• Claudia FasolatoEmail author
Part of the Springer Theses book series (Springer Theses)


In recent years, the development of novel technological platforms for the study of biosystems has allowed for reaching extreme sensitivity and gaining deep insight in the physical mechanisms at the basis of biophysical processes. Interesting results have been obtained with imaging techniques as well as in the development of refined approaches for biosystem manipulation and control like microfluidic devices, optical tweezers, etc. Among these novel tools, innovative spectroscopic techniques enable probing specific biomolecules and investigating their composition, structural properties, location and interaction with other elements also in complex environments, as inside a cell. For approaching complex biophysical problems, it is crucial to push the limits of our investigation down to the single cell and single molecule level. To this aim, ultrasensitive and molecular specific spectroscopic techniques as Surface Enhanced Raman Scattering (SERS) can be successfully employed. Here we briefly discuss the state of the art of the field and the content of this Thesis.


  1. [Abe2010]
    Abeel T, Helleputte T et al (2010) Robust biomarker identification for cancer diagnosis with ensemble feature selection methods. Bioinformatics 26(3):392–398. ISSN: 1460-2059Google Scholar
  2. [And2011]
    Ando J, Fujita K et al (2011) Dynamic SERS imaging of cellular transport pathways with endocytosed gold nanoparticles. Nano lett 11(12):5344–5348ADSCrossRefGoogle Scholar
  3. [Are2000]
    Arenas JF, Woolley MS et al (2000) Complete analysis of the surface-enhanced Raman scattering of pyrazine on the silver electrode on the basis of a resonant charge transfer mechanism involving three states. J Chem Phys 112(17):7669–7683ADSCrossRefGoogle Scholar
  4. [Aus2012]
    Ausman LK, Li S et al (2012) Structural effects in the electromagnetic enhancement mechanism of surface-enhanced Raman scattering: dipole reradiation and rectangular symmetry effects for nanoparticle arrays. J Phys Chem C 116(33):17318–17327CrossRefGoogle Scholar
  5. [Bau2017]
    Baumberg J, Bell S et al (2017) SERS in biology/biomedical SERS: general discussion. Faraday Discuss 205:429–456ADSCrossRefGoogle Scholar
  6. [Ben2016]
    Benz F, Schmidt MK et al (2016) Single-molecule optomechanics in "picocavities". Science 354(6313):726–729ADSCrossRefGoogle Scholar
  7. [Bra2015]
    Brasili F, Mazzi E et al (2015) Gold nanoparticle cluster arrays for advanced optical sensing: an AFM study. In: 2015 IEEE 15th international conference on nanotechnology (IEEE-NANO). IEEE, pp 1023–1028Google Scholar
  8. [Col1975]
    Colthup N, Daly LH et al (1975) Introduction to infrared and Raman spectroscopy. Elsevier, AmsterdamGoogle Scholar
  9. [Den2008]
    Deniz AA, Mukhopadhyay S et al (2008) Single-molecule biophysics: at the interface of biology, physics and chemistry. J R Soc Interface 5(18):15–45. ISSN: 1742-5689Google Scholar
  10. [Doe2012]
    Doecke JD, Laws SM et al (2012) Blood-based protein biomarkers for diagnosis of alzheimer disease. Arch Neurol 69(10):1318. ISSN: 0003-9942CrossRefGoogle Scholar
  11. [Dom2011]
    Domenici F, Bizzarri AR et al (2011) SERS-based nanobiosensing for ultrasensitive detection of the p53 tumor suppressor. Int J Nanomed 6:2033–2042Google Scholar
  12. [Dom2016]
    Domenici F, Fasolato C et al (2016) Engineering microscale two-dimensional gold nanoparticle cluster arrays for advanced Raman sensing: an AFM study. Colloids Surf A: Physicochem Eng Asp 498:168–175CrossRefGoogle Scholar
  13. [EG2006]
    Ellis DI, Goodacre R (2006) Metabolic fingerprinting in disease diagnosis: biomedical applications of infrared and Raman spectroscopy. Analyst 131(8):875. ISSN: 0003-2654ADSCrossRefGoogle Scholar
