Carbon Allotropes in the Environment and Their Toxicity

  • Boris Ildusovich Kharisov
  • Oxana Vasilievna Kharissova


As well as other contaminants (particular matter, heavy metal ions, toxic gases, etc.), carbon allotropes are severe contaminants in air, water, and soil. For example, for diesel vehicles, the black carbon (BC), organic carbon (OC), and other inorganic components of fine particulate matter (PM), as well as carbon monoxide (CO), nitrogen oxides (NOx), sulfur dioxide (SO2), ethane, acetylene, benzene, toluene, and other compounds, are typical contaminants under real-world driving conditions [1]. Among carbon allotropes in the environment, the most important carbons in the elemental form are black carbon (mainly), carbon nanotubes, graphene, and fullerenes in lesser quantities. Engineered carbon nanoparticles range from the well-established multi-ton production of carbon black (CB) and other carbon allotropes for applications in plastics and car tires to microgram quantities of fluorescent quantum dots used as markers in biological imaging. All of them possess distinct toxicity, depending on many factors (type of allotrope, particle size, form, structural defects, coating molecules, grade of functionalization, etc.). So, the nanotoxicology, as a scientific discipline, shall be quite different from occupational hygiene in approach and context. Understanding the toxicity of carbon nanomaterials and nano-enabled products is important for human and environmental health and safety as well as public acceptance.


Carbon allotropes Environment Toxicity Black carbon Particulate matter Combustion soot Fullerenes 


