Advertisement

Myosin Motors

  • David Aitchison Smith
Chapter

Abstract

The last decade of the twentieth century was a fertile period for muscle research. Not only did it yield the atomic structures of actin and myosin-S1, but it spawned a number of new techniques, including optical trapping, evanescent wave and atomic force spectroscopies, for observing the working strokes of a single molecular motor such as myosin, kinesin and dynein. Muscle myosin II is part of a larger family of myosin motors that perform different cellular tasks. Many of them, including myosin-V, are processive motors which walk many steps along F-actin before falling off. Actin-myosin kinetics in the optical trap determine how the apparent working stroke may be affected by target zones on F-actin. Moving traps may be used to measure myosin stiffness and the lifetimes of actomyosin states as a function of load. Three critical experiments require interpretation: why does the ATP sliding distance in motility assays exceed the working stroke, why are Cy3-ATP detachment events not always coordinated with ATP binding, and why does a single myosin-II on a fine cantilever walk for several 5.3 nm steps on F-actin, which suggests that myosin moves by a ratchet mechanism rather than a swinging lever-arm. Finally, recent experiments on myosin-V suggest that its lever-arm is uniquely suited for making 36 nm steps on actin.

Keywords

Single myosin Optical trap Motility Ratchet Processivity 

References

  1. Adamovic I, Mijailovich SM, Karplus M (2008) The elastic properties of the structurally characterized myosin II S2 subdomain: a molecular dynamics and normal mode analysis. Biophys J 94:3779–3789PubMedPubMedCentralGoogle Scholar
  2. Ali MY, Uemura S, Adachi K, Itoh H, Kinosita K, Ishiwata S (2002) Myosin V is a left-handed spiral motor on the right-handed actin helix. Nat Struct Biol 9:464–467PubMedCrossRefPubMedCentralGoogle Scholar
  3. Astumian RD (1997) Thermodynamics and kinetics of a Brownian motor. Science 276:917–922PubMedPubMedCentralCrossRefGoogle Scholar
  4. Baker JE, Brust-Mascher I, Ramachandran S, LaConte IFW, Thomas DD (1998) A large and distinct rotation of the myosin light chain domain occurs upon muscle contraction. Proc Natl Acad Sci USA 95:2944–2949PubMedPubMedCentralGoogle Scholar
  5. Bell GI (1978) Models for the specfic adhesion of cells to cells. Science 200:618–627PubMedCrossRefPubMedCentralGoogle Scholar
  6. Berg JS, Powell BC, Cheney RE (2001) A millennial myosin census. Mol Biol Cell 12:780–794PubMedPubMedCentralCrossRefGoogle Scholar
  7. Block SM, Svoboda K (1995) Analysis of high-resolution recordings of motor movement. Biophys J 68:230S–241SPubMedPubMedCentralGoogle Scholar
  8. Bourdieu L, Duke T, Elowitz MB, Winkelmann DA, Leibler S, Libchaber A (1995) Spiral defects in motility assays: a measure of motor protein force. Phys Rev Lett 75:176–179PubMedCrossRefGoogle Scholar
  9. Bozic SM (1979) Digital and Kalman Filtering. Edward Arnold, LondonGoogle Scholar
  10. Brenner B (1991) Rapid dissociation and reassociation of actomyosin crossbridges during force generation: a newly observed facet of cross-bridge action in muscle. Proc Natl Acad Sci USA 88:10490–10494PubMedCrossRefPubMedCentralGoogle Scholar
  11. Brenner B (2006) The stroke size of myosins: a reevaluation. J Muscle Res Cell Motil 27:173–187PubMedCrossRefGoogle Scholar
