Advertisement

Introduction

  • Priscila DestroEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

In this book, readers will appreciate the fundamental aspects involved in the synthesis of AuCu nanoalloys, including real-time information about their atomic organization, electronic properties, as well a deeper understand about the behavior of AuCu supported nanoalloys under real catalytic conditions, providing interesting insights about the effect of the support on the nanoalloy stability. The results presented here open new horizons for using metal alloys in catalysis and also other areas where the metal–support interface may play a crucial role.

References

  1. 1.
    Li Y, Somorjai GA (2010) Nanoscale advances in catalysis and energy applications. Nano Lett 10:2289–2295.  https://doi.org/10.1021/nl101807gCrossRefPubMedGoogle Scholar
  2. 2.
    Daniel MCM, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size related properties and applications toward biology, catalysis and nanotechnology. Chem Rev 104:293–346.  https://doi.org/10.1021/cr030698+CrossRefPubMedGoogle Scholar
  3. 3.
    Carbone L, Cozzoli PD (2010) Colloidal heterostructured nanocrystals: synthesis and growth mechanisms. Nano Today 5:449–493.  https://doi.org/10.1016/j.nantod.2010.08.006CrossRefGoogle Scholar
  4. 4.
    Bonnemann H, Richards RM (2001) Nanoscopic metal particles-synthetic methods and potential applications. Eur J Inorg Chem 2455–2480. https://doi.org/10.1002/1099-0682(200109)2001%3A10%3C2455%3A%3Aaid-ejic2455%3E3.0.co%3B2-zCrossRefGoogle Scholar
  5. 5.
    Ghosh Chaudhuri R, Paria S (2012) Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev 112:2373–433.  https://doi.org/10.1021/cr100449nCrossRefPubMedGoogle Scholar
  6. 6.
    Thanh NTK, Maclean N, Mahiddine S (2014) Mechanisms of nucleation and growth of nanoparticles in Solution. Chem Rev 3.  https://doi.org/10.1021/cr400544sCrossRefGoogle Scholar
  7. 7.
    Doyle H, Betley TA (2001) Colloidal synthesis of nanocrystals and nanocrystal superlattices. J Res Dev 45:47–56Google Scholar
  8. 8.
    Sneed BT, Young AP, Tsung C-K (2015) Building up strain in colloidal metal nanoparticle catalysts. Nanoscale 7:12248–65.  https://doi.org/10.1039/c5nr02529jCrossRefPubMedGoogle Scholar
  9. 9.
    Jia C-J, Schüth F (2011) Colloidal metal nanoparticles as a component of designed catalyst. Phys Chem Chem Phys 13:2457–2487.  https://doi.org/10.1039/c0cp02680hCrossRefPubMedGoogle Scholar
  10. 10.
    Berti D, Palazzo G (2014) Colloidal foundations of nanoscience. Elsevier, First editCrossRefGoogle Scholar
  11. 11.
    Faraday M (1857) Experimental relations of gold (and other metals) to light. Philos Trans R Soc London 147:145CrossRefGoogle Scholar
  12. 12.
    Yin Y, Alivisatos AP (2005) Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 437:664–670.  https://doi.org/10.1038/nature04165CrossRefGoogle Scholar
  13. 13.
    Sugimoto T (1987) Preparation of monodispersed colloidal particles. Adv Coll Interface Sci 28:65–108.  https://doi.org/10.1016/0001-8686(87)80009-xCrossRefGoogle Scholar
  14. 14.
    Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 55:55–75CrossRefGoogle Scholar
  15. 15.
    Vreeland EC, Watt J, Schober GB et al (2015) Enhanced nanoparticle size control by extending LaMer’s mechanism. Chem Mater 27:6059–6066.  https://doi.org/10.1021/acs.chemmater.5b02510CrossRefGoogle Scholar
  16. 16.
    LaMer V, Dinegar R (1950) Theory, production and mechanism of formation of monodispersed hydrosols. J Am Chem Soc 72:4847–4854.  https://doi.org/10.1021/ja01167a001CrossRefGoogle Scholar
  17. 17.
    Romo-Herrera JM, Alvarez-Puebla RA, Liz-Marzán LM (2011) Controlled assembly of plasmonic colloidal nanoparticle clusters. Nanoscale 3:1304–1315.  https://doi.org/10.1039/c0nr00804dCrossRefPubMedGoogle Scholar
  18. 18.
