Advertisement

Solubilization and Dispersion of Carbon Allotropes and Their Metal-Complex Composites

  • Boris Ildusovich Kharisov
  • Oxana Vasilievna Kharissova
Chapter

Abstract

Currently, the area of carbon allotropes, in particular nanocarbons, is one of the most developing fields in chemistry and nanotechnology, where carbon nanotubes and graphene are leaders in the number of publications. Taking into account their existing and potential technical, biological, medical applications (in particular for drug delivery purposes), and many others, we note that the main difficulty to integrate such materials into devices and biological systems derives from their lack of solubility in organic and physiological solutions. Functionalization of carbon allotropes with the assistance of biological molecules remarkably improves their solubility in aqueous or organic environment and, thus, facilitates the development of novel biotechnology, biomedicine, and bioengineering. For example, the nanodiamonds (NDs) have got a series of distinct applications in various areas, in particular medicine, electrochemistry and creation of novel materials. Biomedical applications of NDs are well-developed and related with the recently established fact that carbon NDs are much more biocompatible than most other carbon nanomaterials, including carbon blacks, fullerenes, and carbon nanotubes [1]. Their tiny size, large surface area, and ease functionalization with biomolecules make NDs attractive for various biomedical applications both in vitro and in vivo, for instance, for single particle imaging in cells, drug delivery, protein separation, and biosensing [2, 3]. Similarly, water-soluble carbon nanoonions (CNOs) are used for biological imaging [4] and as promising theranostic agents [5].

Keywords

Solubilization Dispersion Carbon nanotubes Graphene Nanodiamonds Nanodots Graphite Metal complex 

References

  1. 1.
    Y. Xing, L. Dai, Nanodiamonds for nanomedicine. Nanomedicine 4(2), 207–218 (2009)CrossRefGoogle Scholar
  2. 2.
    V. Vaijayanthimala, H.-C. Chang, Functionalized fluorescent nanodiamonds for biomedical applications. Nanomedicine 4(1), 47–55 (2009)CrossRefGoogle Scholar
  3. 3.
    A.M. Schrand, S.A.C. Hens, O.A. Shenderova, Nanodiamond Particles: Properties and Perspectives for Bioapplications. Critical Reviews in Solid State and Materials Sciences 34(1–2), 18–74 (2009)CrossRefGoogle Scholar
  4. 4.
    M. Frasconi, V. Maffeis, J. Bartelmess, L. Echegoyen, S. Giordani, Highly surface functionalized carbon nano-onions for bright light bioimaging. Methods Appl. Fluoresc. 3, 044005 (2015)CrossRefGoogle Scholar
  5. 5.
    A. Camisasca, S. Giordani, Carbon nano-onions in biomedical applications: Promising theranostic agents. Inorg. Chim. Acta 468, 67–76 (2017)CrossRefGoogle Scholar
  6. 6.
    O.V. Kharissova, B. Kharisov, Solubilization and Dispersion of Carbon Nanotubes (Springer-Nature, New York, 2017), 250 ppCrossRefGoogle Scholar
  7. 7.
    F. Liang, E.W. Billups, Water-soluble single-wall carbon nanotubes as a platform technology for biomedical applications. US20070110658 (2007)Google Scholar
  8. 8.
    J.M. Tour, J.L. Hudson, C. Dyke, J.J. Stephenson, Functionalization of carbon nanotubes in acidic media. WO05113434 (2005)Google Scholar
  9. 9.
    T. Premkumar, R. Mezzenga, K.E. Geckeler, Carbon nanotubes in the liquid phase: Addressing the issue of dispersion. Small 8(9), 1299–1313 (2012)CrossRefGoogle Scholar
  10. 10.
    K.E. Geckeler, T. Premkumar, Carbon nanotubes: Are they dispersed or dissolved in liquids? Nanoscale Res. Lett. 6(1), X1–X3 (2011)CrossRefGoogle Scholar
  11. 11.
    M.J. Green, Analysis and measurement of carbon nanotube dispersions: Nanodispersion versus macrodispersion. Polym. Int. 59(10), 1319–1322 (2010)CrossRefGoogle Scholar
  12. 12.
    J. Hilding, E.A. Grulke, Z.G. Zhang, F. Lockwood, Dispersion of Carbon Nanotubes in Liquids. J. Disp. Sci. Techn. 24(1), 1–41 (2003)CrossRefGoogle Scholar
  13. 13.
    C. Backes Noncovalent Functionalization of Carbon Nanotubes: Fundamental Aspects of Dispersion and Separation in Water. Springer Theses (2016) 220 pp.Google Scholar
  14. 14.
    M. Wiesner, J.-Y. Bottero, Environmental Nanotechnology (McGraw-Hill Professional, New York, 2007), p. 540Google Scholar
  15. 15.
    K. Gonsalves, C. Halberstadt, C.T. Laurencin, L. Nair, Biomedical Nanostructures (Wiley, New York, 2007), p. 507Google Scholar
  16. 16.
    S.-K. Choi, Synthetic Multivalent Molecules: Concepts and Biomedical Applications (Wiley-Interscience, New York, 2004), p. 418Google Scholar
  17. 17.
    S. Reich, C. Thomsen, J. Maultzsch, Carbon Nanotubes: Basic Concepts and Physical Properties (Wiley-VCH, Weinheim, Germany, 2004), p. 224Google Scholar
  18. 18.
    A. Jorio, G. Dresselhaus, M.S. Dresselhaus, Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications (Springer, New York, 2008), p. 720Google Scholar
  19. 19.
    Y. Maeda, M. Yamada, T. Hasegawa, T. Akasaka, J. Lu, S. Nagase, Interaction of single-walled carbon nanotubes with amine. Nano 7(1), 1130001 (2012)CrossRefGoogle Scholar
  20. 20.
    Y.Y. Huang, E.M. Terentjev, Dispersion of Carbon Nanotubes: Mixing, Sonication, Stabilization, and Composite Properties. Polymers 4, 275–295 (2012)CrossRefGoogle Scholar
  21. 21.