  12. Bruno WJ, Ullah G, Mak D-OD, Pearson JE (2013) Automated maximum likelihood separation of signal from baseline in noisy quantal data. Biophys J 105:68–79PubMedPubMedCentralCrossRefGoogle Scholar
  13. Burton K (1992) Myosin step size: estimates from motility assays and shortening muscle. J Muscle Res Cell Motil 13:590–607PubMedCrossRefGoogle Scholar
  14. Capitanio M, Canepari M, Cacciafesta P, Lombardi V, Cicchi R, Maffei M, Pavone FS, Bottinelli R (2006) Two independent mechanical events in the interaction cycle of skeletal muscle myosin with actin. Proc Natl Acad Sci USA 103:87–92PubMedCrossRefPubMedCentralGoogle Scholar
  15. Capitanio M, Canepari M, Maffei M, Beneventi D, Monico C, Vanzi F, Bottinelli R, Pavone FS (2012) Ultrafast force-clamp spectroscopy of single molecules reveals load dependence of myosin working stroke. Nat Methods 9:1013–1019PubMedCrossRefGoogle Scholar
  16. Carter BC, Vershinin M, Gross SP (2008) A comparison of step-detection methods: how well can you do? Biophys J 94:306–319PubMedCrossRefGoogle Scholar
  17. Chandrasekhar S (1943) Stochastic problems in physics and astronomy. Rev Mod Phys 15:1–89CrossRefGoogle Scholar
  18. Chung SH, Kennedy RA (1991) Forward-backward non-linear filtering technique for extracting small biological signals from noise. J Neurosci Methods 40:71–86PubMedCrossRefGoogle Scholar
  19. Colquhoun D (1998) In: Sakmann E, Neher E (eds) Single-channel recording. Plenum, New York/LondonGoogle Scholar
  20. Coureux PD, Wells AL, Menetrey J, Yengo CM, Morris CA, Sweeney HL (2004) Three myosin V structures delineate essential features of chemo-mechanical transduction. EMBO J 23:4527–4537PubMedPubMedCentralCrossRefGoogle Scholar
  21. Cyranoski D (2000) Swimming against the tide. Nature 408:764–766PubMedCrossRefPubMedCentralGoogle Scholar
  22. De La Cruz E, Ostap EM (2004) Relating biochemistry and function in the myosin superfamily. Curr Opin Cell Biol 16:61–67PubMedCrossRefPubMedCentralGoogle Scholar
  23. Finer JT, Simmons RM, Spudich JA (1994) Single myosin molecule mechanics: piconewton forces and nanometer steps. Nature 368:113–119PubMedCrossRefPubMedCentralGoogle Scholar
  24. Forkey JN, Quinlan ME, Shaw MA, Corrie JET, Goldman YE (2003) Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization. Nature 422:399–404PubMedCrossRefPubMedCentralGoogle Scholar
  25. Fortune NS, Ranatunga KW, Geeves MA (1994) The influence of 2,3-butanedione 2-monoxime (BDM) on the interaction between actin and myosin in solution and in skinned muscle fibres. J Muscle Res Cell Motil 15:309–318PubMedPubMedCentralGoogle Scholar
  26. Funatsu T, Harada Y, Tokunaga M, Saito KL, Yanagida T (1995) Imaging of single fluorescent molecules and individual ATP turnovers by singe myosin molecules in aqueous solution. Nature 374:555–559PubMedCrossRefPubMedCentralGoogle Scholar
  27. Gardiner C (2004) Handbook of stochastic methods for physics, chemistry and the natural sciences, Springer Series in Synergetics. Springer-Verlag, Berlin/New YorkCrossRefGoogle Scholar
  28. Guilford WH, Dupuis DE, Kennedy G, Wu JR, Patlak JB, Warshaw DM (1997) Smooth muscle and skeletal muscle myosins produce similar unitary forces and displacements in the laser trap. Biophys J 72:1006–1021PubMedPubMedCentralCrossRefGoogle Scholar
  29. Happel J, Brenner H (1983) Low Reynolds number hydrodynamics. Martinus Nijhoff, The HagueGoogle Scholar