    You H, Yang S, Ding B, Yang H (2013) Synthesis of colloidal metal and metal alloy nanoparticles for electrochemical energy applications. Chem Soc Rev 42:2880–904.  https://doi.org/10.1039/c2cs35319aCrossRefPubMedGoogle Scholar
  19. 19.
    Somorjai GA, Tao F, Park JY (2008) The nanoscience revolution: Merging of colloid science, catalysis and nanoelectronics. Top Catal 47:1–14.  https://doi.org/10.1007/s11244-007-9028-1CrossRefGoogle Scholar
  20. 20.
    Piella J, Bastús NG, Puntes V (2016) Size-Controlled synthesis of sub-10-nanometer citrate-stabilized gold nanoparticles and related optical properties. Chem Mater 28:1066–1075.  https://doi.org/10.1021/acs.chemmater.5b04406CrossRefGoogle Scholar
  21. 21.
    Koutsopoulos S, Johannessen T, Eriksen KM, Fehrmann R (2006) Titania-supported Pt and Pt-Pd nanoparticle catalysts for the oxidation of sulfur dioxide. J Catal 238:206–213.  https://doi.org/10.1016/j.jcat.2005.12.006CrossRefGoogle Scholar
  22. 22.
    Wu Y, Cai S, Wang D et al (2012) Syntheses of water-soluble octahedral, truncated octahedral, and cubic Pt-Ni nanocrystals and their structure-activity study in model hydrogenation reactions. J Am Chem Soc 134:8975–8981.  https://doi.org/10.1021/ja302606dCrossRefPubMedGoogle Scholar
  23. 23.
    Wang Y, Zhao Y, Yin J et al (2014) Synthesis and electrocatalytic alcohol oxidation performance of Pd–Co bimetallic nanoparticles supported on graphene. Int J Hydrogen Energy 39:1325–1335.  https://doi.org/10.1016/j.ijhydene.2013.11.002CrossRefGoogle Scholar
  24. 24.
    Huang X, Wang X, Tan M et al (2013) Selective oxidation of alcohols on P123-stabilized Au–Ag alloy nanoparticles in aqueous solution with molecular oxygen. Appl Catal A 467:407–413.  https://doi.org/10.1016/j.apcata.2013.07.062CrossRefGoogle Scholar
  25. 25.
    An K, Alayoglu S, Ewers T, Somorjai GA (2012) Colloid chemistry of nanocatalysts: a molecular view. J Colloid Interface Sci 373:1–13.  https://doi.org/10.1016/j.jcis.2011.10.082CrossRefPubMedGoogle Scholar
  26. 26.
    Johnston RL (2012) Metal nanoparticles and nanoalloys. In: Frontiers of nanoscience, 1st ed. Elsevier Ltd, pp 1–42Google Scholar
  27. 27.
    Pendergast DM (19170) Tumbaga object from the early classic period, found at altun ha, british honduras (Belize). Science (New York, NY) 168:116–118CrossRefGoogle Scholar
  28. 28.
    Yin F, Wang ZW, Palmer RE (2012) Formation of bimetallic nanoalloys by Au coating of size-selected Cu clusters. J Nanopart Res 14:1114–1124.  https://doi.org/10.1007/s11051-012-1124-xCrossRefGoogle Scholar
  29. 29.
    Xu Z, Lai E, Shao-Horn Y, Hamad-Schifferli K (2012) Compositional dependence of the stability of AuCu alloy nanoparticles. Chem Commun (Camb) 48:5626–8.  https://doi.org/10.1039/c2cc31576aCrossRefGoogle Scholar
  30. 30.
    Ferro R, Saccone A (2008) Elements of alloying behaviour systematics. In: Intermetallic chemistry. Elsevier, NetherlandsGoogle Scholar
  31. 31.
    Guisbiers G, Mejia-Rosales S, Khanal S et al (2014) Gold–copper nano-alloy, “Tumbaga”, in the era of nano: phase diagram and segregation. Nano Lett 14:6718–6726.  https://doi.org/10.1021/nl503584qCrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Lubarda VA (2003) On the effective lattice parameter of binary alloys. Mech Mat 35:53–68CrossRefGoogle Scholar
  33. 33.
    Okamoto H, Chakrabarti DJ, Laughlin DE, Massalski TB (1987) The Au–Cu (Gold–Copper) system. Bull Alloy Phase Diag 454–473CrossRefGoogle Scholar
  34. 34.