    J. Labille, J. Brant, Stability of nanoparticles in water. Nanomedicine 5(6), 985–998 (2010)CrossRefGoogle Scholar
  22. 22.
    A. Di Crescenzo, V. Ettorre, A. Fontana, Non-covalent and reversible functionalization of carbon nanotubes. Beilstein J. Nanotechnol. 5, 1675–1690 (2014)CrossRefGoogle Scholar
  23. 23.
    X. Xin, G. Xu, H. Li, Dispersion and Property Manipulation of Carbon Nanotubes by Self-Assemblies of Amphiphilic Molecules, in Physical and Chemical Properties of Carbon Nanotubes, (INTECH, London, UK, 2013), pp. 255–273Google Scholar
  24. 24.
    M. Sanchez-Dominguez, C. Rodriguez-Abreu (eds.), Nanocolloids: A Meeting Point for Scientists and Technologists, 1st edn. (Elsevier, 2016). 536 ppGoogle Scholar
  25. 25.
    G. Babatunde Olowojoba, P. Fraunhofer, Assessment of Dispersion Evolution of Carbon Nanotubes in Shear-Mixed Epoxy Suspensions by Interfacial Polarization Measurement (Fraunhofer Verlag, Stuttgart, Germany, 2013), 128 ppGoogle Scholar
  26. 26.
    S. Won Kim et al., Surface modifications for the effective dispersion of carbon nanotubes in solvents and polymers. Carbon 50, 3–33 (2012)CrossRefGoogle Scholar
  27. 27.
    H. Li, Q. Li, Selective Separation of Single-Walled Carbon Nanotubes in Solution Hongbo, in Electronic Properties of Carbon Nanotubes, J.M. Marulanda (Ed) (INTECH, 2011), pp. 69–91, ISBN: 978-953-307-499-3. Available from: http://www.intechopen.com/books/electronic-properties-of-carbon-nanotubes/selectiveseparation-of-single-walled-carbon-nanotubes-in-solution
  28. 28.
    Y. Maeda, M. Yamada, T. Hasegawa, T. Akasaka, J. Lu, S. Nagase, Interaction of single-walled carbon nanotubes with amine. Nano 7(1), 1130001 (2012)CrossRefGoogle Scholar
  29. 29.
    S. Prakash Yadav, S. Singh, Carbon nanotube dispersion in nematic liquid crystals: An overview. Prog. Mater. Sci. 80, 38–76 (2016)CrossRefGoogle Scholar
  30. 30.
    Njuguna, J., Arda Vanli, O., Liang, R. A review of spectral methods for dispersion characterization of carbon nanotubes in aqueous suspensions. J. Spectrosc., 2015 2015, 463156, 11 pp.CrossRefGoogle Scholar
  31. 31.
    M. Hiroto, N. Naotoshi, Soluble carbon nanotubes and their applications. J. Nanosci. Nanotechn. 6(1), 16–27 (2006)Google Scholar
  32. 32.
    D. Tasis, N. Tagmatarchis, V. Georgakilas, M. Prato, Soluble carbon nanotubes. Chemistry 9(17), 4000–4008 (2003)CrossRefGoogle Scholar
  33. 33.
    N. Nakashima, T. Fujigaya, Fundamentals and Applications of Soluble Carbon Nanotubes. Chem. Lett. 36(6), 692 (2007)CrossRefGoogle Scholar
  34. 34.
    L. Lacerda, A. Bianco, M. Prato, K. Kostarelos, Carbon nanotubes as nanomedicines: From toxicology to pharmacology. Adv. Drug Deliv. Rev. 58(14), 1460–1470 (2006)CrossRefGoogle Scholar
  35. 35.
    A. Helland, P. Wick, A. Koehler, K. Schmid, C. Som, Reviewing the Environmental and Human Health Knowledge Base of Carbon Nanotubes. Environ. Health Perspect. 115(8), 1125–1131 (2007)CrossRefGoogle Scholar
  36. 36.
    P. Liu, Modifications of carbon nanotubes with polymers. Eur. Polym. J. 41(11), 2693–2703 (2005)CrossRefGoogle Scholar
  37. 37.
    R. Atif, F. Inam, Reasons and remedies for the agglomeration of multilayered graphene and carbon nanotubes in polymers. Beilstein J. Nanotechnol. 7, 1174–1196 (2016)CrossRefGoogle Scholar
  38. 38.
    N. Nakashima, Soluble carbon nanotubes. Int. J. Nanosci. 4, 119–137 (2005)CrossRefGoogle Scholar
  39. 39.
    H. Murakami, N. Nakashima, Soluble carbon nanotubes and their applications. J. Nanosci. Nanotechn. 6, 16–27 (2006)Google Scholar
  40. 40.
    Y. Yun, Z. Dong, V. Shanov, W.R. Heineman, H.B. Halsall, A. Bhattacharya, L. Conforti, M.J. Schulz, Nanotube electrodes and biosensors. Nano Today 2(6), 30–37 (2007)CrossRefGoogle Scholar
  41. 41.
    F. Torrens, G. Castellano, Effect of packing on the cluster nature of C nanotubes: An information entropy analysis. Microelectron. J. Nanosci. 38(12), 1109–1122 (2007)CrossRefGoogle Scholar
  42. 42.
    M. Jama, T. Singh, S.M. Gamaleldin, M. Koc, A. Samara, R.J. Isaifan, M.A. Atieh. Critical review on nanofluids: preparation, characterization, and applications. J. Nanomat. 2016, 6717624, 22 pp.Google Scholar
  43. 43.
    M.S. Patil, J.-H. Seo, S.-K. Kang, M.-Y. Lee, Review on synthesis, thermo-physical property, and heat transfer mechanism of nanofluids. Energies 9, 840, 17 pp (2016)CrossRefGoogle Scholar
  44. 44.
