Advertisement

Big Data and Machine Learning Meet the Health Sciences

  • Ives Cavalcante PassosEmail author
  • Pedro Ballester
  • Jairo Vinícius Pinto
  • Benson Mwangi
  • Flávio Kapczinski
Chapter

Abstract

Big data and machine learning are gaining traction in health sciences research. They might provide predictive models for both clinical practice and public health systems. Big data is a broad term used to denote volumes of large and complex measurements. Beyond genomics and other “omic” fields, big data includes administrative, molecular, clinical, environmental, sociodemographic, and even social media information. Machine learning, also known as pattern recognition, represents a range of techniques used to analyze big data by identifying patterns of interaction among features. Compared with traditional statistical methods that provide primarily average group-level results, machine learning algorithms allow predictions and stratification of clinical outcomes at the level of an individual subject. In the present chapter, we provide a concise historical perspective of some important events in health sciences and the analytical methods used to find causes and treatment of illnesses. The overall aim is to understand why big data and machine learning have recently become promising methods to define, predict, and treat illnesses, and how they can transform the way we conceptualize care in health sciences.

Keywords

Big data Machine learning Health sciences Devices Patient empowerment 

References

  1. Bishop CM (2006) Pattern recognition and machine learning. Springer, BerlinGoogle Scholar
  2. Cao B, Cho RY, Chen D et al (2018) Treatment response prediction and individualized identification of first-episode drug-naïve schizophrenia using brain functional connectivity. Mol Psychiatry.  https://doi.org/10.1038/s41380-018-0106-5
  3. Caspi A, McClay J, Moffitt TE et al (2002) Role of genotype in the cycle of violence in maltreated children. Science 297:851–854.  https://doi.org/10.1126/science.1072290 CrossRefPubMedGoogle Scholar
  4. Chekroud AM, Zotti RJ, Shehzad Z et al (2016) Cross-trial prediction of treatment outcome in depression: a machine learning approach. Lancet Psychiatry 3:243–250.  https://doi.org/10.1016/S2215-0366(15)00471-X CrossRefPubMedGoogle Scholar
  5. Duffy A, Goodday S, Passos IC, Kapczinski F (2017) Changing the bipolar illness trajectory. Lancet Psychiatry 4:11–13.  https://doi.org/10.1016/S2215-0366(16)30352-2 CrossRefPubMedGoogle Scholar
  6. Evidence-Based Medicine Working Group (1992) Evidence-based medicine. A new approach to teaching the practice of medicine. JAMA 268:2420–2425CrossRefGoogle Scholar
  7. FDA (2018) Press Announcements - FDA permits marketing of artificial intelligence-based device to detect certain diabetes-related eye problems. https://www.fda.gov/newsevents/newsroom/pressannouncements/ucm604357.htm . Accessed 23 Aug 2018
  8. Greenhalgh T, Howick J, Maskrey N (2014) Evidence based medicine: a movement in crisis. BMJ 348:g3725–g3725.  https://doi.org/10.1136/bmj.g3725 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Insel TR (2017) Digital phenotyping: technology for a new science of behavior. JAMA 318:1215–1216.  https://doi.org/10.1001/jama.2017.11295 CrossRefPubMedGoogle Scholar
  10. Kessler RC, Rose S, Koenen KC et al (2014) How well can post-traumatic stress disorder be predicted from pre-trauma risk factors? An exploratory study in the WHO world mental health surveys. World Psychiatry 13:265–274.  https://doi.org/10.1002/wps.20150 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Kharpal A (2017) Smartphone market worth $355 billion, with 6 billion devices in circulation by 2020: report. In: CNBC. https://www.cnbc.com/2017/01/17/6-billion-smartphones-will-be-in-circulation-in-2020-ihs-report.html . Accessed 28 Aug 2018
  12. Klous S, Wielaard N (2016) We are big data: the future of the information society. Atlantis Press, AmsterdamCrossRefGoogle Scholar
  13. Lamkin P (2018) Smartwatch popularity booms with fitness trackers on the slide. In: Forbes. https://www.forbes.com/sites/paullamkin/2018/02/22/smartwatch-popularity-booms-with-fitness-trackers-on-the-slide/#20c9bb477d96 . Accessed 28 Aug 2018
  14. Leucht S, Cipriani A, Spineli L et al (2013) Comparative efficacy and tolerability of 15 antipsychotic drugs in schizophrenia: a multiple-treatments meta-analysis. Lancet 382:951–962.  https://doi.org/10.1016/S0140-6736(13)60733-3 CrossRefPubMedGoogle Scholar
  15. Librenza-Garcia D, Kotzian BJ, Yang J et al (2017) The impact of machine learning techniques in the study of bipolar disorder: a systematic review. Neurosci Biobehav Rev 80:538–554.  https://doi.org/10.1016/j.neubiorev.2017.07.004 CrossRefPubMedGoogle Scholar
