Traditional Raman and SERS: Fundamentals and State of the Art

  • Claudia Fasolato
Part of the Springer Theses book series (Springer Theses)


An interesting approach to the study of matter is represented by spectroscopy, that infers information about materials and biosystems by driving their interaction with controlled probes, as beams of light, electrons and neutrons. In this chapter, the basic physics of Raman and Surface Enhanced Raman Scattering (SERS) will be discussed. Furthermore, we will present a review of the scientific literature concerning the themes that are relevant for the Thesis, and in particular the fabrication of nanocolloid-based SERS substrates for sensing and biosensing and the application of SERS to biomedical problems.


  1. [Ack2007]
    Ackermann KR, Henkel T et al (2007) Quantitative online detection of low-concentrated drugs via a SERS microfluidic system. ChemPhysChem 8(18):2665–2670CrossRefGoogle Scholar
  2. [Alb1961]
    Albrecht AC (1961) On the theory of Raman intensities. J Chem Phys 34(5):1476–1484ADSCrossRefGoogle Scholar
  3. [Alb2013]
    Alba M, Pazos-Perez N et al (2013) Macroscale Plasmonic Substrates for Highly Sensitive Surface-Enhanced Raman Scattering. Angewandte Chemie International Edition 52(25):6459–6463CrossRefGoogle Scholar
  4. [Ale2009]
    Alexander KD, Hampton MJ et al (2009) A high-throughput method for controlled hot-spot fabrication in SERS-active gold nanoparticle dimer arrays. J Raman Spectrosc 40(12):2171–2175ADSCrossRefGoogle Scholar
  5. [Alv2007]
    Alvarez-Puebla R, Cui B (2007) Nanoimprinted SERS-active substrates with tunable surface plasmon resonances. J Phys Chem C 111(18):6720–6723CrossRefGoogle Scholar
  6. [And2011]
    Ando J, Fujita K (2011) Dynamic SERS imaging of cellular transport pathways with endocytosed gold nanoparticles. Nano Lett 11(12):5344–5348ADSCrossRefGoogle Scholar
  7. [Arb2007]
    Arbiol J, Kalache B et al (2007) Influence of Cu as a catalyst on the properties of silicon nanowires synthesized by the vapour-solid-solid mechanism. Nanotechnology 18(30):305606CrossRefGoogle Scholar
  8. [Arl2011]
    Arlett JL, Myers EB (2011) Comparative advantages of mechanical biosensors. Nat Nanotechnol 6(4):203–215ADSCrossRefGoogle Scholar
  9. [Ass2013]
    Assali S, Zardo I (2013) Direct band gap wurtzite gallium phosphide nanowires. Nano Lett 13(4):1559–1563ADSCrossRefGoogle Scholar
  10. [Aug2010]
    Auguié B, Bendana XM et al (2010) Diffractive arrays of gold nanoparticles near an interface: critical role of the substrate. Phys Rev B 82(15):155447ADSCrossRefGoogle Scholar
  11. [Aus2012]
    Ausman LK, Li S et al (2012) Structural effects in the electromagnetic enhancement mechanism of surface-enhanced Raman scattering: Dipole reradiation and rectangular symmetry effects for nanoparticle arrays. J Phys Chem C 116(33):17318–17327CrossRefGoogle Scholar
  12. [Bad2010]
    El Badawy AM, Luxton TP et al (2010) Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions. Environ Sci Technol 44(4):1260–1266ADSCrossRefGoogle Scholar
  13. [Bai2006]
    Baia M, Toderas F (2006) Probing the enhancement mechanisms of SERS with p-aminothiophenol molecules adsorbed on self-assembled gold colloidal nanoparticles. Chem Phys Lett 422(1):127–132ADSCrossRefGoogle Scholar
  14. [Bal2015]
    Baldassarre L, Sakat E (2015) Midinfrared plasmon-enhanced spectroscopy with germanium antennas on silicon substrates. Nano Lett 15(11):7225–7231ADSCrossRefGoogle Scholar
  15. [BC2003]
    Bizzarri AR, Cannistraro S (2003) Temporal fluctuations in the SERRS spectra of single iron-protoporphyrin IX molecule. Chem Phys 290(2):297–306CrossRefGoogle Scholar
  16. [Ben2016]
    Benz F, Schmidt MK et al Single-molecule optomechanics in “picocavities”. Science 354(6313):726–729ADSCrossRefGoogle Scholar
  17. [Bes2016]
    Bessar H, Venditti I (2016) Functionalized gold nanoparticles for topical delivery of methotrexate for the possible treatment of psoriasis. Colloids Surf B: Biointerfaces 141:141–147CrossRefGoogle Scholar
  18. [Boc2013]
    Boca-Farcau S, Potara M (2013) Folic acid-conjugated, SERS-labeled silver nanotriangles for multimodal detection and targeted photothermal treatment on human ovarian cancer cells. Mol Pharma 11(2):391–399CrossRefGoogle Scholar
  19. [BP2016]
    Ben-Jaber S, Peveler WJ et al (2016) Photo-induced enhanced Raman spectroscopy for universal ultra-trace detection of explosives, pollutants and biomolecules. Nat Comm 7:12189ADSCrossRefGoogle Scholar
