPSs.

Keywords

Mangroves Endophytic fungi Exopolysaccharides Antioxidant potential 

Notes

Acknowledgment

The author gratefully acknowledges UGC, Government of India, for its financial support in the form of UGC-CSIR-SRF under Grant F.No. 19-1/2015(SA-1).

References

  1. Anderson D, Phillips BJ (1999) Comparative in vitro and in vivo effects of antioxidants. Food Chem Toxicol 37(9–10):1015–1025CrossRefGoogle Scholar
  2. Bourguet–Kondracki ML, Kornprobst JM (2005) Marine pharmacology: potentialities in the treatment of infectious diseases, osteoporosis and Alzheimer’s disease. Adv Biochem Eng Biotechnol 97:105–131.  https://doi.org/10.1007/b135824 CrossRefPubMedGoogle Scholar
  3. Chandra S (2012) Endophytic fungi: novel sources of anticancer lead molecules. Appl Microbiol Biotechnol 95(1):47–59CrossRefGoogle Scholar
  4. Chen YL, Mao WJ, Tao HW, Zhu WM, Yan MX, Liu X et al (2015) Preparation and characterization of a novel extracellular polysaccharide with antioxidant activity, from the mangrove-associated fungus Fusarium oxysporum. Mar Biotechnol 17(2):219–228CrossRefGoogle Scholar
  5. Chen Y, Mao W, Tao H, Zhu W, Qi X, Chen Y et al (2011) Structural characterization and antioxidant properties of an exopolysaccharide produced by the mangrove endophytic fungus Aspergillus sp. Y16. Bioresour Technol 102(17):8179–8184CrossRefGoogle Scholar
  6. Chen Y, Mao W, Wang B, Zhou L, Gu Q, Chen Y et al (2013a) Preparation and characterization of an extracellular polysaccharide produced by the deep-sea fungus Penicillium griseofulvum. Bioresour Technol 132:178–181CrossRefGoogle Scholar
  7. Chen Y, Mao W, Wang J, Zhu W, Zhao C, Li N et al (2013b) Preparation and structural elucidation of a glucomannogalactan from marine fungus Penicillium commune. Carbohydr Polym 97(2):293–299CrossRefGoogle Scholar
  8. Chen Y, Mao W, Yang Y, Teng X, Zhu W, Qi X et al (2012) Structure and antioxidant activity of an extracellular polysaccharide from coral-associated fungus, Aspergillus versicolor LCJ-5-4. Carbohydr Polym 87(1):218–226CrossRefGoogle Scholar
  9. Chi Z, Zhao S (2003) Optimization of medium and cultivation conditions for pullulan production by a new pullulan-producing yeast strain. Enzyme Microb Technol 33(2):206–211CrossRefGoogle Scholar
  10. Delbarre-Ladrat C, Sinquin C, Lebellenger L, Zykwinska A, Colliec-Jouault S (2014) Exopolysaccharides produced by marine bacteria and their applications as glycosaminoglycan-like molecules. Front Chem 2:85CrossRefGoogle Scholar
  11. Demain AL (2014) Importance of microbial natural products and the need to revitalize their discovery. J Ind Microbiol Biotechnol 41:185–201CrossRefGoogle Scholar
  12. Fardet A, Rock E, Rémésy C (2008) Is the in vitro antioxidant potential of whole-grain cereals and cereal products well reflected in vivo? J Cereal Sci 48(2):258–276CrossRefGoogle Scholar
  13. Hyde KD, Jones EBG, Leano E, Pointing SB, Poonyth AD, Vrijmoed LLP (1998) Role of fungi in marine ecosystems. Biodivers Conserv 7:1147–1161CrossRefGoogle Scholar
  14. Kobayashi J, Tsuda M (2004a) Bioactive products from Okinawan marine micro-and macroorganisms. Phytochem Rev 3(3):267–274CrossRefGoogle Scholar
  15. Krcmar P, Novotny C, Marais MF, Joseleau JP (1999) Structure of extracellular polysaccharide produced by lignin-degrading fungus Phlebia radiata in liquid culture. Int J Biol Macromol 24(1):61–64CrossRefGoogle Scholar