  16. Lippi D, Gotuzzo E (2014) The greatest steps towards the discovery of Vibrio cholerae. Clin Microbiol Infect 20:191–195.  https://doi.org/10.1111/1469-0691.12390 CrossRefPubMedGoogle Scholar
  17. Mitchell TM (Tom M (1997) Machine learning. McGraw-Hill, New YorkGoogle Scholar
  18. Mwangi B, Wu M-J, Cao B et al (2016) Individualized prediction and clinical staging of bipolar disorders using neuroanatomical biomarkers. Biol Psychiatry Cogn Neurosci Neuroimaging 1:186–194.  https://doi.org/10.1016/j.bpsc.2016.01.001 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Obermeyer Z, Emanuel EJ (2016) Predicting the future — big data, machine learning, and clinical medicine. N Engl J Med 375:1216–1219.  https://doi.org/10.1056/NEJMp1606181 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Passos IC, Mwangi B, Kapczinski F (2016) Big data analytics and machine learning: 2015 and beyond. Lancet Psychiatry 3:13–15.  https://doi.org/10.1016/S2215-0366(15)00549-0 CrossRefPubMedGoogle Scholar
  21. Pinto JV, Passos IC, Gomes F et al (2017) Peripheral biomarker signatures of bipolar disorder and schizophrenia: a machine learning approach. Schizophr Res 188:182–184.  https://doi.org/10.1016/j.schres.2017.01.018 CrossRefPubMedGoogle Scholar
  22. Robins L (1966) Deviant children grown up: a sociological and psychiatric study of sociopathic personality. Williams & Wilkins, OxfordGoogle Scholar
  23. Sartori JM, Reckziegel R, Passos IC et al (2018) Volumetric brain magnetic resonance imaging predicts functioning in bipolar disorder: a machine learning approach. J Psychiatr Res 103:237–243.  https://doi.org/10.1016/j.jpsychires.2018.05.023 CrossRefPubMedGoogle Scholar
  24. Silver D, Schrittwieser J, Simonyan K et al (2017) Mastering the game of go without human knowledge. Nature 550:354–359.  https://doi.org/10.1038/nature24270 CrossRefPubMedGoogle Scholar
  25. Snow J (1854) The cholera near Golden Square and at Deptford. Med Times Gaz 9:321–322Google Scholar
  26. Susser ES (2006) Psychiatric epidemiology: searching for the causes of mental disorders. Oxford University Press, OxfordCrossRefGoogle Scholar
  27. Susser M, Susser E (1996) Choosing a future for epidemiology: I. Eras and paradigms. Am J Public Health 86:668–673CrossRefGoogle Scholar
  28. Sutton RS, Barto AG (1998) Reinforcement learning: an introduction. MIT Press, CambridgeGoogle Scholar
  29. TIME (2011) The 50 best inventions - TIME. http://content.time.com/time/subscriber/article/0,33009,2099708-11,00.html . Accessed 28 Aug 2018
  30. Ting DSW, Cheung CY-L, Lim G et al (2017) Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA 318:2211.  https://doi.org/10.1001/jama.2017.18152 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Topol EJ (2015) The patient will see you now: the future of medicine is in your hands. Basic Books, New YorkGoogle Scholar
  32. Turing AM (1937) On computable numbers, with an application to the entscheidungsproblem. Proc Lond Math Soc s2–42(1):230–265CrossRefGoogle Scholar
  33. Turing AM (1950) Computing machinery and intelligence. Mind 49:433–460CrossRefGoogle Scholar
  34. Wu M-J, Mwangi B, Bauer IE et al (2017) Identification and individualized prediction of clinical phenotypes in bipolar disorders using neurocognitive data, neuroimaging scans and machine learning. NeuroImage 145:254–264.  https://doi.org/10.1016/j.neuroimage.2016.02.016 CrossRefPubMedGoogle Scholar
  35. Wu M-J, Passos IC, Bauer IE et al (2016) Individualized identification of euthymic bipolar disorder using the Cambridge neuropsychological test automated battery (CANTAB) and machine learning. J Affect Disord 192:219–225.  https://doi.org/10.1016/j.jad.2015.12.053 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ives Cavalcante Passos
    • 1
    • 2
    Email author
  • Pedro Ballester
    • 3
  • Jairo Vinícius Pinto
    • 1
    • 2
  • Benson Mwangi
    • 4
  • Flávio Kapczinski
    • 5
  1. 1.Laboratory of Molecular PsychiatryHospital de Clinicas de Porto AlegrePorto AlegreBrazil
  2. 2.Programa de Pós-Graduação em Psiquiatria e Ciências do ComportamentoUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  3. 3.School of TechnologyPontifícia Universidade Católica do Rio Grande do SulPorto AlegreBrazil
  4. 4.UT Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral SciencesThe University of Texas Health Science Center at Houston, McGovern Medical SchoolHoustonUSA
  5. 5.Department of Psychiatry and Behavioural NeurosciencesMcMaster UniversityHamiltonCanada

Personalised recommendations