  20. [Cat2012]
    Cattani-Scholz A, Liao K-C et al (2012) Molecular architecture: construction of self-assembled organophosphonate duplexes and their electrochemical characterization. Langmuir 28(20):7889–7896CrossRefGoogle Scholar
  21. [Cha1974]
    Chance RR, Prock A (1974) Lifetime of an emitting molecule near a partially reflecting surface. J Chem Phys 60(7):2744–2748ADSCrossRefGoogle Scholar
  22. [Cha2011]
    Chapman HN, Fromme P et al (2011) Femtosecond X-ray protein nanocrystallography. Nature 470(7332):73–77ADSCrossRefGoogle Scholar
  23. [Chi2014]
    Chirumamilla M, Toma A (2014) 3D nanostar dimers with a Sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering. Adv Mater 26(15):2353–2358CrossRefGoogle Scholar
  24. [Chi2015]
    Chinen AB, Guan CM et al (2015) Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence. Chem Rev 115(19):10530–10574CrossRefGoogle Scholar
  25. [Cho2005]
    Choucair A, Soo PL et al (2005) Active loading and tunable release of doxorubicin from block copolymer vesicles. Langmuir 21(20):9308–9313CrossRefGoogle Scholar
  26. [Chu2011]
    Chu Y, Zhu W (2011) Beamed Raman: directional excitation and emission enhancement in a plasmonic crystal double resonance SERS substrate. Optics Express 19(21):20054–20068ADSCrossRefGoogle Scholar
  27. [Cia2014]
    Cialla D, Pollok S et al (2014) SERS-based detection of biomolecules. Nanophotonics 3(6):383–411Google Scholar
  28. [CK2007]
    Chen S-H, Kotlarchyk M (2007) Interactions of photons and neutrons with matter. World Scientific, SingaporeCrossRefGoogle Scholar
  29. [CK2012]
    Cabrini S, Kawata S (2012) Nanofabrication handbook. CRC Press, Boca RatonCrossRefGoogle Scholar
  30. [Col1975]
    Colthup N, Daly LH et al (1975) Introduction to infrared and Raman spectroscopy. Elsevier, AmsterdamGoogle Scholar
  31. [Col2009]
    Coluccio ML, Das G et al (2009) Silver-based surface enhanced Raman scattering (SERS) substrate fabrication using nanolithography and site selective electroless deposition. Microelectron Eng 86(4):1085–1088CrossRefGoogle Scholar
  32. [Col2015]
    Coluccio ML, Gentile F et al (2015) Detection of single amino acid mutation in human breast cancer by disordered plasmonic self-similar chain. Sci Adv 1(8):e1500487ADSCrossRefGoogle Scholar
  33. [Cot2015]
    Cottat M, D’Andrea C (2015) High sensitivity, high selectivity SERS detection of MnSOD using optical nanoantennas functionalized with aptamers. J Phys Chem C 119(27):15532–15540CrossRefGoogle Scholar
  34. [Das2012]
    Das G, Patra N et al (2012) Fabrication of large-area ordered and reproducible nanostructures for SERS biosensor application. Analyst 137(8):1785–1792ADSCrossRefGoogle Scholar
  35. [De 2013]
    De Angelis F, Malerba M (2013) 3D hollow nanostructures as building blocks for multifunctional plasmonics. Nano Lett 13(8):3553–3558ADSCrossRefGoogle Scholar
  36. [Des2012]
    Desmoulin SK, Hou Z et al (2012) The human proton-coupled folate transporter: biology and therapeutic applications to cancer. Cancer Biol Ther 13(14):1355–1373CrossRefGoogle Scholar
  37. [Di 1997]
    Di Fabrizio E, Grella L et al (1997) Nanometer biodevice fabrication by electron beam lithography. J Vac Sci Technol B 15(6):2892–2896CrossRefGoogle Scholar
  38. [DK2013]
    Dykman LA, Khlebtsov NG (2013) Uptake of engineered gold nanoparticles into mammalian cells. Chem Rev 114(2):1258–1288CrossRefGoogle Scholar
  39. [Doc2011]
    Dochow S, Krafft C (2011) Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments. Lab Chip 11(8):1484–1490CrossRefGoogle Scholar
  40. [Doe2007]
    Doering WE, Piotti ME et al (2007) SERS as a foundation for nanoscale, optically detected biological labels. Adv Mater 19(20):3100–3108CrossRefGoogle Scholar
  41. [Dom2012]
    Domenici F, Bizzarri AR et al (2012) Surface-enhanced Raman scattering detection of wild-type and mutant p53 proteins at very low concentration in human serum. Anal Biochem 421(1):9–15CrossRefGoogle Scholar
  42. [Dom2016]
    Domenici F, Fasolato C (2016) Engineering microscale two-dimensional gold nanoparticle cluster arrays for advanced Raman sensing: an AFM study. Colloids Surf A: Physicochem Eng Asp 498:168–175CrossRefGoogle Scholar
  43. [DS2012]
    De La Rica R, Stevens MM (2012) Plasmonic ELISA for the ultrasensitive detection of disease biomarkers with the naked eye. Nat Nanotechnol 7(12):821–824ADSCrossRefGoogle Scholar
  44. [Ehr2009]