    C. Kleinstreuer, Z. Xu, Mathematical Modeling and Computer Simulations of Nanofluid Flow with Applications to Cooling and Lubrication. Fluids 1, 16, 33 pp (2016)CrossRefGoogle Scholar
  45. 45.
    S.S.J. Aravinda, S. Ramaprabhu, Graphene–multiwalled carbon nanotube-based nanofluids for improved heat dissipation. RSC Adv. 3, 4199–4206 (2013)CrossRefGoogle Scholar
  46. 46.
    S. Delfani, M. Karami, M.A.A. Akhavan Bahabadi, Experimental investigation on performance comparison of nanofluid-based direct absorption and flat plate solar collectors. Int. J. Nano Dimens. 7(1), 85–96 (2016)Google Scholar
  47. 47.
    H. Yoon, M. Yamashita, S. Ata, D.N. Futaba, T. Yamada, K. Hata, Controlling exfoliation in order to minimize damage during dispersion of long SWCNTs for advanced composites. Sci. Rep. 4, 3907 (2014)CrossRefGoogle Scholar
  48. 48.
    O. Byl, J. Jie Liu, J.T. Yates Jr., Etching of Carbon Nanotubes by Ozones - A Surface Area Study. Langmuir 21, 4200–4204 (2005)CrossRefGoogle Scholar
  49. 49.
    B. Sohrabi, N. Poorgholami-Bejarpasi, N. Nayeri, Dispersion of Carbon Nanotubes Using Mixed Surfactants: Experimental and Molecular Dynamics Simulation Studies. J. Phys. Chem. B 118, 3094–3103 (2014)CrossRefGoogle Scholar
  50. 50.
    A. Amiri, H.Z. Zardini, M. Shanbedi, M. Maghrebi, M. Baniadam, B. Tolueinia, Efficient method for functionalization of carbon nanotubes by lysine and improved antimicrobial activity and water-dispersion. Mater. Lett. 72, 153–156 (2012)CrossRefGoogle Scholar
  51. 51.
    A. Ansun-Casaos, L. Grasa, D. Pereboom, et al., In-vitro toxicity of carbon nanotube/polylysine colloids to colon cancer cells. IET Nanobiotechnol. 10(6), 374–381 (2016)CrossRefGoogle Scholar
  52. 52.
    Y. Marcus, A.L. Smith, M.V. Korobov, A.L. Mirakyan, N.V. Avramenko, E.B. Stukalin, Solubility of C60 Fullerene. J. Phys. Chem. B 105(13), 2499–2506 (2001)CrossRefGoogle Scholar
  53. 53.
    U. Ritter, Y.I. Prylutskyy, M.P. Evstigneev, N.A. Davidenko, V.V. Cherepanov, A.I. Senenko, O.A. Marchenko, A.G. Naumovets, Structural Features of Highly Stable Reproducible C60 Fullerene Aqueous Colloid Solution Probed by Various Techniques. Fullerenes Nanotub. Carbon Nanostructures 23(6), 530–534 (2015)CrossRefGoogle Scholar
  54. 54.
    X. Xu, L. Li, F. Yan, Q. Jia, Q. Wang, P. Ma, Predicting solubility of fullerene C60 in diverse organic solvents using norm indexes. J. Mol. Liq. 223, 603–610 (2016)CrossRefGoogle Scholar
  55. 55.
    J.D. Perea, S. Langner, M. Salvador, J. Kontos, G. Jarvas, F. Winkler, F. Machui, A. Görling, A. Dallos, T. Ameri, C.J. Brabec, Combined Computational Approach Based on Density Functional Theory and Artificial Neural Networks for Predicting The Solubility Parameters of Fullerenes. J. Phys. Chem. B 120(19), 4431–4438 (2016)CrossRefGoogle Scholar
  56. 56.
    Y.S. Youn, D.S. Kwag, E.S. Lee, Multifunctional nano-sized fullerenes for advanced tumor therapy. J. Pharm. Investig. 47(1), 1–10 (2017)CrossRefGoogle Scholar
  57. 57.
    F.Y. Hsieh, A.V. Zhilenkov, I.I. Voronov, E.A. Khakina, D.V. Mischenko, P.A. Troshin, S.H. Hsu, Water-Soluble Fullerene Derivatives as Brain Medicine: Surface Chemistry Determines If They Are Neuroprotective and Antitumor. ACS Appl. Mater. Interfaces 9(13), 11482–11492 (2017)CrossRefGoogle Scholar
  58. 58.
    I.V. Mikheev, E.S. Khimich, A.T. Rebrikova, D.S. Volkov, M.A. Proskurnin, M.V. Korobov, Quasi-equilibrium distribution of pristine fullerenes C60 and C70 in a water–toluene system. Carbon 111, 191–197 (2017)CrossRefGoogle Scholar
  59. 59.
    N.O. Mchedlov-Petrossyan, N.N. Kamneva, Y.T.M. Al-Shuuchi, A.I. Marynin, S.V. Shekhovtsov, The peculiar behavior of fullerene C60 in mixtures of ‘good’ and polar solvents: Colloidal particles in the toluene–methanol mixtures and some other systems. Colloids Surfaces A Physicochem. Eng. Asp. 509, 631–637 (2016)CrossRefGoogle Scholar
  60. 60.
    X. Tao, C. Li, B. Zhang, Y. He, Effects of aqueous stable fullerene nanocrystals (nC60) on the food conversion from Daphnia magna to Danio rerio in a simplified freshwater food chain. Chemosphere 145, 157–162 (2016)CrossRefGoogle Scholar
  61. 61.
    M. Siepi, J. Politi, P. Dardano, A. Amoresano, L. De Stefano, D.M. Monti, E. Notomista, Modified denatured lysozyme effectively solubilizes fullerene C60 nanoparticles in water. Nanotechnology 28(33), 335601 (2017)CrossRefGoogle Scholar
  62. 62.