  1. 1.
    M. Zavala, L.T. Molina, T.I. Yacovitch, et al., Emission factors of black carbon and co-pollutants from diesel vehicles in Mexico City. Atmos. Chem. Phys. 17, 15293–15305 (2017)CrossRefGoogle Scholar
  2. 2.
    C.M. Long, M.A. Nascarella, P.A. Valberg, Carbon black vs. black carbon and other airborne materials containing elemental carbon: Physical and chemical distinctions. Environ. Pollut. 181, 271–286 (2013)CrossRefGoogle Scholar
  3. 3.
    S.G. DuBay, C.C. Fuldner, Bird specimens track 135 years of atmospheric black carbon and environmental policy. PNAS 114(43), 11321–11326 (2017)CrossRefGoogle Scholar
  4. 4.
    B.M. Mohamed, N.K. Verma, A.M. Davies, A. McGowan, K. Crosbie Staunton, A. Prina-Mello, D. Kelleher, C.H. Botting, C.P. Causey, et al., Citrullination of proteins: A common post-translational modification pathway induced by different nanoparticlesin vitroandin vivo. Nanomedicine 7, 1181–1195 (2012). Scholar
  5. 5.
    A. Don Porto Carero, P.H. Hoet, L. Verschaeve, G. Schoeters, B. Nemery, Genotoxic effects of carbon black particles, diesel exhaust particles, and urban air particulates and their extracts on a human alveolar epithelial cell line (A549) and a human monocytic cell line (THP-1). Environ Mol. Mutagen 37(2), 155–163 (2001)CrossRefGoogle Scholar
  6. 6.
    J. Lohwacharin, S. Takizawa, P. Punyapalakul, Carbon black retention in saturated natural soils: Effects of flow conditions, soil surface roughness and soil organic matter. Environ. Pollut. 205, 131–138 (2015)CrossRefGoogle Scholar
  7. 7.
    M.W.I. Schmidt, Black carbon in soils and sediments. Analysis, distribution, implications, and current challenges. Glob. Biochem. Cycles 14(3), 777–793 (2000)CrossRefGoogle Scholar
  8. 8.
    S.J.K. Hussey, J. Purves, N. Allcock, V.E. Fernandes, P.S. Monks, J.M. Ketley, P.W. Andrew, J.A. Morrissey, Air pollution alters Staphylococcus aureus and Streptococcus pneumoniae biofilms, antibiotic tolerance and colonisation. Environ. Microbiol. 19(5), 1868–1880 (2017)CrossRefGoogle Scholar
  9. 9.
    N.D. Saenen, H. Bové, C. Steuwe, et al., Children’s urinary environmental carbon load. A novel marker reflecting residential ambient air pollution exposure? Am. J. Respir. Crit. Care Med. 196, 7 (2017). Scholar
  10. 10.
    J. Kolosnjaj-Tabi, F. Moussa, Anthropogenic carbon nanotubes and air pollution. Emission Control Sci. Technol. 3(3), 230–232 (2017)CrossRefGoogle Scholar
  11. 11.
    J. Du, S. Wang, H. You, X. Zhao, Understanding the toxicity of carbon nanotubes in the environment is crucial to the control of nanomaterials in producing and processing and the assessment of health risk for human: A review. Environ. Toxicol. Pharmacol. 36(2), 451–462 (2013)CrossRefGoogle Scholar
  12. 12.
    A. Helland, P. Wick, A. Koehler, K. Schmid, C. Som, Reviewing the environmental and human health Knowledge Base of carbon nanotubes. Environ. Health Perspect. 115(8), 1125–1131 (2007)CrossRefGoogle Scholar
  13. 13.
    J. Kolosnjaj-Tabi, J. Just, K.B. Hartman, et al., Anthropogenic carbon nanotubes found in the airways of parisian children. EBioMedicine 2, 1697–1704 (2015)CrossRefGoogle Scholar
  14. 14.
    J. Kolosnjaj-Tabi, H. Szwarc, F. Moussa, Carbon nanotubes: Culprit or witness of air pollution? Nano Today 15, 11–14 (2017)CrossRefGoogle Scholar
  15. 15.
    R. Girardello, S. Tasselli, N. Baranzini, et al., Effects of carbon nanotube environmental dispersion on an aquatic invertebrate, Hirudo medicinalis. PLoS ONE 10(12), e0144361 (2015)CrossRefGoogle Scholar
  16. 16.
    Y. Yang, Y. Xiao, M. Li, et al., Evaluation of complex toxicity of carbon nanotubes and sodium pentachlorophenol based on earthworm coelomocytes test. PLoS One 12(1), e0170092 (2017)CrossRefGoogle Scholar
  17. 17.
    A.M. Jastrzębska, A.R. Olszyna, The ecotoxicity of graphene family materials: Current status, knowledge gaps and future needs. J. Nanopart. Res. 17, 40 (2015)CrossRefGoogle Scholar
  18. 18.
    M. Pelin, L. Fusco, V. León, et al., Differential cytotoxic effects of graphene and graphene oxide on skin keratinocytes. Sci. Rep. 7, 40572 (2017)CrossRefGoogle Scholar
  19. 19.