  16. Leung PH, Zhao S, Ho KP, Wu JY (2009) Chemical properties and antioxidant activity of exopolysaccharides from mycelial culture of Cordyceps sinensis fungus Cs-HK1. Food Chem 114(4):1251–1256CrossRefGoogle Scholar
  17. Kobayashi J, Tsuda M (2004b) Bioactive products from Okinawan marine micro– and macro–organisms. Phytochem Rev 3:267–274CrossRefGoogle Scholar
  18. Li JY, Strobel GA, Sidhu R, Hess WM, Ford EJ (1996) Endophytic taxol-producing fungi from bald cypress, Taxodium distichum. Microbiology 142:2223–2226CrossRefGoogle Scholar
  19. Li H, Cao K, Cong P, Liu Y, Cui H, Xue C (2018) Structure characterization and antitumor activity of the extracellular polysaccharide from the marine fungus Hansfordia sinuosae. Carbohydr Polym 190:87–94CrossRefGoogle Scholar
  20. Liu AR, Wu XP, Xu T (2007) Research advances in endophytic fungi of mangrove. Chin J Appl Ecol 18:912–918Google Scholar
  21. Liu J, Wang X, Pu H, Liu S, Kan J, Jin C (2017) Recent advances in endophytic exopolysaccharides: production, structural characterization, physiological role and biological activity. Carbohydr Polym 157:1113–1124CrossRefGoogle Scholar
  22. Ma ZC, Fu WJ, Liu GL, Wang ZP, Chi ZM (2014) High-level pullulan production by Aureobasidium pullulans var. melanogenium P16 isolated from mangrove system. Appl Microbiol Biotechnol 98(11):4865–4873CrossRefGoogle Scholar
  23. Mahapatra S, Banerjee D (2012) Structural elucidation and bioactivity of a novel exopolysaccharide from endophytic Fusarium solani SD5. Carbohydr Polym 90(1):683–689CrossRefGoogle Scholar
  24. Mahapatra S, Banerjee D (2013) Fungal exopolysaccharide: production, composition and applications. Microbiol Insights 6:1–16.  https://doi.org/10.4137/MBI.S10957 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Mancuso Nichols CA, Garon S, Bowman JP, Raguenes G, Guezennec J (2004) Production of exopolysaccharides by Antarctic marine bacterial isolates. J Appl Microbiol 96(5):1057–1066CrossRefGoogle Scholar
  26. Mayer AMS, Hamann MT (2004) Marine pharmacology in 2000: marine compounds with antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiplatelet, antituberculosis, and antiviral activities; affecting the cardiovascular, immune, and nervous systems and other miscellaneous mechanisms of action. Mar Biotechnol 6:37–52CrossRefGoogle Scholar
  27. Moscovici M (2015) Present and future medical applications of microbial exopolysaccharides. Front Microbiol 6:1012CrossRefGoogle Scholar
  28. Muller CB, Krauss J (2005) Symbiosis between grasses and asexual fungal endophytes. Curr Opin Plant Biol 8(4):450–456CrossRefGoogle Scholar
  29. Nisa H, Kamili AN, Nawchoo IA, Shafi S, Shameem N, Bandh SA (2015) Fungal endophytes as prolific source of phytochemicals and other bioactive natural products: a review. Microb Pathog 82:50–59CrossRefGoogle Scholar
  30. Raghukumar C (2008) Marine fungal biotechnology: an ecological perspective. Fungal Divers 31:19–35Google Scholar
  31. Rodriguez RJ, Redman RS, Henson JM (2004) The role of fungi symbioses in the adaptation of plants to high stress environments. Mitig Adap Strat Glob Change 9:261–272CrossRefGoogle Scholar
  32. Rodríguez RJ, White JRJF, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330CrossRefGoogle Scholar
  33. Ruiz-Matute AI, Hernandez-Hernandez O, Rodriguez-Sanchez S, Sanz ML, Martinez-Castro I (2011) Derivatization of carbohydrates for GC and GC–MS analyses. J Chromatogr B 879(17–18):1226–1240CrossRefGoogle Scholar
  34. Sarma VV, Hyde, KD (2001) A review on frequently occurring fungi in mangroves. Fungal Divers 8:1–34Google Scholar