    Ehrenberg MS, Friedman AE et al (2009) The influence of protein adsorption on nanoparticle association with cultured endothelial cells. Biomaterials 30(4):603–610CrossRefGoogle Scholar
  45. [Eno2004]
    Enoch S, Quidant R (2004) Optical sensing based on plasmon coupling in nanoparticle arrays. Optics Express 12(15):3422–3427ADSCrossRefGoogle Scholar
  46. [EX2008]
    Evans CL, Xie XS (2008) Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine. Ann Rev Anal Chem 1:883–909CrossRefGoogle Scholar
  47. [Fan2008]
    Fang Y, Seong N-H et al (2008) Measurement of the distribution of site enhancements in surface-enhanced Raman scattering. Science 321(5887):388–392ADSCrossRefGoogle Scholar
  48. [Fan2010]
    Fan JA, Wu C et al (2010) Self-assembled plasmonic nanoparticle clusters. Science 328(5982):1135–1138ADSCrossRefGoogle Scholar
  49. [Fan2011]
    Fan M, Andrade GFS et al (2011) A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry. Anal Chimica Acta 693(1):7–25CrossRefGoogle Scholar
  50. [Fas2014]
    Fasolato C, Domenici F et al (2014) Dimensional scale effects on surface enhanced Raman scattering efficiency of self-assembled silver nanoparticle clusters. Appl Phys Lett 105(7):073105ADSCrossRefGoogle Scholar
  51. [Fas2016]
    Fasolato C, Giantulli S et al (2016) Folate-based single cell screening using surface enhanced Raman microimaging. Nanoscale 8(39):17304–17313CrossRefGoogle Scholar
  52. [Fas2018]
    Fasolato C, Giantulli S et al (2018) Antifolate functionalized nanovectors: SERS investigation motivates effective theranostics, In preparationGoogle Scholar
  53. [Fle1974]
    Fleischmann M, Hendra PJ et al (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26(2):163–166ADSCrossRefGoogle Scholar
  54. [Fon2007]
    Morral AF, i, Arbiol J, et al (2007) Synthesis of silicon nanowires with wurtzite crystalline structure by using standard chemical vapor deposition. Adv Mater 19(10):1347–1351Google Scholar
  55. [Fra1979]
    Frauenfelder H, Petsko GA et al (1979) Temperature-dependent X-ray diffraction as a probe of protein structural dynamicsGoogle Scholar
  56. [Fra2015]
    Fratoddi I, Venditti I (2015) How toxic are gold nanoparticles? The state-of-theart. Nano Res 8(6):1771–1799CrossRefGoogle Scholar
  57. [Gal2014]
    Galler K, Bräutigam K et al (2014) Making a big thing of a small cell-recent advances in single cell analysis. Analyst 139(6):1237–1273ADSCrossRefGoogle Scholar
  58. [Gia2010]
    Giannini V, Vecchi G et al (2010) Lighting up multipolar surface Plasmon polaritons by collective resonances in arrays of nanoantennas. Phys Rev Lett 105(26):266801ADSCrossRefGoogle Scholar
  59. [GP1977]
    Gaber BP, Peticolas WL (1977) On the quantitative interpretation of biomembrane structure by Raman spectroscopy. Biochimica et Biophysica. Acta (BBA)-Biomembranes 465(2):260–274CrossRefGoogle Scholar
  60. [GP2007]
    Ghosh SK, Pal T (2007) Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem Rev 107(11):4797–4862CrossRefGoogle Scholar
  61. [Gre2011]
    Gregas MK, Yan F et al (2011) Characterization of nanoprobe uptake in single cells: spatial and temporal tracking via SERS labeling and modulation of surface charge. Nanomed: Nanotechnol Biol Med 7(1):115–122CrossRefGoogle Scholar
  62. [Gri1995]
    Freeman RG, Grabar KC et al (1995) Self-assembled metal colloid monolayers: an approach to SERS substrates. Science 267(5204):1629ADSCrossRefGoogle Scholar
  63. [Gun2001]
    Gunnarsson LK, Bjerneld EJ (2001) Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering. Appl Phys Lett 78(6):802–804ADSCrossRefGoogle Scholar
  64. [Hau2015]
    Hauge HIT, Verheijen MA et al (2015) Hexagonal silicon realized. Nano Lett 15(9):5855–5860ADSCrossRefGoogle Scholar
  65. [Hay1988]
    Hayashi S, Koh R et al (1988) Evidence for surface-enhanced Raman scattering on nonmetallic surfaces: Copper phthalocyanine molecules on GaP small particles. Phys Rev Lett 60(11):1085ADSCrossRefGoogle Scholar
  66. [Hay2003]
    Haynes CL, McFarland AD et al (2003) Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays. J Phys Chem B 107(30):7337–7342CrossRefGoogle Scholar
  67. [Hay2014]
    Hayat A, Catanante G et al (2014) Current trends in nanomaterial-based amperometric biosensors. Sensors 14(12):23439–23461CrossRefGoogle Scholar
  68. [Hid2014]
    Hidi IJ, Mühlig A (2014) LOC-SERS: towards point-of-care diagnostic of methotrexate. Anal Methods 6(12):3943–3947CrossRefGoogle Scholar
  69. [HS2004]
