Advertisement

Nanoparticle-Based SERS Substrates for Molecular Sensing Applications

  • Claudia Fasolato
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

As already discussed in the introductory chapters, the wide interest and research focused on plasmonic nanostructures for near field coupling and enhanced field confinement has paved the way for the development of numerous specific applications in diverse fields, from sensors technology to medical diagnostics. Among these applications, plasmonic substrates for SERS spectroscopy, sensing and SERS-based chemical analysis have attracted much interest. In this chapter, we will present a study on the SERS efficiency of self-assembled mesoscopic nanoparticle aggregates by means of spectroscopy, atomic force microscopy and electromagnetic simulations. We will also discuss the preparation of EBL-template guided, self-assembled nanoparticle cluster arrays on solid substrates and their performances as SERS substrates for biosensing.

References

  1. [Alb2013]
    Alba M, Pazos-Perez N et al (2013) Macroscale plasmonic substrates for highly sensitive surface-enhanced Raman scattering. Angew Chem Int Ed 52(25):6459–6463CrossRefGoogle Scholar
  2. [Ank2008]
    Anker JN, Hall WP et al (2008) Biosensing with plasmonic nanosensors. Nat Mater 7(6):442–453ADSCrossRefGoogle Scholar
  3. [Bai2006]
    Baia M, Toderas F et al (2006) Probing the enhancement mechanisms of SERS with p-aminothiophenol molecules adsorbed on self-assembled gold colloidal nanoparticles. Chem Phys Lett 422(1):127–132ADSCrossRefGoogle Scholar
  4. [BC2009]
    Bizzarri AR, Cannistraro S (2009) Surface-enhanced Raman spectroscopy combined with atomic force microscopy for ultrasensitive detection of thrombin. Anal Biochem 393(2):149–154CrossRefGoogle Scholar
  5. [Ber1994]
    Berenger J-P (1994) A perfectly matched layer for the absorption of electromagnetic waves. J Comput Phys 114(2):185–200ADSMathSciNetCrossRefGoogle Scholar
  6. [Bre2012]
    Brewer G (2012) Electron-beam technology in microelectronic fabrication. Elsevier, AmsterdamGoogle Scholar
  7. [But1986]
    Butler RW (1986) Optimal stratification and clustering on the line using the L1-norm. J Multivar Anal 19(1):142–155CrossRefGoogle Scholar
  8. [Cos2014]
    Costantini F, Nascetti A et al (2014) On-chip detection of multiple serum antibodies against epitopes of celiac disease by an array of amorphous silicon sensors. RSC Adv 4(4):2073–2080CrossRefGoogle Scholar
  9. [DJ2014]
    Deng Y-L, Juang Y-J (2014) Black silicon SERS substrate: effect of surface morphology on SERS detection and application of single algal cell analysis. Biosens Bioelectron 53:37–42CrossRefGoogle Scholar
  10. [Dom2011]
    Domenici F, Bizzarri AR et al (2011) SERS-based nanobiosensing for ultrasensitive detection of the p53 tumor suppressor. Int J Nanomed 6:2033–2042Google Scholar
  11. [Dom2012]
    Domenici F, Bizzarri AR et al (2012) Surface-enhanced Raman scattering detection of wild-type and mutant p53 proteins at very low concentration in human serum. Anal Biochem 421(1):9–15CrossRefGoogle Scholar
  12. [Dom2016]
    Domenici F, Fasolato C et al (2016) Engineering microscale two-dimensional gold nanoparticle cluster arrays for advanced Raman sensing: an AFM study. Colloids Surf A PhysChemical Eng Asp 498:168–175CrossRefGoogle Scholar
  13. [Fan2008]
    Fang Y, Seong N-H et al (2008) Measurement of the distribution of site enhancements in surface-enhanced Raman scattering. Science 321(5887):388–392ADSCrossRefGoogle Scholar