    Bracey CL, Ellis PR, Hutchings GJ (2009) Application of copper-gold alloys in catalysis: current status and future perspectives. Chem Soc Rev 38:2231–2243.  https://doi.org/10.1039/b817729pCrossRefPubMedGoogle Scholar
  35. 35.
    Baletto F, Ferrando R (2005) Structural properties of nanoclusters: energetic, thermodynamic, and kinetic effects. Rev Mod Phy 77:371–423.  https://doi.org/10.1103/revmodphys.77.371CrossRefGoogle Scholar
  36. 36.
    Pauwels B, Van Tendeloo G, Zhurkin E et al (2001) Transmission electron microscopy and Monte Carlo simulations of ordering in Au–Cu clusters produced in a laser vaporization source. Phy Rev B 63:1–10.  https://doi.org/10.1103/PhysRevB.63.165406CrossRefGoogle Scholar
  37. 37.
    Ferrando R, Jellinek J, Johnston RL (2008) Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev 108:845–910.  https://doi.org/10.1021/cr040090gCrossRefPubMedGoogle Scholar
  38. 38.
    Darby S, Mortimer-Jones TV, Johnston RL, Roberts C (2002) Theoretical study of Cu–Au nanoalloy clusters using a genetic algorithm. J Chem Phys 116:1536.  https://doi.org/10.1063/1.1429658CrossRefGoogle Scholar
  39. 39.
    Toai TJ, Rossi G, Ferrando R (2008) Global optimisation and growth simulation of AuCu clusters. Faraday Discuss 138:49–58.  https://doi.org/10.1039/b707813gCrossRefPubMedGoogle Scholar
  40. 40.
    Kim D, Resasco J, Yu Y et al (2014) Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold–copper bimetallic nanoparticles. Nat commun 5:4948.  https://doi.org/10.1038/ncomms5948CrossRefPubMedGoogle Scholar
  41. 41.
    Chorkendorff I, Niemantsverdriet JW (2003) Concepts of modern catalysis and kinetics. Wiley. ISBN: 3-527-30574-2Google Scholar
  42. 42.
    Bell AT (2003) The impact of nanoscience on heterogeneous catalysis. Science (New York, NY) 299:1688–1691.  https://doi.org/10.1126/science.1083671CrossRefGoogle Scholar
  43. 43.
    Bamwenda GR, Tsubota S, Nakamura T, Haruta M (1997) The influence of the preparation methods on the catalytic activity of platinum and gold supported on TiO2 for CO oxidation. Catal Lett 44:83–87.  https://doi.org/10.1023/A:1018925008633CrossRefGoogle Scholar
  44. 44.
    Munnik P, de Jongh PE, de Jong KP (2015) Recent developments in the synthesis of supported catalysts. Chem Rev.  https://doi.org/10.1021/cr500486uCrossRefGoogle Scholar
  45. 45.
    Baatz C, Decker N, Prube U (2008) New innovative gold catalysts prepared by an improved incipient wetness method. J Catal 258:165–169.  https://doi.org/10.1016/j.jcat.2008.06.008CrossRefGoogle Scholar
  46. 46.
    Schauermann S, Nilius N, Shaikhutdinov S, Freund H-J (2013) Nanoparticles for heterogeneous catalysis: new mechanistic insights. Acc Chem Res 46:1673–81.  https://doi.org/10.1021/ar300225sCrossRefPubMedGoogle Scholar
  47. 47.
    Cao A, Lu R, Veser G (2010) Stabilizing metal nanoparticles for heterogeneous catalysis. Phys Chem Chem Phys 12:13499–510.  https://doi.org/10.1039/c0cp00729cCrossRefPubMedGoogle Scholar
  48. 48.
    Tao FF, Schneider WF, Kamat P V (2014) Chemical synthesis of nanscale heterogeneous catalysis. In: Heterogeneous catalysis at the nanoscale for energy applications, pp 9–29Google Scholar
  49. 49.
    Sonström P, Bäumer M (2011) Supported colloidal nanoparticles in heterogeneous gas phase catalysis: on the way to tailored catalysts. Phys Chem Chem Phys 13:19270–19284.  https://doi.org/10.1039/c1cp22048aCrossRefPubMedGoogle Scholar
  50. 50.
    Pushkarev VV, Zhu Z, An K et al (2012) Monodisperse metal nanoparticle catalysts: synthesis, characterizations, and molecular studies under reaction conditions. Top Catal 55:1257–1275.  https://doi.org/10.1007/s11244-012-9915-yCrossRefGoogle Scholar
  51. 51.