    Hao E, Schatz GC (2004) Electromagnetic fields around silver nanoparticles and dimers. J Chem Phys 120(1):357–366ADSCrossRefGoogle Scholar
  70. [Hu2007]
    Qingyan H, Tay L-L (2007) Mammalian cell surface imaging with nitrile-functionalized nanoprobes: biophysical characterization of aggregation and polarization anisotropy in SERS imaging. J Am Chem Soc 129(1):14–15CrossRefGoogle Scholar
  71. [Hua2008]
    Huang X, Jain PK et al (2008) Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci 23(3):217–228CrossRefGoogle Scholar
  72. [Hul1999]
    Hulteen JC, Treichel DA et al (1999) Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays. J Phys Chem B 103(19):3854–3863CrossRefGoogle Scholar
  73. [Hun2010]
    Hung AM, Micheel CM et al (2010) Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami. Nat Nanotechnol 5(2):121–126ADSCrossRefGoogle Scholar
  74. [Ind2014]
    Swarnapali A, Indrasekara DS, Meyers S et al (2010) Gold nanostar substrates for SERS based chemical sensing in the femtomolar regime. Nanoscale 6(15):8891–8899Google Scholar
  75. [Jen2002]
    Jensen L, Strand P-O et al (2002) Polarizability of molecular clusters as calculated by a dipole interaction model. J Chem Phys 116(10):4001–4010ADSCrossRefGoogle Scholar
  76. [Jen2008]
    Jensen L, Aikens CM et al (2008) Electronic structure methods for studying surface-enhanced Raman scattering. Chem Soc Rev 37(5):1061–1073CrossRefGoogle Scholar
  77. [Jeo2016]
    Won Jeong J, Masud Parvez Arnob M et al (2016) 3D Cross-point plasmonic nanoarchitectures containing dense and regular hot spots for surface-enhanced raman spectroscopy analysis. Adv Mater 28:8695CrossRefGoogle Scholar
  78. [JH2004]
    Jackson JB, Halas NJ (2004) Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates. Proc Natl Acad Sci 101(52):17930–17935ADSCrossRefGoogle Scholar
  79. [Kim2011]
    Kim NH, Lee SJ et al (2011) Reversible tuning of SERS hot spots with aptamers. Adv Mater 23(36):4152–4156CrossRefGoogle Scholar
  80. [Kle2013]
    Kleinman SL, Frontiera RR et al (2013) Creating, characterizing, and controlling chemistry with SERS hot spots. Phys Chem Chem Phys 15(1):21–36CrossRefGoogle Scholar
  81. [Kne1997]
    Kneipp K, Wang Y et al (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78(9):1667ADSCrossRefGoogle Scholar
  82. [Kne2002]
    Kneipp K, Kneipp H et al (2002) Surface-enhanced Raman scattering and biophysics. J Phys: Condens Matter 14(18):R597Google Scholar
  83. [Kne2006]
    Kneipp K, Moskovits M et al (2006) Surface-enhanced Raman scattering: physics and applications, vol 103. Springer Science & Business Media, BerlinCrossRefGoogle Scholar
  84. [Kne2007]
    Kneipp J, Kneipp H (2007) One-and two-photon excited optical pH probing for cells using surface-enhanced Raman and hyper-Raman nanosensors. Nano Lett 7(9):2819–2823ADSCrossRefGoogle Scholar
  85. [Kne2016]
    Kneipp K (2016) Chemical contribution to SERS enhancement: an experimental study on a series of polymethine dyes on silver nanoaggregates. J Phys Chem CGoogle Scholar
  86. [Kre1999]
    Krenn JR, Dereux A et al (1999) Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles. Phys Rev Lett 82(12):2590ADSCrossRefGoogle Scholar
  87. [KV1995]
    Kreibig U, Vollmer M (1995) Optical properties of metal clusters, vol 25. Springer Science & Business Media, BerlinGoogle Scholar
  88. [KV2008]
    Khoury CG, Vo-Dinh T (2008) Gold nanostars for surface-enhanced Raman scattering: synthesis, characterization and optimization. J Phys Chem C 112(48):18849–18859CrossRefGoogle Scholar
  89. [LB2008]
    Lombardi JR, Birke RL (2008) A unified approach to surface-enhanced Raman spectroscopy. J Phys Chem C 112(14):5605–5617CrossRefGoogle Scholar
  90. [LB2009]
    Lombardi JR, Birke RL (2009) A unified view of surface-enhanced Raman scattering. Acc Chem Res 42(6):734–742CrossRefGoogle Scholar
  91. [LB2014]
    Lombardi JR, Birke RL (2014) Theory of surface-enhanced Raman scattering in semiconductors. J Phys Chem C 118(20):11120–11130CrossRefGoogle Scholar
  92. [Le 2007]
    Le Ru EC, Blackie EJ (2007) Surface enhanced Raman scattering enhancement factors: a comprehensive study. J Phys Chem C 111(37):13794–13803CrossRefGoogle Scholar
  93. [Le 2012]
    Le Ru EC, Schroeter LC et al (2012) Direct measurement of resonance Raman spectra and cross sections by a polarization difference technique. Anal Chem 84(11):5074–5079CrossRefGoogle Scholar
  94. [Lef1999]
    Lefrant S, Baltog I (1999) Structural properties of some conducting polymers and carbon nanotubes investigated by SERS spectroscopy. Synth Metals 100(1):13–27CrossRefGoogle Scholar