    Y.A.J. Al-Hamadani, K. Hoon Chu, A. Son, et al., Stabilization and dispersion of carbon nanomaterials in aqueous solutions: A review. Sep. Purif. Technol. 156, 861–874 (2015)CrossRefGoogle Scholar
  63. 63.
    K.J. Moor, S.D. Snow, J.H. Kim, Environ. Differential Photoactivity of Aqueous [C60] and [C70] Fullerene Aggregates. Sci. Technol. 49(10), 5990–5998 (2015)CrossRefGoogle Scholar
  64. 64.
    C. Chen, C.T. Jafvert, Sorption of Buckminsterfullerene (C60) to Saturated Soils. Eviron. Sci. Techn. 43(19), 7370–7375 (2009)CrossRefGoogle Scholar
  65. 65.
    C.T. Jafvert, P.P. Kulkarni, Buckminsterfullerene’s (C60) octanol-water partition coefficient (Kow) and aqueous solubility. Environ. Sci. Technol. 42, 5945–5950 (2008)CrossRefGoogle Scholar
  66. 66.
    Y.J. Marcus, Solubilities of Buckminsterfullerene and Sulfur Hexafluoride in Various Solvents. Phys. Chem. B 101(42), 8617–8623 (1997)CrossRefGoogle Scholar
  67. 67.
    S. Yousefinejad, F. Honarasa, F. Abbasitabar, Z. Arianezhad, New LSER Model Based on Solvent Empirical Parameters for the Prediction and Description of the Solubility of Buckminsterfullerene in Various Solvents. J. Solut. Chem. 42(8), 1620–1632 (2013)CrossRefGoogle Scholar
  68. 68.
    B.A. Kowert, N.C. Dang, K.T. Sobush, L.G.S. Iii, Diffusion of Buckminsterfullerene in n-Alkanes. J. Phys. Chem. A 903, 1253–1257 (2003)CrossRefGoogle Scholar
  69. 69.
    M. Karakawa, T. Nagai, T. Irita, K. Adachi, Y. Ie, Y. Aso, Buckminsterfullerene derivatives bearing a fluoroalkyl group for use in organic photovoltaic cells. J. Fluor. Chem. 144, 51–58 (2012)CrossRefGoogle Scholar
  70. 70.
    N.V. Avramenko, A.L. Mirakyan, M.V. Korobov, Thermal behaviour of the crystals formed in the buckminsterfullerene-toluene, o-xylene and bromobenzene systems. Thermochim. Acta 299(1–2), 141–144 (1997)CrossRefGoogle Scholar
  71. 71.
    A.L. Balch, D.A. Costa, B.C. Noll, M.M. Olmstead, Oxidation of Buckminsterfullerene with m-Chloroperoxybenzoic Acid. Characterization of a Cs Isomer of the Diepoxide. J. Am. Chem. Soc. 117(35), 8926–8932 (1995)CrossRefGoogle Scholar
  72. 72.
    Q. Ying, J. Marecek, B. Chu, Slow aggregation of buckminsterfullerene (C& in benzene solution. Chem. Phys. Lett. 219(3–4), 214–218 (1994)CrossRefGoogle Scholar
  73. 73.
    K.N. Semenov, N.A. Charykov, E.R. López, J. Fernández, V.V. Sharoyko, I.V. Murin, Pressure dependence of the solubility of light fullerenes in n-nonane. J. Chem. Thermodyn. 112, 259–266 (2017)CrossRefGoogle Scholar
  74. 74.
    Á. Buvári-Barcza, T. Braun, L. Barcza, On the formation of water-soluble buckminsterfullerene-7-cyclodextrin complexes. Supramol. Chem. 4(2), 131–133 (1994)CrossRefGoogle Scholar
  75. 75.
    A. BuvariBarcza, L. Barcza, T. Braun, I. KonkolyThege, K. Ludanyi, K. Vekey, The Interaction of Buckminsterfullerene with Gamma-Cyclodextrin. Fuller. Sci. Technol. 5(2), 311–323 (1997)CrossRefGoogle Scholar
  76. 76.
    H. Ming Wang, G. Wenz, Molecular solubilization of fullerene C60 in water by γ-cyclodextrin thioethers. Beilstein J. Org. Chem. 8, 1644–1651 (2012)CrossRefGoogle Scholar
  77. 77.
    K.N. Semenov, N.A. Charykov, I.V. Murin, Y.V. Pukharenko, Physico-chemical properties of the C60-tris-malonic derivative water solutions. J. Mol. Liq. 201, 50–58 (2015)CrossRefGoogle Scholar
  78. 78.
    G. Jiang, F. Yin, J. Duan, G. Li, Synthesis and properties of novel water-soluble fullerene–glycine derivatives as new materials for cancer therapy. J. Mater. Sci. Mater. Med. 26(1), 5348 (2015)CrossRefGoogle Scholar
  79. 79.
    G. Raffaini, F. Ganazzoli, A Molecular Dynamics Study of the Inclusion Complexes of C60 with Some Cyclodextrins. J. Phys. Chem. B 114, 7133–7139 (2010)CrossRefGoogle Scholar
  80. 80.
    S.M. Miller, Stable Colloidal Dispersions of C60 Fullerenes in Water: Evidence for Genotoxicity. Environ. Sci. Technol. 40(23), 7394–7401 (2006)CrossRefGoogle Scholar
  81. 81.
    R.D. Maples, M.E. Hilburn, B.S. Murdianti, R.S. Hikkaduwa Koralege, J.S. Williams, S.I. Kuriyavar, K.D. Ausman, Optimized solvent-exchange synthesis method for C60 colloidal dispersions. J. Colloid Interface Sci. 370(1), 27–31 (2012)CrossRefGoogle Scholar
  82. 82.
    Z. Wang, Z. Lu, Y. Zhao, X. Gao, Oxidation-induced water-solubilization and chemical functionalization of fullerenes C60, Gd@C60 and Gd@C82: Atomistic insights into the formation mechanisms and structures of fullerenols synthesized by different methods. Nanoscale 7(7), 2914–2925 (2015)CrossRefGoogle Scholar
  83. 83.