    Haruta M, Kobayashi T, Sano H, Yamada N (1987) Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 °C. Chem Lett 405–408Google Scholar
  52. 52.
    Zafeiratos S, Piccinin S, Teschner D (2012) Alloys in catalysis: phase separation and surface segregation phenomena in response to the reactive environment. Catal Sci Technol 2:1787.  https://doi.org/10.1039/c2cy00487aCrossRefGoogle Scholar
  53. 53.
    Xu W, Si R, Senanayake SD et al (2012) In situ studies of CeO2-supported Pt, Ru, and Pt–Ru alloy catalysts for the Water-Gas shift reaction: Active phases and reaction intermediates. J Catal 291:117–126.  https://doi.org/10.1016/j.jcat.2012.04.013CrossRefGoogle Scholar
  54. 54.
    Zhou S, Jackson GS, Eichhorn B (2007) AuPt alloy nanoparticles for co-tolerant hydrogen activation: architectural effects in au-pt bimetallic nanocatalysts. Adv Func Mater 17:3099–3104.  https://doi.org/10.1002/adfm.200700216CrossRefGoogle Scholar
  55. 55.
    Liu X, Wang A, Zhang T et al (2011) Au-Cu alloy nanoparticles supported on silica gel as catalyst for CO oxidation: effects of Au/Cu ratios. Catal Today 160:103–108.  https://doi.org/10.1016/j.cattod.2010.05.019CrossRefGoogle Scholar
  56. 56.
    Liu JH, Wang AQ, Chi YS et al (2005) Synergistic effect in an Au–Ag alloy nanocatalyst: CO oxidation. J Phys Chem B 109:40–43.  https://doi.org/10.1021/jp044938gCrossRefPubMedGoogle Scholar
  57. 57.
    Remediakis IN, Lopez N, Nørskov JK (2005) CO oxidation on gold nanoparticles: theoretical studies. Appl Catal A 291:13–20.  https://doi.org/10.1016/j.apcata.2005.01.052CrossRefGoogle Scholar
  58. 58.
    Singh AK, Xu Q (2013) Synergistic catalysis over bimetallic alloy nanoparticles. ChemCatChem 5:652–676.  https://doi.org/10.1002/cctc.201200591CrossRefGoogle Scholar
  59. 59.
    Xu J, White T, Li P et al (2010) Biphasic Pd–Au alloy catalyst for low-temperature CO oxidation. J Am Chem Soc 132:10398–406.  https://doi.org/10.1021/ja102617rCrossRefPubMedGoogle Scholar
  60. 60.
    Liu H, Kozlov AI, Kozlova AP et al (1999) Active oxygen species and mechanism for low-temperature CO oxidation reaction on a TiO2-supported Au catalyst prepared from Au(PPh3)(NO3) and As-precipitated titanium hydroxide. J Catal 185:252–264.  https://doi.org/10.1006/jcat.1999.2517CrossRefGoogle Scholar
  61. 61.
    Molina LM, Hammer B (2005) Some recent theoretical advances in the understanding of the catalytic activity of Au. Appl Catal A 291:21–31.  https://doi.org/10.1016/j.apcata.2005.01.050CrossRefGoogle Scholar
  62. 62.
    Haruta M (1997) Size- and support-dependency in the catalysis of gold. Catal Today 36:153–166.  https://doi.org/10.1016/S0920-5861(96)00208-8CrossRefGoogle Scholar
  63. 63.
    Boccuzzi F, Chiorino a, Manzoli M, et al (2001) Au/TiO2 nanosized samples: a catalytic, TEM, and FTIR study of the effect of calcination temperature on the CO oxidation. J Catal 202:256–267.  https://doi.org/10.1006/jcat.2001.3290CrossRefGoogle Scholar
  64. 64.
    Shekhar M, Wang J, Lee W et al (2012) size and support effects for the water–gas shift catalysis over gold. J Am Chem Soc 134:4700–4708CrossRefGoogle Scholar
  65. 65.
    Choudhary TV, Goodman DW (2005) Catalytically active gold: the role of cluster morphology. Appl Catal A 291:32–36.  https://doi.org/10.1016/j.apcata.2005.01.049CrossRefGoogle Scholar
  66. 66.