  35. Schulz B, Römmert A-K, Dammann U, Aust H-J, Strack D (1999) The endophyte–host interaction: a balanced antagonism. Mycol Res 103:1275–1283CrossRefGoogle Scholar
  36. Shearer CA, Descals E, Kohlmeyer B, Kohlmeyer J, Marvanová L, Padgett D et al (2007) Fuangal diversity in aquatic habitats. Biodivers Conserv 16:49–67Google Scholar
  37. Singh LP, Gill SS, Tuteja N (2011) Unraveling the role of fungal symbionts in plant abiotic stress tolerance. Plant Signal Behav 6:175–191CrossRefGoogle Scholar
  38. Sun C, Wang JW, Fang L, Gao XD, Tan RX (2004) Free radical scavenging and antioxidant activities of EPS2, an exopolysaccharide produced by a marine filamentous fungus Keissleriella sp. YS 4108. Life Sci 75(9):1063–1073CrossRefGoogle Scholar
  39. Sun HH, Mao WJ, Chen Y, Guo SD, Li HY, Qi XH et al (2009) Isolation, chemical characteristics and antioxidant properties of the polysaccharides from marine fungus Penicillium sp. F23-2. Carbohydr Polym 78(1):117–124CrossRefGoogle Scholar
  40. Sun HH, Mao WJ, Jiao JY, Xu JC, Li HY, Chen Y et al (2011) Structural characterization of extracellular polysaccharides produced by the marine fungus Epicoccum nigrum JJY-40 and their antioxidant activities. Mar Biotechnol 13(5):1048–1055CrossRefGoogle Scholar
  41. Sun Y, Wang H, Guo G, Pu Y, Yan B (2014) The isolation and antioxidant activity of polysaccharides from the marine microalgae Isochrysis galbana. Carbohydr Polym 113:22–31CrossRefGoogle Scholar
  42. Sridhar KR (2004) Mangrove fungi in India. Curr Sci 86(12):1586–1587Google Scholar
  43. Strobel GA, Daisy B, Castillo U, Harper J (2004) Natural products from endophytic microorganisms. J Nat Prod 67:257–268CrossRefGoogle Scholar
  44. Strobel GA (2006) Muscodor albus and its biological promise. J Ind Microbiol Biotechnol 33:514–522CrossRefGoogle Scholar
  45. Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18(4):448–459CrossRefGoogle Scholar
  46. Thatoi H, Behera BC, Mishra RR (2013) Ecological role and biotechnological potential of mangrove fungi: a review. Mycology 4(1):54–71Google Scholar
  47. Weishampel PA, Bedford BL (2006) Wetland dicots and monocots differ in colonization by arbuscular mycorrhizal fungi and dark septate endophytes. Mycorrhiza 16(7):495–502CrossRefGoogle Scholar
  48. Yan JK, Wang WQ, Li L, Wu JY (2011) Physiochemical properties and antitumor activities of two α-glucans isolated from hot water and alkaline extracts of Cordyceps (Cs-HK1) fungal mycelia. Carbohydr Polym 85(4):753–758CrossRefGoogle Scholar
  49. Yan J, Guo XQ, Li XG, Wu XY, Gou XJ (2006) TLC to fleetly analyze monosaccharide composition of polysaccharide. Food Sci 27(12):603–607Google Scholar
  50. Yan M, Mao W, Chen C, Kong X, Gu Q, Li N et al (2014) Structural elucidation of the exopolysaccharide produced by the mangrove fungus Penicillium solitum. Carbohydr Polym 111:485–491CrossRefGoogle Scholar
  51. Yang XB, Gao XD, Han F, Tan RX (2005) Sulfation of a polysaccharide produced by a marine filamentous fungus Phoma herbarum YS4108 alters its antioxidant properties in vitro. Biochim Biophys Acta 1725(1):120–127CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • A. M. V. N. Prathyusha
    • 1
  • Ganugula Mohana Sheela
    • 2
  • Chanda V. Berde
    • 3
  • P. V. Bramhachari
    • 1
  1. 1.Department of BiotechnologyKrishna UniversityMachilipatnamIndia
  2. 2.Department of BiotechnologyVignan UniversityGunturIndia
  3. 3.Department of MicrobiologyGogate Jogalekar CollegeRatnagiriIndia

Personalised recommendations