  95. [Li2003]
    Li K, Stockman MI et al (2003) Self-similar chain of metal nanospheres as an efficient nanolens. Phys Rev Lett 91(22):227402ADSCrossRefGoogle Scholar
  96. [Li2009]
    Li J, Fattal D et al (2009) Plasmonic optical antennas on dielectric gratings with high field enhancement for surface enhanced Raman spectroscopy. Appl Phys Lett 94(26):263114ADSCrossRefGoogle Scholar
  97. [Li2013]
    Li Q, Jiang Y (2013) High surface-enhanced Raman scattering performance of individual gold nanoflowers and their application in live cell imaging. Small 9(6):927–932CrossRefGoogle Scholar
  98. [Li2014]
    Li F, Zhang H (2014) Aptamers facilitating amplified detection of biomolecules. Anal Chem 87(1):274–292CrossRefGoogle Scholar
  99. [Lin2001]
    Linden S, Kuehl J et al (2001) Controlling the interaction between light and gold nanoparticles: selective suppression of extinction. Phys Rev Lett 86(20):4688ADSCrossRefGoogle Scholar
  100. [Lin2014]
    Lin C-Y, Javadi M et al (2014) Ultrasound sensitive eLiposomes containing doxorubicin for drug targeting therapy. Nanomed: Nanotechnol Biol Med 10(1):67–76CrossRefGoogle Scholar
  101. [Lin2015]
    Ling X, Huang S (2015) Lighting up the Raman signal of molecules in the vicinity of graphene related materials. Acc Chem Res 48(7):1862–1870CrossRefGoogle Scholar
  102. [Liu2014]
    Liu H, Yang Z (2014) Three-dimensional and time-ordered surface-enhanced Raman scattering hotspot matrix. J Am Chem Soc 136(14):5332–5341CrossRefGoogle Scholar
  103. [LM1982]
    Lee PC, Meisel D (1982) Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem 86(17):3391–3395CrossRefGoogle Scholar
  104. [Lom1986]
    Lombardi JR, Birke RL et al (1986) Charge-transfer theory of surface enhanced Raman spectroscopy: Herzberg-Teller contributions. J Chem Phys 84(8):4174–4180ADSCrossRefGoogle Scholar
  105. [Lon2002]
    Long DA (2002) The Raman effect: a unified treatment of the theory of Raman scattering by molecules. Wiley, New YorkCrossRefGoogle Scholar
  106. [Low1999]
    Loweth CJ, Caldwell WB et al (1999) DNA-based assembly of gold nanocrystals. Angewandte Chemie International Edition 38(12):1808–1812CrossRefGoogle Scholar
  107. [Lu2010]
    Lu W, Singh AK et al (2010) Gold nano-popcorn-based targeted diagnosis, nanotherapy treatment, and in situ monitoring of photothermal therapy response of prostate cancer cells using surface-enhanced Raman spectroscopy. J Am Chem Soc 132(51):18103–18114CrossRefGoogle Scholar
  108. [Lu2015a]
    Lu H, Ren X et al (2015) Broadband near-field enhancement in the macroperiodic and micro-random structure with a hybridized excitation of propagating Bloch-plasmonic and localized surface-plasmonic modes. Nanoscale 7(40):16798–16804ADSCrossRefGoogle Scholar
  109. [Lu2015b]
    Lu H, Ren X et al (2015) Experimental and theoretical investigation of macro- periodic and micro-random nanostructures with simultaneously spatial translational symmetry and long-range order breaking. Sci Rep 5Google Scholar
  110. [Luc2000]
    Lucock M (2000) Folic acid: nutritional biochemistry, molecular biology, and role in disease processes. Mol Genet Metab 71(1):121–138CrossRefGoogle Scholar
  111. [Mai2002]
    Maier SA, Brongersma ML et al (2002) Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy. Phys Rev B 65(19):193408ADSCrossRefGoogle Scholar
  112. [Man2012]
    Mangialardo S, Gontrani L et al (2012) Role of ionic liquids in protein refolding: native/fibrillar versus treated lysozyme. RSC Adv 2(32):12329–12336CrossRefGoogle Scholar
  113. [Mat2010]
    Matschulat A, Drescher D et al (2010) Surface-enhanced Raman scattering hybrid nanoprobe multiplexing and imaging in biological systems. ACS Nano 4(6):3259–3269CrossRefGoogle Scholar
  114. [McP1976]
    McPherson A (1976) The growth and preliminary investigation of protein and nucleic acid crystals for X-ray diffraction analysis. Methods Biochem Anal 23:249–345Google Scholar
  115. [MI2014]
    Muluneh M, Issadore D (2014) Microchip-based detection of magnetically labeled cancer biomarkers. Adv Drug Deliv Rev 66:101–109CrossRefGoogle Scholar
  116. [Mia2008]
    Miao J, Ishikawa T (2008) Extending x-ray crystallography to allow the imaging of noncrystalline materials, cells, and single protein complexes. Ann Rev Phys Chem 59:387–410ADSCrossRefGoogle Scholar
  117. [Mic1999]