  14. [Fas2014]
    Fasolato C, Domenici F et al (2014) Dimensional scale effects on surface enhanced Raman scattering efficiency of self-assembled silver nanoparticle clusters. Appl Phys Lett 105(7):073105ADSCrossRefGoogle Scholar
  15. [Fas2015]
    Fasolato C, Domenici F et al (2015) Self-assembled nanoparticle aggregates: organizing disorder for high performance surface-enhanced spectroscopy. In: NANOFORUM 2014, vol. 1667. AIP Publishing, p 020012Google Scholar
  16. [Fra2012]
    Fraire JC, Pérez LA et al (2012) Rational design of plasmonic nanostructures for biomolecular detection: interplay between theory and experiments. ACS Nano 6(4):3441–3452CrossRefGoogle Scholar
  17. [FSI1996]
    Frenkel D, Smit B (1996) Understanding molecular simulations: from algorithms to applications. Academic, San DiegozbMATHGoogle Scholar
  18. [Ged2011]
    Gedney SD (2011) Introduction to the finite-difference time-domain (FDTD) method for electromagnetics. Synth Lect Comput Electromagn 6(1):1–250ADSCrossRefGoogle Scholar
  19. [HC2001]
    Halliwell CM, Cass AEG (2001) A factorial analysis of silanization conditions for the immobilization of oligonucleotides on glass surfaces. Anal Chem 73(11):2476–2483CrossRefGoogle Scholar
  20. [HT2000]
    Hagness SC, Taflove A (2000) Computational electrodynamics: the finite difference time-domain method. Artech House, NorwoodzbMATHGoogle Scholar
  21. [Hu2006]
    Shu-Fen H, Huang K-D (2006) Proximity effect of electron beam lithography on single-electron transistors. Pramana 67(1):57–65ADSCrossRefGoogle Scholar
  22. [JC1972]
    Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370ADSCrossRefGoogle Scholar
  23. [Jeo2016]
    Jeong JW, Arnob MMP et al (2016) 3D cross-point plasmonic nanoarchitectures containing dense and regular hot spots for surface-enhanced Raman spectroscopy analysis. Adv Mater 28:8695CrossRefGoogle Scholar
  24. [Jia2009]
    Jia C-P, Zhong X-Q et al (2009) Nano-ELISA for highly sensitive protein detection. Biosens Bioelectron 24(9):2836–2841CrossRefGoogle Scholar
  25. [Kim2011]
    Kim NH, Lee SJ et al (2011) Reversible tuning of SERS hot spots with aptamers. Adv Mater 23(36):4152–4156CrossRefGoogle Scholar
  26. [KL1993]
    Kunz KS, Luebbers RJ (1993) The finite difference time domain method for electromagnetics. CRC Press, Boca RatonGoogle Scholar
  27. [Kne1997]
    Kneipp K, Wang Y et al (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78(9):1667ADSCrossRefGoogle Scholar
  28. [Kne2006]
    Kneipp K, Moskovits M et al (2006) Surface-enhanced Raman scattering: physics and applications, vol 103. Springer Science & Business Media, BerlinGoogle Scholar
  29. [Liu2014]
    Liu H, Yang Z et al (2014) Three-dimensional and time-ordered surface-enhanced Raman scattering hotspot matrix. J Am Chem Soc 136(14):5332–5341CrossRefGoogle Scholar
  30. [Lu2005]
    Lu Y, Liu GL et al (2005) High-density silver nanoparticle film with temperature controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate. Nano Lett 5(1):5–9ADSCrossRefGoogle Scholar
  31. [Moh2012]
    Mohammad MA, Muhammad M et al (2012) Fundamentals of electron beam exposure and development. Nanofabrication. Springer, Berlin, pp 11–41Google Scholar
  32. [Mos2013]
    Moskovits M (2013) Persistent misconceptions regarding SERS. Phys Chem Chem Phys 15(15):5301–5311CrossRefGoogle Scholar
  33. [MT2003]
    Marrian CRK, Tennant DM (2003) Nanofabrication. J Vac Sci Technol A 21(5):S207–S215ADSCrossRefGoogle Scholar
