Advertisement

5G Security: Concepts and Challenges

  • Poorna Pravallika Sriram
  • Hwang-Cheng Wang
  • Hema Ganesh Jami
  • Kathiravan Srinivasan
Chapter

Abstract

In the near future, the world will experience the 5G technology which is capable of offering many advanced features. As people get a deeper understanding of mobile communication, they also expect a higher level of privacy and security. Communication security involves the delivery of contents to the intended recipients while preventing the unauthorized access in an intelligible form by interceptors. The main objective of this chapter is to explain why security is fundamental to 5G and how it is different from 2G/3G/4G securities in relation to obligations, threats, and solutions. We also focus on physical layer security, which safeguards data confidentiality by exploiting the intrinsic randomness of the communications medium and reaping the benefits offered by the disruptive technologies of 5G. The standards and characteristics of 5G are also discussed in the chapter. The design architecture of the 5G network plan is included to address the challenges perceived. Based upon the experts’ knowledge, the roadmap to 5G is specified in the communication ecosystem. Security needs to be established to not only protect users from the existing threats but also address the rising and emerging threats. There are also many more existing concepts along with the security protocols to improve the resilience of 5G radio access networks. 5G security will have to take a quantum leap to meet the demands of modern society.

Keywords

Evolution of cellular networks 5th generation Security Security models Security protocols 