  30. Harada Y, Noguchi A, Kishino A, Yanagida T (1987) Sliding movement of single actin filaments on one-headed myosin filaments. Nature 326:805–808PubMedCrossRefPubMedCentralGoogle Scholar
  31. Harada Y, Sakurada K, Aoki T, Thomas DD, Yanagida T (1990) Mechanochemical coupling in actomyosin energy transduction studied by in vitro movement assay. J Mol Biol 216:49–68PubMedCrossRefPubMedCentralGoogle Scholar
  32. Hartman MA, Spudich JA (2004) The myosin superfamily at a glance. J Cell Sci 125:1627–1632CrossRefGoogle Scholar
  33. He Z-H, Chillingworth RK, Brune M, Corrie JET, Webb MR, Ferenczi MA (1999) The efficiency of contraction in rabbit skeletal muscle fibres, determined from the rate of release of inorganic phosphate. J Physiol (London) 517(3):839–854CrossRefGoogle Scholar
  34. Higuchi H, Goldman YE (1991) Sliding distance between actin and myosin filaments per ATP molecule hydrolysed in skinned muscle fibres. Nature 352:352–354PubMedCrossRefPubMedCentralGoogle Scholar
  35. Hodge T, Cope JTV (2000) A myosin family tree. J Cell Sci 113:3353–3354PubMedPubMedCentralGoogle Scholar
  36. Howard J (2001) Mechanics of motor proteins and the cytoskeleton. Sinauer Assoc. Inc., Sunderland, p104Google Scholar
  37. Howard J, Spudich JA (1996) Is the lever arm of myosin a molecular elastic element? Proc Natl Acad Sci USA 93:4462–4464PubMedPubMedCentralGoogle Scholar
  38. Ishijima A, Kojima H, Funatsu T, Tokunaga M, Higuchi H, Tanaka H, Yanagida T (1998) Simultaneous observation of individual ATPase and mechanical events by a single myosin molecule during interaction with actin. Cell 92:161–171PubMedCrossRefPubMedCentralGoogle Scholar
  39. Ito K, Liu X, Katayama E, Uyeda TQP (1999) Cooperativity between two heads of Dictyostelium myosin in in vitro motility and ATP hydrolysis. Biophys J 76:985–992PubMedPubMedCentralCrossRefGoogle Scholar
  40. Iwaki M, Iwane AH, Shimokawa T, Cooke R, Yanagida T (2009) Brownian search and catch mechanism for myosin VI steps. Nat Chem Biol 5:403–405PubMedCrossRefPubMedCentralGoogle Scholar
  41. Jaswinski AH (1970) Stochastic processes and filtering theory. Academic, New York/LondonGoogle Scholar
  42. Kaya M, Higuchi H (2010) Nonlinear elasticity and an 8-nm working stroke of single myosin molecules in myofilaments. Science 329:686–689CrossRefGoogle Scholar
  43. Kitamura K, Tokunaga M, Iwane AH, Yanagida T (1999) A single head moves along an actin filament with regular steps of 5.3 nanometres. Nature 397:129–134PubMedCrossRefPubMedCentralGoogle Scholar
  44. Kitamura K, Tokunaga M, Esaki S, Iwane AH, Yanagida T (2005) Mechanism of muscle contraction based on stochastic properties of single actomyosin motors observed in vitro. Biophysics 1:1–19PubMedPubMedCentralCrossRefGoogle Scholar
  45. Knight AE, Veigel C, Chambers C, Molloy JE (2001) Analysis of single-molecule mechanical recordings: application to actin-myosin interactions. Prog Biophys Mol Biol 77:45–72PubMedCrossRefPubMedCentralGoogle Scholar
  46. Kolomeisky AB, Fisher ME (2003) A simple kinetic model describes the processivity of myosin-V. Biophys J 84:1642–1650PubMedPubMedCentralCrossRefGoogle Scholar
  47. Kron SJ, Spudich JA (1986) Fluorescent actin filaments move on myosin fixed to a glass surface. Proc Natl Acad Sci USA 83:8272–6276CrossRefGoogle Scholar
  48. Lewalle A, Steffen W, Ouyang Z, Sleep J (2008) Single-molecule measurement of the stiffness of the rigor myosin bond. Biophys J 94:2160–2169PubMedCrossRefPubMedCentralGoogle Scholar