  34. [NE1997]
    Nie S, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275(5303):1102–1106CrossRefGoogle Scholar
  35. [NH2012]
    Novotny L, Hecht B (2012) Principles of nano-optics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  36. [Nil1967]
    Nilsson G (1967) Optimal stratification according to the method of least squares. Scand Actuar J 1967(3–4):128–136MathSciNetCrossRefGoogle Scholar
  37. [Osa1994]
    Osawa M, Matsuda N et al (1994) Charge transfer resonance Raman process in surface-enhanced Raman scattering from p-aminothiophenol adsorbed on silver: Herzberg-Teller contribution. J Phys Chem 98(48):12702–12707CrossRefGoogle Scholar
  38. [Pal1998]
    Palik ED (1998) Handbook of optical constants of solids. Academic, CambridgeGoogle Scholar
  39. [Pre2007]
    Prevo BG, Kuncicky DM et al (2007) Engineered deposition of coatings from nanoand micro-particles: a brief review of convective assembly at high volume fraction. Colloids Surf A PhysChemical Eng Asp 311(1):2–10CrossRefGoogle Scholar
  40. [SN2012]
    Siddhanta S (2012) Surface enhanced Raman spectroscopy of proteins: implications in drug designing. Nanomater Nanotechnol 2(2012):2–1Google Scholar
  41. [Sti2008]
    Stiles PL, Dieringer JA et al (2008) Surface-enhanced Raman spectroscopy. Ann Rev Anal Chem 1:601–626CrossRefGoogle Scholar
  42. [Str2007]
    Strehle KR, Cialla D et al (2007) A reproducible surface-enhanced Raman spectroscopy approach. Online SERS measurements in a segmented microfluidic system. Anal Chem 79(4):1542–1547CrossRefGoogle Scholar
  43. [Sul2013]
    Sullivan DM (2013) Electromagnetic simulation using the FDTD method. Wiley, New JercyCrossRefGoogle Scholar
  44. [TK1993]
    Tandon US, Khokle WS (1993) Patterning of material layers in submicron region. Halsted Press, SydneyGoogle Scholar
  45. [Utk2012]
    Utke I, Moshkalev S et al (2012) Nanofabrication using focused ion and electron beams: principles and applications. Oxford University Press, OxfordGoogle Scholar
  46. [Van1993]
    Van Duyne RP, Hulteen JC et al (1993) Atomic force microscopy and surface-enhanced Raman spectroscopy. I. Ag island films and Ag film over polymer nanosphere surfaces supported on glass. J Chem Phys 99(3):2101–2115ADSCrossRefGoogle Scholar
  47. [Yan2009]
    Yan B, Thubagere A et al (2009) Engineered SERS substrates with multiscale signal enhancement: nanoparticle cluster arrays. ACS Nano 3(5):1190–1202CrossRefGoogle Scholar
  48. [Yan2011a]
    Yan B, Boriskina SV et al (2011) Design and implementation of noble metal nanoparticle cluster arrays for plasmon enhanced biosensing. J Phys Chem C 115(50):24437–24453CrossRefGoogle Scholar
  49. [Yan2011b]
    Yan B, Boriskina B et al (2011) Optimizing gold nanoparticle cluster configurations (n \(\le \) 7) for array applications. J Phys Chem C 115(11):4578–4583CrossRefGoogle Scholar
  50. [Yos2010]
    Yoshida KI, Itoh T et al (2010) Quantitative evaluation of electromagnetic enhancement in surface-enhanced resonance Raman scattering from plasmonic properties and morphologies of individual Ag nanostructures. Phys Rev B 81(11):115406ADSCrossRefGoogle Scholar
  51. [ZW2012]
    Zhang Z, Wen Y (2012) Controllable aggregates of silver nanoparticle induced by methanol for surface-enhanced Raman scattering. Appl Phys Lett 101(17):173109ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Dipartimento di Fisica e GeologiaUniversità degli Studi di PerugiaPerugiaItaly

Personalised recommendations