    Schubert MM, Hackenberg S, van Veen AC et al (2001) CO oxidation over supported gold catalysts—“inert” and “active” support materials and their role for the oxygen supply during reaction. J Catal 197:113–122.  https://doi.org/10.1006/jcat.2000.3069CrossRefGoogle Scholar
  67. 67.
    Klyushin AY, Arrigo R, Youngmi Y et al (2016) Are Au nanoparticles on oxygen-free supports catalytically active? Top Catal 59:469–477.  https://doi.org/10.1007/s11244-015-0528-0CrossRefGoogle Scholar
  68. 68.
    Liu X, Wang A, Yang X et al (2009) Synthesis of thermally stable and highly active bimetallic Au–Ag nanoparticles on inert supports. Chem Mater 21:410–418.  https://doi.org/10.1021/cm8027725CrossRefGoogle Scholar
  69. 69.
    Mu R, Fu Q, Xu H et al (2011) Synergetic effect of surface and subsurface Ni species at Pt–Ni bimetallic catalysts for CO oxidation. J Am Chem Soc 133:1978–1986.  https://doi.org/10.1021/ja109483aCrossRefPubMedGoogle Scholar
  70. 70.
    Yen C, Lin M, Wang A et al (2009) CO oxidation catalyzed by Au–Ag bimetallic nanoparticles supported in mesoporous silica. J Phys Chem C 113:17831–17839.  https://doi.org/10.1021/jp9037683CrossRefGoogle Scholar
  71. 71.
    Wang AQ, Chang CM, Mou CY (2005) Evolution of catalytic activity of Au–Ag bimetallic nanoparticles on mesoporous support for CO oxidation. J Phys Chem B 109:18860–18867.  https://doi.org/10.1021/jp051530qCrossRefPubMedGoogle Scholar
  72. 72.
    Liu X, Wang A, Li L et al (2011) Structural changes of Au–Cu bimetallic catalysts in CO oxidation: in situ XRD, EPR, XANES, and FT-IR characterizations. J Catal 278:288–296.  https://doi.org/10.1016/j.jcat.2010.12.016CrossRefGoogle Scholar
  73. 73.
    Wang A, Liu XY, Mou C-Y, Zhang T (2013) Understanding the synergistic effects of gold bimetallic catalysts. J Catal 308:258–271.  https://doi.org/10.1016/j.jcat.2013.08.023CrossRefGoogle Scholar
  74. 74.
    Zhou S, Varughese B, Eichhorn B et al (2005) Pt–Cu core-shell and alloy nanoparticles for heterogeneous NOx reduction: anomalous stability and reactivity of a core-shell nanostructure. Angewandte Chemie—International Edition 44:4539–4543.  https://doi.org/10.1002/anie.200500919CrossRefPubMedGoogle Scholar
  75. 75.
    Cargnello M, Doan-Nguyen VVT, Gordon TR et al (2013) Control of metal nanocrystal size reveals metal-support interface role for ceria catalysts. Science (New York, NY) 341:771–3.  https://doi.org/10.1126/science.1240148CrossRefGoogle Scholar
  76. 76.
    Yen H, Seo Y, Kaliaguine S, Kleitz F (2015) On the role of metal-support interactions, particle size, and metal-metal synergy in CuNi nanocatalysts for H2 Generation. ACS Catal 2:5505–5511.  https://doi.org/10.1021/acscatal.5b00869CrossRefGoogle Scholar
  77. 77.
    Bauer JC, Mullins D, Li M et al (2011) Synthesis of silica supported AuCu nanoparticle catalysts and the effects of pretreatment conditions for the CO oxidation reaction. Phys Chem Chem Phys 13:2571–2581.  https://doi.org/10.1039/c0cp01859gCrossRefPubMedGoogle Scholar
  78. 78.
    Li X, See S, Fang S et al (2012) Activation and deactivation of Au–Cu/SBA-15 catalyst for preferential oxidation of CO in H2-rich gas. ACS Catal 2:360–369CrossRefGoogle Scholar
  79. 79.
    Sugano Y, Shiraishi Y, Tsukamoto D et al (2013) Supported Au–Cu bimetallic alloy nanoparticles: an aerobic oxidation catalyst with regenerable activity by visible-light irradiation. Angew Chem Int Ed Engl 52:5295–9.  https://doi.org/10.1002/anie.201301669CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Chemical EngineeringFederal University of São Carlos (UFSCar)São CarlosBrazil

Personalised recommendations