  14. [ElA2006]
    El-Agnaf OMA, Salem SA et al (2006) Detection of oligomeric forms of a- synuclein protein in human plasma as a potential biomarker for Parkinson’s disease. FASEB J 20(3):419–425. ISSN: 0892-6638Google Scholar
  15. [Etz1999]
    Etzkorn T, Klotz B et al (1999) Gas-phase absorption cross sections of 24 monocyclic aromatic hydrocarbons in the UV and IR spectral ranges. Atmos Environ 33(4):525–540ADSCrossRefGoogle Scholar
  16. [Fan2008]
    Fang Y, Seong N-H et al (2008) Measurement of the distribution of site enhancements in surface-enhanced Raman scattering. Science 321(5887):388–392ADSCrossRefGoogle Scholar
  17. [Fas2014]
    Fasolato C, Domenici F et al (2014) Dimensional scale effects on surface enhanced Raman scattering efficiency of self-assembled silver nanoparticle clusters. Appl Phys Lett 105(7):073105ADSCrossRefGoogle Scholar
  18. [Fas2015]
    Fasolato C, Domenici F et al (2015) Self-assembled nanoparticle aggregates: organizing disorder for high performance surface-enhanced spectroscopy. In: Nanoforum 2014, vol 1667. AIP Publishing, pp 020012Google Scholar
  19. [Fas2016]
    Fasolato C, Giantulli S et al (2016) Folate-based single cell screening using surface enhanced Raman microimaging. Nanoscale 8(39):17304–17313CrossRefGoogle Scholar
  20. [Fas2018]
    Fasolato C, Giantulli S et al (2018) Antifolate functionalized nanovectors: SERS investigation motivates effective theranostics. In preparationGoogle Scholar
  21. [Gal2014]
    Galler K, Bräutigam K et al (2014) Making a big thing of a small cell-recent advances in single cell analysis. Analyst 139(6):1237–1273ADSCrossRefGoogle Scholar
  22. [Gil2016]
    Giliberti V, Baldassarre L et al (2016) Protein clustering in chemically stressed HeLa cells studied by infrared nanospectroscopy. Nanoscale 8(40):17560–17567. ISSN: 2040-3364CrossRefGoogle Scholar
  23. [Gra2017]
    Graham D, Goodacre R et al (2017) Theory of SERS enhancement: general discussion. Faraday Discuss 205:173–211ADSCrossRefGoogle Scholar
  24. [Gri2003]
    Grier DG (2003) A revolution in optical manipulation. Nature 424(6950):810–816. ISSN: 0028-0836Google Scholar
  25. [HD2005]
    Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2(12):932–940. ISSN: 1548-7091Google Scholar
  26. [Hua2009]
    Huang B, Bates M et al (2009) Super-resolution fluorescence microscopy. Ann Rev. Biochem 78(1):993–1016. ISSN: 0066-4154Google Scholar
  27. [Kel2006]
    Kelemen LE (2006) The role of folate receptor a in cancer development, progression and treatment: cause, consequence or innocent bystander? Int J Cancer 119(2):243–250CrossRefGoogle Scholar
  28. [Kne1997]
    Kneipp K, Wang Y et al (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78(9):1667ADSCrossRefGoogle Scholar
  29. [Kne2017]
    Kneipp J (2017) Interrogating cells, tissues, and live animals with new generations of surface-enhanced Raman scattering probes and labels. ACS Nano 11(2):1136–1141CrossRefGoogle Scholar
  30. [Krü2002]
    Krüger J, Singh K et al (2002) Development of a microfluidic device for fluorescence activated cell sorting. J Micromech Microeng 12(4):486CrossRefGoogle Scholar
  31. [LB2008]
    Lombardi JR, Birke RL (2008) A unified approach to surface-enhanced Raman spectroscopy. J Phys Chem C 112(14):5605–5617CrossRefGoogle Scholar
  32. [Lom1986]
    Lombardi JR, Birke RL et al (1986) Charge-transfer theory of surface enhanced Raman spectroscopy: Herzberg-Teller contributions. J Chem Phys 84(8):4174–4180ADSCrossRefGoogle Scholar
  33. [Mos2013]
    Moskovits M (2013) Persistent misconceptions regarding SERS. Phys Chem Chem Phys 15(15):5301–5311CrossRefGoogle Scholar
  34. [NE1997]