    S. Andreev, D. Purgina, E. Bashkatova, A. Garshev, A. Maerle, I. Andreev, N. Osipova, N. Shershakova, M. Khaitov, Study of Fullerene Aqueous Dispersion Prepared by Novel Dialysis Method: Simple Way to Fullerene Aqueous Solution. Fullerenes Nanotub. Carbon Nanostructures 23(9), 792–800 (2015)CrossRefGoogle Scholar
  84. 84.
    A. Ikeda, T. Iizuka, N. Maekubo, et al., Water Solubilization of Fullerene Derivatives by β-(1,3-1,6)-d-Glucan and Their Photodynamic Activities toward Macrophages. Chem. Asian J. 12(10), 1069–1074 (2017)CrossRefGoogle Scholar
  85. 85.
    S.J. Vance, V. Desai, B.O. Smith, M.W. Kennedy, A. Cooper, Aqueous solubilization of C60 fullerene by natural protein surfactants, latherin and ranaspumin-2. Biophys. Chem. 214-215, 27–32 (2016)CrossRefGoogle Scholar
  86. 86.
    K.N. Semenov, N.A. Charykov, V.A. Keskinov, A.K. Piartman, A.A. Blokhin, A.A. Kopyrin, Solubility of Light Fullerenes in Organic Solvents. J. Chem. Eng. Data 55(1), 13–36 (2010)CrossRefGoogle Scholar
  87. 87.
    Y. He, G. Zhao, B. Peng, Y. Li, High-Yield Synthesis and Electrochemical and Photovoltaic Properties of Indene-C70 Bisadduct. Adv. Funct. Mater. 20(19), 3383–3389 (2010)CrossRefGoogle Scholar
  88. 88.
    N. Sivaraman, R. Dhamodaran, I. Kaliappan, T.G. Srinivasan, P.R.P. Vasudeva Rao, C.K.C. Mathews, Solubility of C70 in Organic Solvents. Full. Sci. Technol. 2, 233–246 (1994)CrossRefGoogle Scholar
  89. 89.
    S. Martins, A. Fedorov, C.A.M. Afonso, C. Baleizão, M.N. Berberan-Santos, Fluorescence of fullerene C70 in ionic liquids. Chem. Phys. Lett. 497(1–3), 43–47 (2010)CrossRefGoogle Scholar
  90. 90.
    K.N. Semenov, N.A. Charykov, O.V. Arapov, V.A. Keskinov, A.K. Pyartman, M.S. Gutenev, O.V. Proskurina, M.Y. Matuzenko, V.V. Klepikov, The solubility of fullerene C70 in monocarboxylic acids Cn−1H2n−1COOH (n = 1–9) over the temperature range 20–80°C. Russ. J. Phys. Chem. A 82(6), 1045–1047 (2008)CrossRefGoogle Scholar
  91. 91.
    K.N. Semenov, N.A. Charykov, O.V. Arapov, Temperature Dependence of the Light Fullerenes Solubility in Natural Oils and Animal Fats. Fullerenes Nanotubes Carbon Nanostructures 17(3), 230–248 (2009)CrossRefGoogle Scholar
  92. 92.
    Y. Liu, R.L. Vander Wal, V.N. Khabashesku, Functionalization of Carbon Nano-onions by Direct Fluorination. Chem. Mater. 19(4), 778–786 (2007)CrossRefGoogle Scholar
  93. 93.
    O.V. Kuznetsov, M.X. Pulikkathara, R.F.M. Lobo, V.N. Khabasheskua, Solubilization of carbon nanoparticles, nanotubes, nanoonions, and nanodiamonds through covalent functionalization with sucrose. Russ. Chem. Bull. 59(8), 1495–1505 (2010)CrossRefGoogle Scholar
  94. 94.
    M.E. Plonska-Brzezinska, A. Lapinski, A.Z. Wilczewska, A.T. Dubis, A. Villalta-Cerdas, K. Winkler, L. Echegoyen, The synthesis and characterization of carbon nano-onions produced by solution ozonolysis. Carbon 49(15), 5079–5089 (2011)CrossRefGoogle Scholar
  95. 95.
    M. Ghosh, S.K. Sonkar, M. Saxena, S. Sarkar, Carbon Nano-onions for Imaging the Life Cycle of Drosophila Melanogaster. Small 7(22), 3170–3177 (2011)CrossRefGoogle Scholar
  96. 96.
    M.E. Plonska-Brzezinska, J. Mazurczyk, B. Palys, J. Breczko, A. Lapinski, A.T. Dubis, L. Echegoyen, Preparation and Characterization of Composites that Contain Small Carbon Nano-Onions and Conducting Polyaniline. Chem. - A Eur. J. 18(9), 2600–2608 (2012)CrossRefGoogle Scholar
  97. 97.
    E. Wajs, A. Molina-Ontoria, T.T. Nielsen, L. Echegoyen, A. Fragoso, Supramolecular solubilization of cyclodextrin-modified carbon nano-onions by host-guest interactions. Langmuir 31(1), 535–541 (2015)CrossRefGoogle Scholar
  98. 98.
    C. Zhang, J. Li, X. Zeng, Z. Yuan, N. Zhao, Graphene quantum dots derived from hollow carbon nano-onions. Nano Res. 11(1), 174–184 (2018)CrossRefGoogle Scholar
  99. 99.
    V. Sok, A. Fragoso, Preparation and characterization of alkaline phosphatase, horseradish peroxidase, and glucose oxidase conjugates with carboxylated carbon nano-onions. Prep. Biochem. Biotechnol. 48(2), 136–143 (2018)CrossRefGoogle Scholar
  100. 100.
    I.D.M. Turullois, B.H. García, E.A.M. Morales, E.M. Bergas, Exfoliation of graphite with deep eutectic solvents. U.S. Patent Application No. 15/078,283 (2016)Google Scholar
  101. 101.