    Michaels AM, Nirmal M (1999) Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals. J Am Chem Soc 121(43):9932–9939CrossRefGoogle Scholar
  118. [MJ2009]
    Morton SM, Jensen L (2009) Understanding the molecule- surface chemical coupling in SERS. J Am Chem Soc 131(11):4090–4098CrossRefGoogle Scholar
  119. [Moo2012]
    Moore JE, Morton SM et al Importance of correctly describing charge-transfer excitations for understanding the chemical effect in SERS. J Phys Chem Lett 3(17):2470–2475CrossRefGoogle Scholar
  120. [Mos1985]
    Moskovits M (1985) Surface-enhanced spectroscopy. Rev Mod Phys 57(3):783CrossRefGoogle Scholar
  121. [Mos2013]
    Moskovits M (2013) Persistent misconceptions regarding SERS. Phys Chem Chem Phys 15(15):5301–5311CrossRefGoogle Scholar
  122. [MR2014]
    Maroto P, Rini B (2014) Molecular biomarkers in advanced renal cell carcinoma. Clin Cancer Res 20(8):2060–2071CrossRefGoogle Scholar
  123. [Neu2006]
    Neugebauer U, Rösch P et al (2006) On the way to nanometer-sized information of the bacterial surface by tip-enhanced Raman spectroscopy. ChemPhysChem 7(7):1428–1430CrossRefGoogle Scholar
  124. [NH2012]
    Novotny L, Hecht B (2012) Principles of nano-optics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  125. [Nim2016]
    Nimse SB, Sonawane MD et al (2016) Biomarker detection technologies and future directions. Analyst 141(3):740–755ADSCrossRefGoogle Scholar
  126. [NS2008]
    Neouze MA, Schubert U (2008) Surface modification and functionalization of metal and metal oxide nanoparticles by organic ligands. Monatshefte für Chemie-Chem Mon 139(3):183–195CrossRefGoogle Scholar
  127. [Odo2013]
    Odobel F, Pellegrin Y (2013) Bio-inspired artificial light-harvesting antennas for enhancement of solar energy capture in dye-sensitized solar cells. Energy EnvironSci 6(7):2041–2052CrossRefGoogle Scholar
  128. [Osa1994]
    Osawa M, Matsuda N (1994) Charge transfer resonance Raman process in surface-enhanced Raman scattering from p-aminothiophenol adsorbed on silver: Herzberg-Teller contribution. J Phys Chem 98(48):12702–12707CrossRefGoogle Scholar
  129. [Ott1984]
    Otto A (1984) Surface-enhanced Raman scattering: "Classical" and "Chemical" origins. Light scattering in solids IV. Springer, pp 289–418Google Scholar
  130. [Ott1992]
    Otto A, Mrozek I et al (1992) Surface-enhanced Raman scattering. J Phys: Condens Matter 4(5):1143ADSGoogle Scholar
  131. [Ott2005]
    Otto A (2005) The ‘chemical’(electronic) contribution to surface-enhanced Raman scattering. J Raman Spectrosc 36(6–7):497–509ADSCrossRefGoogle Scholar
  132. [Pal2011]
    Pallaoro A, Braun GB et al (2011) Quantitative ratiometric discrimination between noncancerous and cancerous prostate cells based on neuropilin-1 overexpression. Proc Natl Acad Sci 108(40):16559–16564ADSCrossRefGoogle Scholar
  133. [Pal2015]
    Pallaoro A, Hoonejani MR et al (2015) Rapid identification by surface-enhanced Raman spectroscopy of cancer cells at low concentrations flowing in a microfluidic channel. ACS Nano 9(4):4328–4336CrossRefGoogle Scholar
  134. [Paz2012]
    Pazos-Perez N, Wagner CS et al (2012) Organized plasmonic clusters with high coordination number and extraordinary enhancement in Surface-Enhanced Raman Scattering (SERS). Angewandte Chemie International Edition 51(51):12688–12693CrossRefGoogle Scholar
  135. [Pep2001]
    Pepe MS, Etzioni R et al (2001) Phases of biomarker development for early detection of cancer. J Natl Cancer Inst 93(14):1054–1061CrossRefGoogle Scholar
  136. [Pet1986]
    Pettinger B (1986) Light scattering by adsorbates at Ag particles: Quantum-mechanical approach for energy transfer induced interfacial optical processes involving surface plasmons, multipoles, and electron-hole pairs. J Chem Phys 85(12):7442–7451ADSCrossRefGoogle Scholar
  137. [Pet2003]
    Petry R, Schmitt M et al (2003) Raman spectroscopy-a prospective tool in the life sciences. ChemPhysChem 4(1):14–30CrossRefGoogle Scholar
  138. [Pic2012]
    Piccirilli F, Mangialardo S et al (2012) Sequential dissociation of insulin amyloids probed by high pressure Fourier transform infrared spectroscopy. Soft Matter 8(47):11863–11870ADSCrossRefGoogle Scholar
  139. [Pic2014]
    Picciolini S, Mehn D (2014) Polymer nanopillar-gold arrays as surface- enhanced raman spectroscopy substrate for the simultaneous detection of multiple genes. ACS Nano 8(10):10496–10506CrossRefGoogle Scholar
  140. [PS2008]