  49. Mehta AD, Finer JT, Simmons RM (1997) Detection of snigle molecule interactions using correlated thermal diffusion. Proc Natl Acad Sci USA 94:7927–7931PubMedCrossRefPubMedCentralGoogle Scholar
  50. Mehta AD, Rock RS, Rief M, Spudich JA, Mooseker MS, Cheney RE (1999) Myosin-V is a processive actin-based motor. Nature 400:590–593PubMedCrossRefPubMedCentralGoogle Scholar
  51. Milescu LS, Yildiz A, Selvin PR, Sachs F (2006) Extacting dwell time sequences from processive molecular motor data. Biophys J 91:3135–3150PubMedPubMedCentralCrossRefGoogle Scholar
  52. Molloy JE, Burns JE, Kendrick-Jones J, Tregear RT, White DCS (1995) Movement and force produced by a single myosin head. Nature 378:209–212PubMedCrossRefPubMedCentralGoogle Scholar
  53. Moore JR, Krementsova EB, Trybus KM, Warshaw DM (2004) Does the myosin neck region act as a lever? J Muscle Res Cell Motil 25:28–35CrossRefGoogle Scholar
  54. Nie C-M, Sasi M, Terada TP (2014) Conformational flexibility of loops of myosin enhances the global bias in the actin-myosin interaction landscape. Phys Chem Chem Phys 16:6441–6447PubMedCrossRefGoogle Scholar
  55. Nishizaka T, Miyata H, Yoshikawa H, Ishiwata S, Kinosita K Jr (1995) Unbinding force of a single motor molecule of muscle studied by optical tweezers. Nature 377:251–254PubMedCrossRefGoogle Scholar
  56. Nishizaka T, Seo R, Tadakuma H, Kinsoita K Jr, Ishiwata S (2000) Characterization of single actomyosin rigor bonds: load dependence of lifetime and mechanical properties. Biophys J 79:962–974PubMedPubMedCentralCrossRefGoogle Scholar
  57. Page ES (1954) Continuous inspection schemes. Biometrika 41:100–115CrossRefGoogle Scholar
  58. Patlak JB (1993) Measuring kinetics of complex single ion-channel data using mean-variance histograms. Biophys J 65:29–42PubMedPubMedCentralCrossRefGoogle Scholar
  59. Piazzesi G, Reconditi M, Linari M, Lucii L, Bianco P, Brunello E, Decostre V, Stewart A, Gore DB, Irving TC, Irving M, Lombardi V (2007) Skeletal muscle performance determined by modulation of number of motors rather than motor force or stroke size. Cell 131:784–795PubMedCrossRefPubMedCentralGoogle Scholar
  60. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in Fortran, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  61. Purcell TJ, Morris C, Spudich JA, Sweeney HL (2002) Role of the lever arm in the processive stepping of myosin V. Proc Natl Acad Sci USA 99:14159–14164PubMedCrossRefPubMedCentralGoogle Scholar
  62. Rabiner LR (1989) A tutorial on hidden Markov models and selected applications in speech recognition. Proc IEEE 77:257–285CrossRefGoogle Scholar
  63. Reconditi M, Linari M, Lucii L, Stewart A, Sun YB, Boesecke P, Narayanan T, Fischetti RG, Irving T, Piazzesi G, Irving M, Lombardi V (2004) The myosin motor in muscle generates a smaller and slower working stroke at higher load. Nature 428:578–581PubMedCrossRefPubMedCentralGoogle Scholar
  64. Sakamoto T, Wang F, Schmitz S, Xu Y, Molloy JE, Veigel C, Sellers JR (2003) Neck length and processivity of myosin V. J Biol Chem 278:29201–29207PubMedCrossRefPubMedCentralGoogle Scholar
  65. Schaller V, Weber C, Semmrich C, Frey S, Bausch AR (2010) Polar patterns of driven filaments. Nature 467:73–77PubMedCrossRefPubMedCentralGoogle Scholar