    A. Hadi, J. Karimi-Sabet, S.M.A. Moosavian, S. Ghorbanian, Optimization of graphene production by exfoliation of graphite in supercritical ethanol: A response surface methodology approach. J. Supercrit. Fluids 107, 92–105 (2016)CrossRefGoogle Scholar
  102. 102.
    J.M. Tour, M. Pasquali, N. Behabtu et al., Dissolution of graphite, graphite and graphene nanoribbons in superacid solutions and manipulation thereof. US Patent 9534319B2 (2009)Google Scholar
  103. 103.
    G. Zhang, K. Zhou, R. Xu, H. Chen, X. Ma, B. Zhang, Z. Chang, X. Sun, An alternative pathway to water soluble functionalized graphene from the defluorination of graphite fluoride. Carbon 96, 1022–1027 (2016)CrossRefGoogle Scholar
  104. 104.
    T.B. Gorji, A.A. Ranjbar, A numerical and experimental investigation on the performance of a low-flux direct absorption solar collector (DASC) using graphite, magnetite and silver nanofluids. Sol. Energy 135, 493–505 (2016)CrossRefGoogle Scholar
  105. 105.
    P. Lian, J. Song, Z. Liu, J. Zhang, Y. Zhao, Y. Gao, Z. Tao, Z. He, L. Gao, H. Xia, Q. Guo, P. Huai, X. Zhou, Preparation of ultrafine-grain graphite by liquid dispersion technique for inhibiting the liquid fluoride salt infiltration. Carbon 102, 208–215 (2016)CrossRefGoogle Scholar
  106. 106.
    A.P.S. Chauhan, K. Chawla, Comparative studies on Graphite and Carbon Black powders, and their dispersions. J. Mol. Liq. 221, 292–297 (2016)CrossRefGoogle Scholar
  107. 107.
    M.H. Tsai, I.H. Tseng, Y.C. Huang, H.P. Yu, P.Y. Chang, Transparent Polyimide Film with Improved Water and Oxygen Barrier Property by In-Situ Exfoliating Graphite. Adv. Eng. Mater. 18(4), 582–590 (2016)CrossRefGoogle Scholar
  108. 108.
    J.I. Paredes, S. Villar-Rodil, A. Martinez-Alonso, J.M.D. Tascon, Graphene oxide dispersions in organic solvents. Langmuir 24(19), 10560–10564 (2008)CrossRefGoogle Scholar
  109. 109.
    S. Yumin, P. June, J.K. Yu, S. Maeng-Je, H. Seunghun, Synthesis of Graphene Layers Using Graphite Dispersion in Aqueous Surfactant Solutions. J. Korean Phys. Soc. 58(41), 938–942 (2011)Google Scholar
  110. 110.
    M. Lotya, Y. Hernandez, P.J. King, R.J. Smith, V. Nicolosi, L.S. Karlsson, M. Blighe, S. De, Z. Wang, I.T. Mcgovern, G.S. Duesberg, J.N. Coleman, F.M. Blighe, Liquid Phase Production of Graphene by Exfoliation of Graphite in Surfactant/Water Solutions. J. Am. Chem. Soc. 131(10), 3611–3620 (2009)CrossRefGoogle Scholar
  111. 111.
    A.B. Bourlinos, V. Georgakilas, R. Zboril, T.A. Sterioti, A.K. Stubos, Liquid-Phase Exfoliation of Graphite Towards Solubilized Graphenes. Small 5(16), 1841–1845 (2009)CrossRefGoogle Scholar
  112. 112.
    J. Xu, D.K. Dang, V.T. Tran, X. Liu, J.S. Chung, S.H. Hur, W.M. Choi, E.J. Kim, P.A. Kohl, Liquid-phase exfoliation of graphene in organic solvents with addition of naphthalene. J. Colloid Interface Sci. 418, 37–42 (2014)CrossRefGoogle Scholar
  113. 113.
    A.V. Alaferdov, A. Gholamipour-Shirazi, M.A. Canesqui, Y.A. Danilov, S.A. Moshkalev, Size-controlled synthesis of graphite nanoflakes and multi-layer graphene by liquid phase exfoliation of natural graphite. Carbon 69, 525–535 (2014)CrossRefGoogle Scholar
  114. 114.
    M. Tsuji, S. Kuboyama, T. Matsuzaki, T. Tsuji, Formation of hydrogen-capped polyynes by laser ablation of graphite particles suspended in solution. Carbon 41, 2141–2148 (2003)CrossRefGoogle Scholar
  115. 115.
    L. Zheng, Y. Chi, Y. Dong, J. Lin, B. Wang, Electrochemiluminescence of Water-Soluble Carbon Nanocrystals Released Electrochemically from Graphite. J. Am. Chem. Soc. 131(13), 4564–4565 (2009)CrossRefGoogle Scholar
  116. 116.
    Z. Lin, Y. Yao, Z. Li, Y. Liu, Z. Li, C.P. Wong, Solvent-Assisted Thermal Reduction of Graphite Oxide. J. Phys. Chem. C 114(35), 14819–14825 (2010)CrossRefGoogle Scholar
  117. 117.
    S. Niyogi, E. Bekyarova, M.E. Itkis, J.L. Mcwilliams, M.A. Hamon, R.C. Haddon, Solution Properties of Graphite and Graphene. J. Am. Chem. Soc. 128, 7720–7721 (2006)CrossRefGoogle Scholar
  118. 118.
    R. Zheng, J. Gao, J. Wang, S.P. Feng, H. Ohtani, J. Wang, G. Chen, Thermal Percolation in Stable Graphite Suspensions. Nano Lett. 12(1), 188–192 (2012)CrossRefGoogle Scholar
  119. 119.
    J. Liu, H. Jeong, J. Liu, K. Lee, J.-Y. Park, Y.H. Ahn, S. Lee, Reduction of functionalized graphite oxides by trioctylphosphine in non-polar organic solvents. Carbon 48, 2282–2289 (2010)CrossRefGoogle Scholar
  120. 120.