    Pinchuk AO, Schatz GC (2008) Nanoparticle optical properties: Far-and near-field electrodynamic coupling in a chain of silver spherical nanoparticles. Mater Sci Eng: B 149(3):251–258CrossRefGoogle Scholar
  141. [QN2008]
    Ximei Qian and Shinning Ming Nie (2008) Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications. Chem Soc Rev 37(5):912–920CrossRefGoogle Scholar
  142. [Rec2003]
    Rechberger W, Hohenau A (2003) Optical properties of two interacting gold nanoparticles. Optics Commun 220(1):137–141ADSCrossRefGoogle Scholar
  143. [Sal2013]
    Salvati A, Pitek AS et al (2013) Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat Nanotechnol 8(2):137–143ADSCrossRefGoogle Scholar
  144. [Sal2015]
    Salvati E, Stellacci F et al (2015) Nanosensors for early cancer detection and for therapeutic drug monitoring. Nanomedicine 10(23):3495–3512CrossRefGoogle Scholar
  145. [Sam2011]
    Samanta A, Maiti KK et al (2011) Ultrasensitive near-infrared raman reporters for SERS-based in vivo cancer detection. Angewandte Chemie International Edition 50(27):6089–6092CrossRefGoogle Scholar
  146. [Sam2013]
    Samal AK, Polavarapu L et al (2013) Size Tunable Au@ Ag core- shell nanoparticles: synthesis and surface-enhanced raman scattering properties. Langmuir 29(48):15076–15082CrossRefGoogle Scholar
  147. [San1987]
    Sandroff CJ, Nottenburg RN (1987) Dramatic enhancement in the gain of a GaAs/AlGaAs heterostructure bipolar transistor by surface chemical passivation. Appl Phys Lett 51(1):33–35ADSCrossRefGoogle Scholar
  148. [Sch2006a]
    Schatz GC, Young MA et al (2006) Electromagnetic mechanism of SERS. Surface-enhanced Raman scattering. Springer, pp 19–45Google Scholar
  149. [Sch2006b]
    Schlücker S, Küstner B (2006) Immuno-Raman microspectroscopy: in situ detection of antigens in tissue specimens by surface-enhanced Raman scattering. J Raman Spectrosc 37(7):719–721ADSCrossRefGoogle Scholar
  150. [Sch2009]
    Schlücker S (2009) SERS microscopy: nanoparticle probes and biomedical applications. ChemPhysChem 10(9–10):1344–1354CrossRefGoogle Scholar
  151. [Sch2011a]
    Schmid G (2011) Nanoparticles: from theory to application. Wiley, New YorkGoogle Scholar
  152. [Sch2011b]
    Schuetz M, Mueller CI et al (2011) Design and synthesis of Raman reporter molecules for tissue imaging by immuno-SERS microscopy. J Biophotonics 4(6):453–463CrossRefGoogle Scholar
  153. [Sch2014]
    Schlücker S (2014) Surface-Enhanced raman spectroscopy: Concepts and chemical applications. Angewandte Chemie International Edition 53(19):4756–4795CrossRefGoogle Scholar
  154. [Sha2013]
    Shaw CP, Fan M et al (2013) Statistical correlation between SERS intensity and nanoparticle cluster size. J Phys Chem C 117(32):16596–16605CrossRefGoogle Scholar
  155. [Sig2016]
    Signorelli S, Cannistraro S et al (2016) Structural characterization of the intrinsically disordered protein p53 using Raman spectroscopy. Appl Spectrosc 0003702816651891Google Scholar
  156. [Sil1917]
    Silberstein L (1917) Molecular refractivity and atomic interaction. II. Lond Edinb Dublin Philos Mag J 33(198):521–533CrossRefGoogle Scholar
  157. [SM2007]
    Si S, Mandal TK (2007) pH-controlled reversible assembly of peptide-functionalized gold nanoparticles. Langmuir 23(1):190–195CrossRefGoogle Scholar
  158. [Son2012]
    Song J, Zhou J (2012) Self-assembled plasmonic vesicles of SERS-encoded amphiphilic gold nanoparticles for cancer cell targeting and traceable intracellular drug delivery. J Am Chem Soc 134(32):13458–13469CrossRefGoogle Scholar
  159. [SR2007]
    Swarup V, Rajeswari MR (2007) Circulating (cell-free) nucleic acids-a promising, non-invasive tool for early detection of several human diseases. FEBS Lett 581(5):795–799CrossRefGoogle Scholar
  160. [Ste2013]
    Stender AS, Marchuk K et al (2013) Single cell optical imaging and spectroscopy. Chem Rev 113(4):2469–2527CrossRefGoogle Scholar
  161. [Sti2008]
    Stiles PL, Dieringer JA et al (2008) Surface-enhanced Raman spectroscopy. Ann Rev Anal Chem 1:601–626CrossRefGoogle Scholar
  162. [Sto1998]
    Storhoff JJ, Elghanian R (1998) One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J Am Chem Soc 120(9):1959–1964CrossRefGoogle Scholar
  163. [Sto2000]
    Storhoff JJ, Lazarides AA (2000) What controls the optical properties of DNA-linked gold nanoparticle assemblies? J Am Chem Soc 122(19):4640–4650CrossRefGoogle Scholar
  164. [Stö2000]
    Stöckle RM, Suh YD et al (2000) Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem Phys Lett 318(1):131–136ADSCrossRefGoogle Scholar
  165. [Str2007]