Abbreviations

AKA

Authentication and Key Agreement protocol

AMTS

Advanced mobile telephone system

AN

Artificial noise

API

Application programming interface

ASM

Antenna subset modulation

BC-CM

Broadcast channel with confidential message

BER

Bit error rate

BS

Base station

BYOD

Bring your own device

CR

Cognitive radio

DNS

Domain Name System

DoF

Degrees of Freedom

EAP

Edge Automation Platform

eMBB

Enhanced Mobile Broadband

EPS

Evolved Packet System

ETCI

European Telecommunications Standards Institute

ETSI

European Telecommunications Standards Institute

FDD

Frequency Division Duplex

FDMA

Frequency Division Multiple Access

HD

High Definition

HIP

Host Identity Protocol

HTTP

Hypertext Transfer Protocol

IEC

International Electro-technical Commission

IEEE

Institute of Electrical and Electronics Engineers

IETF

Internet Engineering Task Force

IMSI

International Mobile Subscriber Identity

IMT

International Mobile Telecommunication

IMTS

Improved Mobile Telephone System

IP

Internet Protocol

IPv4

Internet Protocol version 4

IPv6

Internet Protocol version 6

IPWAVE

Internet Protocol Wireless Access in Vehicular Environment

ISO

International Organization for Standardization

ITU

International Telecommunication Union

KKT

Karush-Kuhn-Tucker

LDPC

Low-density parity check

LTE

Long-Term Evolution

M2M

Machine to machine

MA-WC

Multiple access wiretap channel

MIMO

Multiple input, multiple output

mmWave

Millimeter Wave

MPWG

Mobile Platform Work Group

MTS

Mobile telephone system

NERC

North American Electric Reliability Corporation

NOMA

Non-orthogonal multiple access

NP

Network planning

ONF

Open Networking Foundation

PTT

Push to talk

QoS

Quality of service

RAN

Radio access network

RS

Relay stations

SDO

Standards Development Organization

SDR

Software-defined radio

SIC

Self-interference cancellation

SINR

Signal-to-interference-noise ratio

TCG

Trusted Computing Group

TCP

Transmission Control Protocol

TDD

Time division duplex

UAV

Unmanned aerial vehicle

USIM

Universal Subscriber Identity Module

WG

Working group

ZFBF

Zero-forcing beam-forming

References

  1. 1.
    G. Asvin, H. Modi, S.K. Patel, 5G technology of mobile communication: A survey, in IEEE International Conference on Intelligent Systems and Signal Processing (ISSP), Gujarat, 2013, pp. 288–292Google Scholar
  2. 2.
    Internet source – isindexing.com
  3. 3.
    M.K. Arjmandi, 5G overview: Key technologies, in Opportunities in 5G Networks: A Research and Development Perspective, ed. by F. Hu (CRC Press, Boca Raton, 2016)CrossRefGoogle Scholar
  4. 4.
    Internet source – www.nou.edu.ng
  5. 5.
    P. Sharma, Evolution of mobile wireless communication networks-1G to 5G as well as future prospective of next generation. Int. J. Comput. Sci. Mob. Comput. 2(8), 47–53 (2013)Google Scholar
  6. 6.
    Internet source – scm-fallersleben.ciando.com
  7. 7.
    M. Chen, Y. Qian, S. Mao, W. Tang, X. Yang, Software defined mobile network security. Mob Netw Appl 21(5), 729–743 (2016)CrossRefGoogle Scholar
  8. 8.
    Internet source – www.ericsson.com
  9. 9.
    M. Liyanage, I. Ahmad, A. B. Abro, A. Gurtov, M. Ylianttila (eds.), A Comprehensive Guide to 5G Security (Wiley, Hoboken, 2018)Google Scholar
  10. 10.
    V.-G. Nguyen, A. Brunstrom, K.-J. Grinnemo, J. Taheri, 5G mobile networks -requirements, enabling technologies, and research activities, in A Comprehensive Guide to 5G Security, (Wiley). https://www.etsi.org/etsi-security-week-2017/5g-securityGoogle Scholar
  11. 11.
    W. El-Beaino, A.M. El-Hajj, Z. Dawy, On radio network planning for next generation 5G networks: A case study, in International Conference on Communications, Signal Processing, and Their Applications (ICCSPA), Sharjah, 2015, pp. 1–6. https://doi.org/10.1109/ICCSPA.2015.7081315Google Scholar
  12. 12.
    Y. Elias, Z. Dawy, LTE radio network planning with Het-Nets: BS placement optimization using simulated annealing, in MELECON 2014–2014 17th IEEE Mediterranean Electro-Technical Conference, 2014Google Scholar
  13. 13.
    C.Y. Lee, H.G. Kang, Cell planning with capacity expansion in mobile communications: A Tabu search approach. IEEE Trans. Veh. Technol. 49(5), 1678–1691 (2000)CrossRefGoogle Scholar
  14. 14.
    Internet Source – hal.inria.fr
  15. 15.
    Z. Ribeiro, L.A. DaSilva, A framework for the dimensioning of broadband mobile networks supporting wireless internet services. IEEE Wirel. Commun. 9(3), 6–13 (2002)CrossRefGoogle Scholar
  16. 16.
    K. Tutschku, P. Tran-Gia, Spatial traffic estimation and characterization for mobile communication network design. IEEE J. Sel. Areas Commun. 16(5), 804–811 (1998)CrossRefGoogle Scholar
  17. 17.
    R. Pattuelli, V. Zingarelli, Precision of the estimation of area coverage by planning tools in cellular systems. IEEE Pers. Commun. 7(3), 50–53 (2000)CrossRefGoogle Scholar
  18. 18.
    A. Taufique et al., Planning wireless cellular networks of future: Outlook, challenges and opportunities. IEEE Access 5, 4821–4845 (2017)CrossRefGoogle Scholar
  19. 19.
    Internet source – 5g.ieee.org
  20. 20.
    Internet source – pubs.sciepub.com
  21. 21.