    Nie S, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275(5303):1102–1106CrossRefGoogle Scholar
  35. [Osa1994]
    Osawa M, Matsuda N et al (1994) Charge transfer resonance Raman process in surface-enhanced Raman scattering from p-aminothiophenol adsorbed on silver: Herzberg-Teller contribution. J Phys Chem 98(48):12702–12707CrossRefGoogle Scholar
  36. [PA2008]
    Pieczonka NPW, Aroca RF (2008) Single molecule analysis by surface-enhanced Raman scattering. Chem Soc Rev 37(5):946–954CrossRefGoogle Scholar
  37. [Pal2015]
    Pallaoro A, Hoonejani MR et al (2015) Rapid identification by surface-enhanced Raman spectroscopy of cancer cells at low concentrations flowing in a microfluidic channel. ACS Nano 9(4):4328–4336CrossRefGoogle Scholar
  38. [Par2005]
    Parker N, Turk MJ et al (2005) Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay. Anal Biochem 338(2):284–293CrossRefGoogle Scholar
  39. [Pep2001]
    Pepe MS, Etzioni R et al (2001) Phases of biomarker development for early detection of cancer. J Natl Cancer Inst 93(14):1054–1061CrossRefGoogle Scholar
  40. [Qia2008]
    Qian X, Peng X-H et al (2008) In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotechnol 26(1):83CrossRefGoogle Scholar
  41. [Rod2015]
    Rodrigo D, Limaj O et al (2015) Mid-infrared plasmonic biosensing with graphene. Science 349(6244):165–168ADSCrossRefGoogle Scholar
  42. [Sch1986]
    Schomacker KT, Delaney JK et al (1986) Measurements of the absolute Raman cross sections of benzene. J Chem Phys 85(8):4240–4247ADSCrossRefGoogle Scholar
  43. [Sch2006]
    Schatz GC, Young MA et al (2006) Electromagnetic mechanism of SERS. Surface-enhanced Raman scattering. Springer, pp 19–45Google Scholar
  44. [Sch2014]
    Schlücker S (2014) Surface-Enhanced raman spectroscopy: concepts and chemical applications. Angewandte Chemie International Edition 53(19):4756–4795CrossRefGoogle Scholar
  45. [Sti2008]
    Stiles PL, Dieringer JA et al (2008) Surface-enhanced Raman spectroscopy. Ann Rev Anal Chem 1:601–626CrossRefGoogle Scholar
  46. [Str2007]
    Strehle KR, Cialla D et al (2007) A reproducible surface-enhanced Raman spectroscopy approach. Online SERS measurements in a segmented microfluidic system. Anal Chem 79(4):1542–1547CrossRefGoogle Scholar
  47. [Sut1992]
    Suto M, Wang X et al (1992) Quantitative photoabsorption and fluorescence spectroscopy of benzene, naphthalene, and some derivatives at 106–295 nm. J Quant Spectrosc Radiat Transf 48(1):79–89ADSCrossRefGoogle Scholar
  48. [SW2003]
    Sia SK, Whitesides GM (2003) Microfluidic devices fabricated in Poly(dimethylsiloxane) for biological studies. Electrophoresis 24(21):3563–3576. ISSN: 0173-0835Google Scholar
  49. [VoD2010]
    Vo-Dinh T, Wang H-N et al (2010) Plasmonic nanoprobes for SERS biosensing and bioimaging. J Biophotonics 3(1–2):89–102Google Scholar
  50. [WB2010]
    Wang D, Bodovitz S (2010) Single cell analysis: the new frontier in ’omics’. Trends Biotechnol 28(6):281–290. ISSN: 0167-7799Google Scholar
  51. [WQ2015]
    Wu L, Qu X (2015) Cancer biomarker detection: recent achievements and challenges. Chem Soc Rev 44(10):2963–2997. ISSN: 0306-0012Google Scholar
  52. [Xu1999]
    Xu H, Bjerneld EJ et al (1999) Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys Rev Lett 83(21):4357ADSCrossRefGoogle Scholar
  53. [Yos2010]
    K-i Yoshida, Itoh T et al (2010) Quantitative evaluation of electromagnetic enhancement in surface-enhanced resonance Raman scattering from plasmonic properties and morphologies of individual Ag nanostructures. Phys Rev B 81(11):115406ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Dipartimento di Fisica e GeologiaUniversità degli Studi di PerugiaPerugiaItaly

Personalised recommendations