Beam-Domain Full-Duplex Massive MIMO Transmission in the Cellular System

  • Kui Xu
  • Xiaochen Xia
  • Yurong Wang
  • Wei Xie
  • Dongmei Zhang


Co-time co-frequency uplink and downlink (CCUD) transmission was considered challenging in the cellular system due to the strong self-interference (SI) between the transmitter and receiver of base station (BS). In this chapter, by investigating the beam-domain representation of channels based on the basis expansion model, we propose a beam-domain full-duplex (BDFD) massive multiple-input multiple-output (MIMO) scheme to make the CCUD transmission possible. The key idea of the BDFD scheme lies in intelligently scheduling the uplink and downlink user equipments (UEs) based on the beam-domain distributions of their associated channels to mitigate SI and enhance transmission efficiency. We show that the BDFD scheme achieves significant saving in uplink/downlink training resource and achieves the uplink and downlink sum capacities simultaneously as the number of BS antennas approaches to infinity. The superiority of the BDFD scheme over the traditional time-division duplex/frequency-division duplex massive MIMO is evaluated through simulation for the macro-cell environment. The results show that the spectral efficiency gain can even exceed in the specific scenarios, since the BDFD scheme utilizes the time-frequency resource more efficiently in both training and data transmission phases.


Cellular system Massive MIMO Co-time co-frequency uplink and downlink transmission Beam-domain full-duplex Spectral efficiency 



This work was supported in part by National Natural Science Foundation of China under Grant 61671472 and in part by Jiangsu Province Natural Science Foundation under Grant BK20160079.