  66. Sellers JR (2000) Myosins: a diverse superfamily. Biochim Biophys Acta 1496:3–22PubMedCrossRefPubMedCentralGoogle Scholar
  67. Sleep J, Lewalle A, Smith DA (2006) Reconciling the working strokes of a single head of skeletal muscle myosin estimated from laser-trap experiment and crystal structures. Proc Natl Acad Sci USA 103:1278–1282PubMedCrossRefPubMedCentralGoogle Scholar
  68. Smith DA (1998a) A quantitative method for the detection of edges in noisy time series. Philos Trans R Soc B 353:1969–1981CrossRefGoogle Scholar
  69. Smith DA (1998b) Direct tests of muscle cross-bridge theories: predictions of a Brownian dumbbell model for position-dependent cross-bridge lifetimes and step sizes with an optically trapped actin filament. Biophys J 75:2996–3007PubMedPubMedCentralCrossRefGoogle Scholar
  70. Smith DA (2004) How processive is the myosin motor? J Muscle Res Cell Motil 25:215–217PubMedCrossRefPubMedCentralGoogle Scholar
  71. Smith DA, Steffen W, Simmons RM, Sleep J (2001) Hidden-Markov methods for the analysis of single-molecule actomyosin displacement data: the variance-hidden-Markov method. Biophys J 81:2795–2816PubMedPubMedCentralCrossRefGoogle Scholar
  72. Steffen W, Smith DA, Simmons RM, Sleep J (2001) Mapping the actin filament with myosin. Proc Natl Acad Sci USA 98:14949–14954PubMedCrossRefPubMedCentralGoogle Scholar
  73. Stranneby D, Walker W (2004) Digital signal processing and applications, 2nd edn. Elsevier, AmsterdamGoogle Scholar
  74. Sweeney HL, Houdusse A (2004) The motor mechanism of myosin V: insights for muscle contraction. Philos Trans R Soc B 359:1829–1841CrossRefGoogle Scholar
  75. Takagi Y, Homsher EE, Goldman YE, Shuman H (2006) Force generation in single conventional actomyosin complexes under high dynamic load. Biophys J 90:1295–1307PubMedCrossRefPubMedCentralGoogle Scholar
  76. Takano M, Terada TP, Sasai M (2010) Unidirectional Brownian motion observed in an in silico single molecule experiment of an actomyosin motor. Proc Natl Acad Sci USA 107:7769–7774PubMedCrossRefPubMedCentralGoogle Scholar
  77. Thomas DD, Ramachandran S, Roopnarine O, Hayuden DW, Ostap EM (1995) The mechanism of force generation in muscle: a disorder-to-order transition, coupled to internal structural changes. Biophys J 68:135s–141sPubMedPubMedCentralCrossRefGoogle Scholar
  78. Toyoshima YY, Kron SJ, Spudich JA (1990) The myosin step size: measurement of the unit displacement per ATP hydrolyzed in an in vitro assay. Proc Natl Acad Sci USA 87:7130–7134PubMedCrossRefPubMedCentralGoogle Scholar
  79. Tregear RT, Reedy MC, Goldman YE, Taylor KA, Winkler H, Franzini-Armstrong C, Sasaki H, Lucaveche C, Reedy MK (2004) Cross-bridge number, position and angle in target zones of cryofixed isometrically active insect flight muscle. Biophys J 86:3009–3019PubMedPubMedCentralCrossRefGoogle Scholar
  80. Tsiavaliaris G, Fujita-Becker S, Manstein DJ (2004) Molecular engineering of a backwards-moving myosin motor. Nature 427:558–561PubMedCrossRefPubMedCentralGoogle Scholar
  81. Tyska MJ, Warshaw DM (2002) The myosin power stroke. Cell Motil Cytoskeleton 51:1–15PubMedCrossRefPubMedCentralGoogle Scholar
  82. Tyska MJ, Dupuis DFE, Guilford WH, Patlak JH, Waller GS, Trybus KM, Warshaw DM, Lowey S (1999) Two heads are better than one for generating force and motion. Proc Natl Acad Sci USA 96:4402–4407PubMedCrossRefPubMedCentralGoogle Scholar