    J.H. Lee, Y.M. Choi, U. Paik, J.G. Park, The effect of carboxymethyl cellulose swelling on the stability of natural graphite particulates in an aqueous medium for lithium ion battery anodes. J. Electroceram. 17(2–4), 657–660 (2006)CrossRefGoogle Scholar
  121. 121.
    J.H. Lee, S. Lee, U. Paik, Y.M. Choi, The effect of carboxymethyl cellulose swelling on the stability of natural graphite particulates in an aqueous medium for lithium ion battery anodes. J. Power Sources 147(1–2), 249–255 (2005)CrossRefGoogle Scholar
  122. 122.
    M.R. Azani, A. Hassanpour, V. Carcelén, C. Gibaja, D. Granados, R. Mas-Ballesté, F. Zamora, Highly concentrated and stable few-layers graphene suspensions in pure and volatile organic solvents. Appl. Mater. Today 2, 17–23 (2016)CrossRefGoogle Scholar
  123. 123.
    W. Yang, A. Lucotti, M. Tommasini, W.A. Chalifoux, Bottom-Up Synthesis of Soluble and Narrow Graphene Nanoribbons Using Alkyne Benzannulations. J. Am. Chem. Soc. 138(29), 9137–9144 (2016)CrossRefGoogle Scholar
  124. 124.
    R.T.M. Ahmad, S.H. Hong, T.Z. Shen, J.K. Song, Water-assisted stable dispersal of graphene oxide in non-dispersible solvents and skin formation on the GO dispersion. Carbon 98, 188–194 (2016)CrossRefGoogle Scholar
  125. 125.
    J. Yang, Y. Xia, H. Song, B. Chen, Z. Zhang, Synthesis of the liquid-like graphene with excellent tribological properties. Tribol. Int. 2017(105), 118–124 (July 2016)Google Scholar
  126. 126.
    Y. Zhang, L. Ji, W. Li, Z. Zhang, L. Lu, L. Zhou, J. Liu, Y. Chen, L. Liu, W. Chen, Y. Zhang, Highly defective graphite for scalable synthesis of nitrogen doped holey graphene with high volumetric capacitance. J. Power Sources 334, 104–111 (2016)CrossRefGoogle Scholar
  127. 127.
    K. Lellala, K. Namratha, K. Byrappa, Ultrasonication assisted mild solvothermal synthesis and morphology study of few-layered graphene by colloidal suspensions of pristine graphene oxide. Microporous Mesoporous Mater. 226, 522–529 (2016)CrossRefGoogle Scholar
  128. 128.
    S. Park, J. An, I. Jung, et al., Colloidal Suspensions of Highly Reduced Graphene Oxide in a Wide Variety of Organic Solvents. Nano Lett. 9, 1593–1597 (2009)CrossRefGoogle Scholar
  129. 129.
    J. Texter, Graphene dispersions. Curr. Opin. Colloid Interface Sci. 19(2), 163–174 (2014)CrossRefGoogle Scholar
  130. 130.
    J.I. Paredes, S. Villar-Rodil, P. Solís-Fernández, M.J. Fernández-Merino, L. Guardia, A. Martínez-Alonso, et al., Preparation, characterization and fundamental studies on graphenes by liquid-phase processing of graphite. J. Alloys Compd. 536S, S450–S455 (2012)CrossRefGoogle Scholar
  131. 131.
    X. Cui, C. Zhang, R. Hao, Y. Hou, Liquid-phase exfoliation, functionalization and applications of graphene. Nanoscale 3, 2118–2126 (2011)CrossRefGoogle Scholar
  132. 132.
    U. Khan, H. Porwal, A. O'Neill, K. Nawaz, P. May, J.N. Coleman, Solvent-exfoliated graphene at extremely high concentration. Langmuir 27, 9077–9082 (2011)CrossRefGoogle Scholar
  133. 133.
    R.S. Edwards, K.S. Coleman, Graphene synthesis: relationship to applications. Nanoscale 5, 38–51 (2013)CrossRefGoogle Scholar
  134. 134.
    M. Cai, D. Thorpe, D.H. Adamson, H.C. Schniepp, Methods of graphite exfoliation. J. Mater. Chem. 22, 24992–25002 (2012)CrossRefGoogle Scholar
  135. 135.
    D. Konios, M.M. Stylianakis, E. Stratakis, E. Kymakis, Dispersion behaviour of graphene oxide and reduced graphene oxide. J. Colloid Interface Sci. 430, 108–112 (2014)CrossRefGoogle Scholar
  136. 136.
    J.-H. Ding, H.-R. Zhao, H.-B. Yu, A water-based green approach to large-scale production of aqueous compatible graphene nanoplatelets. Sci. Rep. 8(1), 5567 (2018)CrossRefGoogle Scholar
  137. 137.
    L. Dong, Z. Chen, X. Zhao, J. Ma, S. Lin, M. Li, Y. Bao, L. Chu, K. Leng, H. Lu, K.P. Loh, A non-dispersion strategy for large-scale production of ultra-high concentration graphene slurries in water. Nat. Commun. 9(1), 76 (2018)CrossRefGoogle Scholar
  138. 138.
    L. Guardia, M.J. Fernández-Merino, J.I. Paredes, P. Solís-Fernández, S. Villar-Rodil, A. Martínez-Alonso, J.M.D. Tascón, High-throughput production of pristine graphene in an aqueous dispersion assisted by non-ionic surfactants. Carbon 49(5), 1653–1662 (2011)CrossRefGoogle Scholar
  139. 139.
    K.A. Worsley, P. Ramesh, S.K. Mandal, S. Niyogi, M.E. Itkis, R.C. Haddon, Soluble graphene derived from graphite fluoride. Chem. Phys. Lett. 445(1–3), 51–56 (2007)CrossRefGoogle Scholar
  140. 140.