  1. 1.
    T.L. Marzetta, Noncooperative cellular wireless with unlimited numbers of BS antennas. IEEE Trans. Wirel. Commun. 9(11), 3590–3600 (2010)CrossRefGoogle Scholar
  2. 2.
    H.Q. Ngo, E.G. Larsson, T.L. Marzetta, Energy and spectral efficiency of very large multiuser MIMO systems. IEEE Trans. Commun. 61(4), 1436–1449 (2013)CrossRefGoogle Scholar
  3. 3.
    J. Hoydis, S. Brink, M. Debbah, Massive MIMO in UL/DL of cellular networks: how many antennas do we need? IEEE J. Sel. Areas Commun. 31(2), 160–171 (2013)CrossRefGoogle Scholar
  4. 4.
    J. Zhang, C.K. Wen, S. Jin, X. Gao, K. Wong, On capacity of large-scale MIMO multiple access channels with distributed sets of correlated antennas. IEEE J. Sel. Areas Commun. 31(2), 133–148 (2013)CrossRefGoogle Scholar
  5. 5.
    H. Cui, L. Song, B. Jiao, Multi-pair two-way amplify-and-forward relaying with very large number of relay antennas. IEEE Trans. Wirel. Commun. 13(5), 2636–2645 (2014)CrossRefGoogle Scholar
  6. 6.
    L. You, X. Gao, X.G. Xia, N. Ma, Y. Peng, Pilot reuse for massive MIMO transmission over spatially correlated rayleigh fading channels. IEEE Trans. Wirel. Commun. 14(6), 3352–3366 (2015)CrossRefGoogle Scholar
  7. 7.
    S. Jin, X. Liang, K.K. Wong, X. Gao, Q. Zhu, Ergodic rate analysis for multipair massive MIMO two-way relay networks. IEEE Trans. Wirel. Commun. 14(3), 1480–1491 (2015)CrossRefGoogle Scholar
  8. 8.
    A. Adhikary, J. Nam, J.-Y. Ahn, G. Caire, Joint spatial division and multiplexing: the large-scale array regime. IEEE Trans. Inf. Theory 59(10), 6441–6463 (2013)MathSciNetCrossRefGoogle Scholar
  9. 9.
    C. Sun, X. Gao, S. Jin, M. Matthaiou, Z. Ding, C. Xiao, Beam division multiple access transmission for massive MIMO communications. IEEE Trans. Commun. 63(6), 2170–2184 (2015)CrossRefGoogle Scholar
  10. 10.
    A. Liu, V. Lau, Phase only RF precoding for massive MIMO systems with limited RF chains. IEEE Trans. Signal Process. 62(17), 4505–4515 (2014)MathSciNetCrossRefGoogle Scholar
  11. 11.
    D. Kim, G. Lee, Y. Sung, Two-stage beamformer design for massive MIMO downlink by trace quotient formulation. IEEE Trans. Commun. 63(6), 2200–2211 (2015)CrossRefGoogle Scholar
  12. 12.
    Y. Jang, K. Min, S. Park, S. Choi, Spatial resource utilization to maximize uplink spectral efficiency in full-duplex massive MIMO. In Proc. IEEE Int. Conf. Commun., London, UK, 2015, pp. 1583–1588Google Scholar
  13. 13.
    Y. Li, P. Fan, L. Anatolii, L. Liu, On the spectral and energy efficiency of full-duplex small cell wireless systems with massive MIMO. IEEE Trans. Veh. Technol. 66(3), 2339–2353 (2017)CrossRefGoogle Scholar
  14. 14.
    H. Tabassum, A.H. Sakr, E. Hossain, Massive MIMO-enabled wireless backhauls for full-duplex small cells. In Proc. IEEE Global Commun. Conf., San Diego, 2015, pp. 1–6Google Scholar
  15. 15.
    R. Mai, D.H.N. Nguyen, T. Le-Ngoc, Joint MSE-based hybrid precoder and equalizer design for full-duplex massive MIMO systems. In Proc. IEEE Int. Conf. Commun., Kuala Lumpur, Malaysia, 2016, pp. 1–6Google Scholar
  16. 16.
    B. Li, D. Zhu, P. Liang, Small cell in-band wireless backhaul in massive MIMO systems: a cooperation of next-generation techniques. IEEE Trans. Wirel. Commun. 14(12), 7057–7069 (2015)CrossRefGoogle Scholar
  17. 17.
    A. Sabharwal, P. Schniter, D. Guo, D.W. Bliss, S. Rangarajan, R. Wichman, In-band full-duplex wireless: challenges and opportunities. IEEE J. Sel. Areas Commun. 32(9), 1637–1652 (2014)CrossRefGoogle Scholar
  18. 18.
    H.Q. Ngo, H.A. Suraweera, M. Matthaiou, E.G. Larsson, Multipair full-duplex relaying with massive arrays and linear processing. IEEE J. Sel. Areas Commun. 32(9), 1721–1737 (2014)CrossRefGoogle Scholar
  19. 19.
    G. Zheng, Joint beamforming optimization and power control for full duplex MIMO two-way relay channel. IEEE Trans. Signal Process. 63(3), 555–566 (2015)MathSciNetCrossRefGoogle Scholar
  20. 20.
    D. Bharadia, E. McMilin, S. Katti, Full duplex radios. In Proc ACM Sigcomm, Hong Kong, China, Aug. 2013, pp. 375–386Google Scholar