  83. Uemura S, Higuchi H, Olivares AO, De La Cruz EM, Ishiwata S (2004) Mechanochemical couping of two substeps in a single myosin V motor. Nat Struct Biol 11:877–883CrossRefGoogle Scholar
  84. Uyeda TQP, Kron SJ, Spudich JA (1990) Myosin step size: estimation from slow sliding movement of actin over low densities of heavy meromyosin. J Mol Biol 214:699–710PubMedCrossRefPubMedCentralGoogle Scholar
  85. Veigel C, Bartoo ML, White DCS, Sparrow JC, Molloy JE (1998) The stiffness of rabbit skeletal actomyosin cross-bridges determined with an optical tweezers transducer. Biophys J 75:1424–1438PubMedPubMedCentralCrossRefGoogle Scholar
  86. Veigel C, Coluccio LM, Jontes JD, Sparrow JC, Milligan RA, Molloy JE (1999) The motor protein myosin-I produces its working stroke in two steps. Nature 398:530–533PubMedCrossRefPubMedCentralGoogle Scholar
  87. Veigel C, Wang F, Bartoo ML, Sellers JR, Molloy JE (2001) The gated gait of the processive motor, myosin V (2001) Nat Cell Biol 4:59–65CrossRefGoogle Scholar
  88. Veigel C, Schmitz S, Wang F, Sellers JR (2005) Load-dependent kinetics of myosin-V can explain its high processivity. Nat Cell Biol 7:861–869PubMedCrossRefPubMedCentralGoogle Scholar
  89. Walker M, Zhang X-Z, Jiang W, Trinick J, White HD (1999) Observation of transient disorder during myosin subfragment-1 binding to actin by stopped-flow fluorescence and millisecond time resolution electron cryomicroscopy: evidence that the start of the crossbridge power stroke in muscle has variable geometry. Proc Natl Acad Sci USA 96:465–470PubMedCrossRefPubMedCentralGoogle Scholar
  90. Walker ML, Burgess SA, Sellers JR, Wang F, Hammer JA III, Trinick J, Knight PJ (2000) Two-headed binding of a processive myosin to F-actin. Nature 405:804–807PubMedCrossRefPubMedCentralGoogle Scholar
  91. Warshaw DM, Hayes F, Gaffney D, Lauzon AM, Wu J, Kennedy G, Trybus K, Lowey S, Berger C (1998) Myosin conformational states determined by single fluorophore polarization. Proc Natl Acad Sci USA 95:8034–8039PubMedCrossRefPubMedCentralGoogle Scholar
  92. Weatherburn CE (1968) A first course in mathematical statistics, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  93. Wells AL, Lin AW, Chen LQ, Safter D, Cain SM, Hasson T, Carragher BO, Milligan RA, Sweeney HL (1999) Myosin VI is an actin-based motor that moves backwards. Nature 401:505–508PubMedCrossRefPubMedCentralGoogle Scholar
  94. Yanagida T, Arata T, Oosawa F (1985) Sliding distance of actin filament induced by a myosin crossbridge during one ATP hydrolysis cycle. Nature 316:366–369PubMedCrossRefPubMedCentralGoogle Scholar
  95. Yanagida T, Harada Y, Kodama T (1991) Chemomechanical coupling in actomyosin system: an approach by in vitro movement assay and kinetic analysis of ATP hydrolysis by shortening myofibrils. Adv Biophys 27:237–257PubMedCrossRefPubMedCentralGoogle Scholar
  96. Yildiz A, Forkey JN, McKinney SA, Ha T, Goldman YE, Selvin PR (2003) Myosin V walks hand-over-hand: single fluorophore imaging with 1.5nm localization. Science 300:2061–2065PubMedCrossRefPubMedCentralGoogle Scholar
  97. Zhao Y, Kawai M (1994) BDM affects nucleotide binding and force generation steps of the crossbridge cycle in rabbit psoas muscle fibers. Am J Phys 266:C437–C447CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • David Aitchison Smith
    • 1
  1. 1.Department of Physiology, Anatomy and MicrobiologyLa Trobe UniversityMelbourneAustralia

Personalised recommendations