    L. Hermann, MIMO OFDM space time coding – spatial multiplexing, increasing performance and spectral efficiency in wireless systems, Part I technical basis (Technical report), 2007Google Scholar
  22. 22.
    A. Agarwal, G. Misra, K. Agarwal, The 5th generation mobile wireless networks – key concepts, network architecture and challenges. Am. J Electr Electron Eng 3(2), 22–28 (2015)Google Scholar
  23. 23.
    Xiaowei Zhang Detecon International GmbH, Cologne, Germany, Andreas Kunz Lenovo, Oberursel, Germany, Stefan Schröder T-Systems International GmbH, Bonn, Germany. 2017 IEEE Conference on Standards for Communications and Networking (CSCN)-Overview of 5G security in 3GPP (2017).Google Scholar
  24. 24.
    Internet Source – www.nosmut.com
  25. 25.
    Internet source – tamarin-prover.github.io
  26. 26.
    B. Schmidt, Formal Analysis of Key Exchange Protocols and Physical Protocols, PhD Thesis, ETH Zurich, 2012Google Scholar
  27. 27.
    S. Meier, Advancing Automated Security Protocol Verification, PhD Thesis, ETH Zurich, 2013Google Scholar
  28. 28.
    Internet source – www.phylaws-ict.org
  29. 29.
    N. Yang, L. Wang, G. Geraci, M. Elkashlan, J. Yuan, M. Di Renzo, Safeguarding 5G wireless communication networks using physical layer security. IEEE Commun. Mag. 53, 20 (2015)CrossRefGoogle Scholar
  30. 30.
    Internet source – www.faqs.org
  31. 31.
    M. Baldi, G. Ricciutelli, N. Maturo, F. Chiaraluce, Performance assessment and design of finite length LDPC codes for the Gaussian wiretap channel, in Proc. Int. Conf. Commun. (ICC’2015), London, June 2015, pp. 435–440Google Scholar
  32. 32.
    H. Mahdavifar, A. Vardy, Achieving the secrecy capacity of wiretap channels using polar codes. IEEE Trans. Inf. Theory 57, 6428–6443 (2011)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Y. Wu, R. Schober, D.W.K. Ng, C. Xiao, G. Caire, Secure massive MIMO transmission with an active eavesdropper. IEEE Trans. Inf. Theory, 1–22 (2016)Google Scholar
  34. 34.
    K. Guo, Y. Guo, G. Ascheid, Security constrained power allocation in MU-massive MIMO with distributed antennas. IEEE Trans. Wireless Commun. 15(12), 8139–8153 (2016)CrossRefGoogle Scholar
  35. 35.
    Y. Zhang, A. Liu, C. Gong, G. Yang, S. Yang, Polar-LDPC concatenated coding for the AWGN wiretap channel. IEEE Commun. Lett. 18, 1683–1686 (2014)CrossRefGoogle Scholar
  36. 36.
    Y. Wu, R. Schober, D.W.K. Ng, C. Xiao, G. Caire, Secure massive MIMO transmission in the presence of an active eavesdropper, in 2015 IEEE International Conference on Communications (ICC), 2015Google Scholar
  37. 37.
    T.T. Do, H.Q. Ngo, T.Q. Duong, T.J. Oechtering, M. Skoglund, Massive MIMO pilot retransmission strategies for robustification against jamming. IEEE Wireless Commun. Lett. 6(1), 58–61 (2017)Google Scholar
  38. 38.
    Internet source – www.scientificamerican.com
  39. 39.
    Y. Wu, A. Khisti, C. Xiao, G. Caire, K.-K. Wong, X. Gao, A survey of physical layer security techniques for 5G wireless networks and challenges. IEEE J Sel. Areas Commun. 36(4), 679–695 (2018)CrossRefGoogle Scholar
  40. 40.
    D.B. Rawat, K. Neupane, M. Song, A novel algorithm for secrecy rate analysis in massive MIMO system with target SINR requirement, in Proc. INFOCOM’2016, San Francisco, April 2016, pp. 1–6Google Scholar
  41. 41.
    H.-M. Wang, T.-X. Zheng, Physical Layer Security in Random Cellular Networks (Springer, Singapore, 2016)CrossRefGoogle Scholar
  42. 42.
    Z. Ding, Z. Zhao, M. Peng, H.V. Poor, On the spectral efficiency and security enhancements of NOMA assisted multicast-unicast streaming. IEEE Trans. Commun. 65(7), 3151–3163 (2017)CrossRefGoogle Scholar
  43. 43.
    G. Zheng, I. Krikidis, J. Li, A.P. Petropulu, B. Ottersten, Improving physical layer secrecy using full-duplex jamming receivers. IEEE Trans. Signal Process. 61, 4962–4974 (2013)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Wireless Networks, Springer, 2016. https://www.cs.cmu.edu/~prs/wirelessS16/
  45. 45.
    G. Chen, Y. Gong, P. Xiao, J.A. Chambers, Physical layer network security in the full- duplex relay system. IEEE Trans. Inf. Forensics Secur. 10(3), 574–583 (2015)CrossRefGoogle Scholar
  46. 46.
    L. Li, Z. Chen, D. Zhang, J. Fang, A full-duplex Bob in the MIMO Gaussian wiretap channel: Scheme and performance. IEEE Signal Process Lett. 23, 107–111 (2016)CrossRefGoogle Scholar
  47. 47.
    Z.H. Awan, A. Zaidi, L. Vandendorpe, Multi access channel with partially cooperating encoders and security constraints. IEEE Trans. Inf. Forensics Secur. 8, 1243 (2013)CrossRefGoogle Scholar
  48. 48.
    F. Zhu, F. Gao, M. Yao, H. Zou, Joint information and jamming-beam forming for physical layer security with full duplex base station. IEEE Trans. Signal Process. 64(12), 6391–6401 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Poorna Pravallika Sriram
    • 1
  • Hwang-Cheng Wang
    • 2
  • Hema Ganesh Jami
    • 3
  • Kathiravan Srinivasan
    • 4
  1. 1.Department of Electronics & Communication EngineeringVel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and TechnologyChennaiIndia
  2. 2.Department of Electronic EngineeringNational Ilan University (NIU)Yilan CityTaiwan
  3. 3.National Ilan UniversityYilan CityTaiwan
  4. 4.School of Information Technology and Engineering, Vellore Institute of Technology (VIT)VelloreIndia

Personalised recommendations