    A.B. Seabra, A.J. Paula, R. de Lima, et al., Nanotoxicity of graphene and graphene oxide. Chem. Res. Toxicol. 27(2), 159–168 (2014)CrossRefGoogle Scholar
  20. 20.
    Z. Singh, Applications and toxicity of graphene family nanomaterials and their composites. Singh Z. Applications and toxicity of graphene family nanomaterials and their composites. Nanotechnol. Sci. Appl. 9, 15–28 (2016). Scholar
  21. 21.
    A. Maria Jastrzębska, P. Kurtycz, A. Roman Olszyna, Recent advances in graphene family materials toxicity investigations. J. Nanopart. Res. 14, 1320 (2012)CrossRefGoogle Scholar
  22. 22.
    X. Guo, N. Mei, Assessment of the toxic potential of graphene family nanomaterials. J. Food Drug Anal. 22(1), 105–115 (2014)CrossRefGoogle Scholar
  23. 23.
    H. Chung, M.J. Kimb, K. Ko, et al., Effects of graphene oxides on soil enzyme activity and microbial biomass. Sci. Total Environ. 514, 307–313 (2015)CrossRefGoogle Scholar
  24. 24.
    L. Ou, B. Song, et al., Toxicity of graphene-family nanoparticles: A general review of the origins and mechanisms. Part. Fibre Toxicol. 13, 57 (2016)CrossRefGoogle Scholar
  25. 25.
    J. Wang, T.B. Onasch, X. Ge, et al., Observation of fullerene soot in eastern China. Environ. Sci. Technol. Lett 3(4), 121–126 (2016)CrossRefGoogle Scholar
  26. 26.
    S.D. Snow, K. Chul Kim, K.J. Moor, et al., Functionalized fullerenes in water: A closer look. Environ. Sci. Technol. 49(4), 2147–2155 (2015)CrossRefGoogle Scholar
  27. 27.
    Z.-H. Tong, M.A. Bischo, L.F. Nies, et al., Influence of fullerene (C60) on soil bacterial communities: aqueous aggregate size and solvent co- introduction effects. Sci. Rep 6, 28069 (2016)CrossRefGoogle Scholar
  28. 28.
    D.Y. Lyon, L.K. Adams, J.C. Falkner, P.J.J. Alvarez, Antibacterial activity of fullerene water suspensions: Effects of preparation method and particle size. Environ. Sci. Technol. 40(14), 4360–4366 (2006)CrossRefGoogle Scholar
  29. 29.
    A. Johansen, A.L. Pedersen, K.A. Jensen, et al., Effects of C60 fullerene nanoparticles on soil bacteria and protozoans. Env. Toxicol. Chem. 27(9), 1895–1903 (2008)CrossRefGoogle Scholar
  30. 30.
    D.A. Navarro, R.S. Kookana, M.J. McLaughlin, J.K. Kirby, Fate of radiolabeled C60 fullerenes in aged soils. Environ. Pollut. 221, 293–300 (2017)CrossRefGoogle Scholar
  31. 31.
    R. Avanasi, W.A. Jackson, B. Sherwin, et al., C60 fullerene soil sorption, biodegradation, and plant uptake. Environ. Sci. Technol. 48(5), 2792–2797 (2014)CrossRefGoogle Scholar
  32. 32.
    X. Ma, C. Wang, Fullerene nanoparticles affect the fate and uptake of trichloroethylene in phytoremediation systems. Env. Eng. Sci. 27(10), 989–992 (2010)CrossRefGoogle Scholar
  33. 33.
    I. Joskoa, P. Oleszczuk, J. Pranagal, et al., Effect of biochars, activated carbon and multiwalled carbon nanotubes on phytotoxicity of sediment contaminated by inorganic and organic pollutants. Ecol. Eng. 60, 50–59 (2013)CrossRefGoogle Scholar
  34. 34.
    J. Shan, R. Ji, Y. Yu, Z. Xie, X. Yan, Biochar, activated carbon, and carbon nanotubes have di erent e ects on fate of 14C-catechol and microbial community in soil. Sci. Rep. 5, 16000 (2015)CrossRefGoogle Scholar
  35. 35.
    E.J. Petersen, D.X. Flores-Cervantes, T.D. Bucheli, et al., Quantification of carbon nanotubes in 1 environmental matrices: Current capabilities, 2 case studies, and future prospects. Environ. Sci. Technol. 50(9), 4587–4605 (2016)CrossRefGoogle Scholar
  36. 36.
    T. Baquero, S. Shukrallah, R. Karolia, et al., Quantification of airborne road-side pollution carbon nanoparticles. J. Phys. Conf. Ser. 644, 012023 (2015)CrossRefGoogle Scholar
  37. 37.
    M. Sharma, Understanding the mechanism of toxicity of carbon nanoparticles in humans in the new millennium: A systemic review. Indian J. Occup. Environ. Med. 14(1), 3–5 (2010)CrossRefGoogle Scholar
  38. 38.
  39. 39.
    I.A. Resitoglu, K. Altinisik, A. Keskin, The pollutant emissions from diesel-engine vehicles and exhaust aftertreatment systems. Clean Techn. Environ. Policy 17, 15–27 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Boris Ildusovich Kharisov
    • 1
  • Oxana Vasilievna Kharissova
    • 1
  1. 1.Universidad Autónoma de Nuevo LeónMonterreyMexico

Personalised recommendations