    Strehle KR, Cialla D et al (2007) A reproducible surface-enhanced Raman spectroscopy approach. Online SERS measurements in a segmented microfluidic system. Anal Chem 79(4):1542–1547CrossRefGoogle Scholar
  166. [Sun1997]
    Sunde M, Serpell LC et al (1997) Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J Mol Biol 273(3):729–739CrossRefGoogle Scholar
  167. [Sun2007]
    Sun Z, Zhao B et al (2007) ZnO nanoparticle size-dependent excitation of surface Raman signal from adsorbed molecules: observation of a charge-transfer resonance. Appl Phys Lett 91(22):221106ADSCrossRefGoogle Scholar
  168. [Tam2002]
    Tamaru H, Kuwata H (2002) Resonant light scattering from individual Ag nanoparticles and particle pairs. Appl Phys Lett 80(10):1826–1828ADSCrossRefGoogle Scholar
  169. [Tha2014]
    Thacker VV, Herrmann LO et al (2014) DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering. Nat Commun 5Google Scholar
  170. [TS2012]
    Thomas R, Swathi RS (2012) Organization of metal nanoparticles for surfaceenhanced spectroscopy: a difference in size matters. J Phys Chem C 116(41):21982–21991CrossRefGoogle Scholar
  171. [Val2013]
    Valley N, Greeneltch N (2013) A look at the origin and magnitude of the chemical contribution to the enhancement mechanism of surface-enhanced Raman spectroscopy (SERS): Theory and experiment. J Phys Chem Lett 4(16):2599–2604CrossRefGoogle Scholar
  172. [Vec2009]
    Vecchi G, Giannini V et al (2009) Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas. Phys Rev B 80(20):201401ADSCrossRefGoogle Scholar
  173. [W1953]
    Watson JD, Crick FHC et al (1953) Molecular structure of nucleic acids. Nature 171(4356):737–738ADSCrossRefGoogle Scholar
  174. [Wan2011]
    Wang X, Shi W (2011) Using Si and Ge nanostructures as substrates for surface-enhanced Raman scattering based on photoinduced charge transfer mechanism. J Am Chem Soc 133(41):16518–16523CrossRefGoogle Scholar
  175. [Wan2012]
    Wang X, Shi W (2012) Surface-enhanced Raman scattering (SERS) on transition metal and semiconductor nanostructures. Phys Chem Chem Phys 14(17):5891–5901CrossRefGoogle Scholar
  176. [Wan2015]
    Wang X, Liow C (2015) Engineering interfacial photo-induced charge transfer based on nanobamboo array architecture for efficient solar-to-chemical energy conversion. Adv Mater 27(13):2207–2214CrossRefGoogle Scholar
  177. [WC2014]
    Wu H-Y, Cunningham BT (2014) Point-of-care detection and real-time monitoring of intravenously delivered drugs via tubing with an integrated SERS sensor. Nanoscale 6(10):5162–5171ADSCrossRefGoogle Scholar
  178. [Xu1999]
    Xu H, Bjerneld EJ et al (1999) Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys Rev Lett 83(21):4357ADSCrossRefGoogle Scholar
  179. [Xu2012]
    Weigao X, Ling X (2012) Surface enhanced Raman spectroscopy on a flat grapheme surface. Proc Natl Acad Sci 109(24):9281–9286ADSCrossRefGoogle Scholar
  180. [Yaf2013]
    Yaffe O, Ely T (2013) Effect of molecule-surface reaction mechanism on the electronic characteristics and photovoltaic performance of molecularly modified Si. J Phys Chem C 117(43):22351–22361CrossRefGoogle Scholar
  181. [Yan2009]
    Yan B, Thubagere A et al (2009) Engineered SERS substrates with multiscale signal enhancement: nanoparticle cluster arrays. Acs Nano 3(5):1190–1202CrossRefGoogle Scholar
  182. [Yan2011]
    Yan B, Boriskina SV et al (2011) Design and implementation of noble metal nanoparticle cluster arrays for plasmon enhanced biosensing. J Phys Chem C 115(50):24437–24453CrossRefGoogle Scholar
  183. [Yon2015]
    Yonemaru Y, Palonpon AF et al (2015) Super-spatial-and-spectral-resolution in vibrational imaging via saturated coherent anti-stokes raman scattering. Phys Rev Appl 4(1):014010ADSCrossRefGoogle Scholar
  184. [Zhu2004]
    Zhu Z, Zhu T et al (2004) Raman scattering enhancement contributed from individual gold nanoparticles and interparticle coupling. Nanotechnology 15(3):357ADSMathSciNetCrossRefGoogle Scholar
  185. [Zit2015]
    Zito G, Rusciano G et al (2015) Surface-enhanced Raman imaging of cell membrane by a highly homogeneous and isotropic silver nanostructure. Nanoscale 7(18):8593–8606ADSCrossRefGoogle Scholar
  186. [ZS2005]
    Zou S, Schatz GC (2005) Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields. Chem Phys Lett 403(1):62–67ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Dipartimento di Fisica e GeologiaUniversità degli Studi di PerugiaPerugiaItaly

Personalised recommendations