  21. 21.
    3GPP, Universal mobile telecommunications system (UMTS); spatial channel model for multiple input multiple output (MIMO) simulations. In v.12.0.0, Tech. Rep. TR 25.996, Jun. 2012. [Online]. Available:
  22. 22.
    K.I. Pedersen, P.E. Mogensen, B.H. Fleury, A stochastic model of the temporal and azimuthal dispersion seen at the base station in outdoor propagation environments. IEEE Trans. Veh. Technol. 49(2), 437–447 (2000)CrossRefGoogle Scholar
  23. 23.
    G.B. Giannakis, C. Tepedelenlioglu, Basis expansion models and diversity techniques for blind identification and equalization of time-varying channels. Proc. IEEE 86(10), 1969–1986 (1998)CrossRefGoogle Scholar
  24. 24.
    S. Goyal, P. Liu, S.S. Panwar, R.A. Difazio, R. Yang, E. Bala, Full duplex cellular systems: will doubling interference prevent doubling capacity? IEEE Commun. Mag. 53(5), 121–127 (2015)CrossRefGoogle Scholar
  25. 25.
    E. Everett, A. Sahai, aA. Sabharwal, Passive self-interference suppression for full-duplex infrastructure nodes. IEEE Trans. Wirel. Commun. 13(2), 680–694 (2014)CrossRefGoogle Scholar
  26. 26.
    J. Singh, S. Ramakrishna, On the feasibility of codebook-based beamforming in millimeter wave systems with multiple antenna arrays. IEEE Trans. Wirel. Commun. 14(5), 2670–2683 (2015)CrossRefGoogle Scholar
  27. 27.
    Z.M. Liu, Y.Y. Zhou, A unified framework and sparse Bayesian perspective for direction-of-arrival estimation in the presence of array imperfections. IEEE Trans. Signal Process. 61(15), 3786–3798 (2013)MathSciNetCrossRefGoogle Scholar
  28. 28.
    J.C. Shen, J. Zhang, E. Alsusa, K.B. Letaief, Compressed CSI acquisition in FDD massive MIMO with partial support information. In Proc. IEEE Int. Conf. Commun., London, UK, Jun. 2015, pp. 1459–1464Google Scholar
  29. 29.
    J.O. Smith, Spectral Audio Signal Processing, W3, 2011. [Online]. Available:
  30. 30.
    S. Vishwanath, N. Jindal, A. Goldsmith, Duality, achievable rates, and sum-rate capacity of Gaussian MIMO broadcast channels. IEEE Trans. Inf. Theory 49(10), 2658–2668 (2003)MathSciNetCrossRefGoogle Scholar
  31. 31.
    A. Barg, D.Y. Nogin, Bounds on packings of spheres in the Grassmann manifold. IEEE Trans. Inf. Theory 48(9), 2450–2454 (2002)MathSciNetCrossRefGoogle Scholar
  32. 32.
    S.M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory (Prentice-Hall, Englewood Cliffs, 1993)zbMATHGoogle Scholar
  33. 33.
    G. Caire, N. Jindal, M. Kobayashi, N. Ravindran, Multiuser MIMO achievable rates with downlink training and channel state feedback. IEEE Trans. Inf. Theory 56(6), 2845–2866 (2010)MathSciNetCrossRefGoogle Scholar
  34. 34.
    D. Nguyen, L.-N. Tran, P. Pirinen, M. Latva-aho, Precoding for full duplex multiuser MIMO systems: Spectral and energy efficiency maximization. IEEE Trans. Signal Process. 61(16), 4038–4050 (2013)MathSciNetCrossRefGoogle Scholar
  35. 35.
    B. Hassibi, B.M. Hochwald, How much training is needed in multiple antenna wireless links? IEEE Trans. Inf. Theory 49(4), 951–963 (2003)CrossRefGoogle Scholar
  36. 36.
    3GPP, Further enhancements to LTE time division duplex (TDD) for downlink-uplink (DL-UL) interference management and traffic adaptation. In v.11.0.0, Tech. Rep. 36.828, Jun. 2012. [Online]. Available:
  37. 37.
    H.A. Suraweera, I. Krikidis, G. Zheng, C. Yuen, P.J. Smith, Low complexity end-to-end performance optimization in MIMO full-duplex relay systems. IEEE Trans. Wirel. Commun. 13(2), 913–927 (2014)CrossRefGoogle Scholar
  38. 38.
    X. Xia, D. Zhang, K. Xu, W. Ma, Y. Xu, Hardware impairments aware transceiver for full-duplex massive MIMO relaying. IEEE Trans. Signal Process. 63(24), 6565–6580 (2015)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Kui Xu
    • 1
  • Xiaochen Xia
    • 1
  • Yurong Wang
    • 1
  • Wei Xie
    • 1
  • Dongmei Zhang
    • 1
  1. 1.Army Engineering University of PLANanjingChina

Personalised recommendations