    J.M. Englert, J. Röhrl, C.D. Schmidt, R. Graupner, M. Hundhausen, F. Hauke, A. Hirsch, Soluble Graphene: Generation of Aqueous Graphene Solutions Aided by a Perylenebisimide-Based Bolaamphiphile. Adv. Mater. 21(42), 4265–4269 (2009)CrossRefGoogle Scholar
  141. 141.
    A. Ghosh, K.V. Rao, S.J. George, C.N.R. Rao, Noncovalent Functionalization, Exfoliation, and Solubilization of Graphene in Water by Employing a Fluorescent Coronene Carboxylate. Chem. - A Eur. J. 16(9), 2700–2704 (2010)CrossRefGoogle Scholar
  142. 142.
    A. Ghosh, K.V. Rao, R. Voggu, S.J. George, Non-covalent functionalization, solubilization of graphene and single-walled carbon nanotubes with aromatic donor and acceptor molecules. Chem. Phys. Lett. 488(4–6), 198–201 (2010)CrossRefGoogle Scholar
  143. 143.
    J. Zhang, J. Lei, R. Pan, Y. Xue, H. Ju, Highly sensitive electrocatalytic biosensing of hypoxanthine based on functionalization of graphene sheets with water-soluble conducting graft copolymer. Biosens. Bioelectron. 26(2), 371–376 (2010)CrossRefGoogle Scholar
  144. 144.
    D. Ager, V.A. Vasantha, R. Crombez, J. Texter, J. Accepted, Aqueous Graphene Dispersions–Optical Properties and Stimuli-Responsive Phase Transfer. ACS Nano 8(11), 11191–11205 (2014)CrossRefGoogle Scholar
  145. 145.
    D. Young Lee, Z. Khatun, J.-H. Lee, Y.-k. Lee, I. In, Blood compatible Graphene/Heparin conjugate through noncovalent chemistry. Biomacromolecules 12(2), 336–341 (2011)CrossRefGoogle Scholar
  146. 146.
    N. Abdullah, K. Hatano, D. Ando, M. Kubo, A. Koshio, F. Kokai, Solubilization of graphene flakes through covalent modification with well-defined azido-terminated poly(ε-caprolactone), J. Appl. Polym. Sci. 132(9), 6, 41569 (2015)Google Scholar
  147. 147.
    L. Guardia, M.J. Fernández-Merino, J.I. Paredes, P. Solís-Fernández, S. Villar-Rodil, A. Martínez-Alonso, J.M.D. Tascón, Ionizable Star Copolymer-Assisted Graphene Phase Transfer between Immiscible Liquids: Organic Solvent/Water/Ionic Liquid. Carbon N. Y. 49(5), 1653–1662 (2011)CrossRefGoogle Scholar
  148. 148.
    A. Mohammadi, M. Barikani, A.H. Doctorsafaei, A.P. Isfahani, E. Shams, B. Ghalei, Aqueous dispersion of polyurethane nanocomposites based on calix[4]arenes modified graphene oxide nanosheets: Preparation, characterization, and anti-corrosion properties. Chem. Eng. J. 349, 466–480 (2018)CrossRefGoogle Scholar
  149. 149.
    D.Y. Lee, Z. Khatun, J.H. Lee, Y.K. Lee, I. In, Blood Compatible Graphene/Heparin Conjugate through Noncovalent Chemistry. Biomacromolecules 12(2), 336–341 (2011)CrossRefGoogle Scholar
  150. 150.
    S. Lee, J.-S. Yeo, J.-M. Yun, D.-Y. Kim, Water dispersion of reduced graphene oxide stabilized via fullerenol semiconductor for organic solar cells. Opt. Mater. Express 7(7), 2487 (2017). https://doi.org/10.1364/OME.7.002487CrossRefGoogle Scholar
  151. 151.
    C. Desai, S. Mitra, Microwave induced carboxylation of nanodiamonds. Diam. Relat. Mater. 34, 65–69 (2013)CrossRefGoogle Scholar
  152. 152.
    P.C. In, C.H. Kuo, C.S. Chiang, Preparation of Fluorescent Magnetic Nanodiamonds and Cellular Imaging. J. Am. Chem. Soc. 130(46), 15476–15481 (2008)CrossRefGoogle Scholar
  153. 153.
    A. Pentecost, S. Gour, V. Mochalin, I. Knoke, Y. Gogotsi, Deaggregation of Nanodiamond Powders Using Salt- and Sugar-Assisted Milling. ACS Appl. Mater. Interfaces 2(11), 3289–3294 (2010)CrossRefGoogle Scholar
  154. 154.
    C.C. Li, C.L. Huang, Preparation of clear colloidal solutions of detonation nanodiamond in organic solvents. Colloids Surfaces A Physicochem. Eng. Asp. 353(1), 52–56 (2010)CrossRefGoogle Scholar
  155. 155.
    V.N. Mochalin, Y. Gogotsi, Wet Chemistry Route to Hydrophobic Blue Fluorescent Nanodiamond. J. Am. Chem. Soc. 131, 4594–4595 (2009)CrossRefGoogle Scholar
  156. 156.
    Y. Liu, Z. Gu, J.L. Margrave, V.N. Khabashesku, Functionalization of Nanoscale Diamond Powder: Fluoro-, Alkyl-, Amino-, and Amino Acid-Nanodiamond Derivatives. Chem. Mater. 16(20), 3924–3930 (2004)CrossRefGoogle Scholar
  157. 157.
    W.S. Yeap, S. Chen, K.P. Loh, Detonation Nanodiamond: An Organic Platform for the Suzuki Coupling of Organic Molecules. Langmuir 25(1), 185–191 (2009)CrossRefGoogle Scholar
  158. 158.
    G.-J. Lee, J.-J. Park, M.-K. Lee, C.K. Rhee, Stable dispersion of nanodiamonds in oil and their tribological properties as lubricant additives. Appl. Surf. Sci. 415, 24–27 (2017)CrossRefGoogle Scholar
  159. 159.
    R.-M. Chin, S.-J. Chang, C.-C. Li, C.-W. Chang, R.-H. Yu, Preparation of highly dispersed and concentrated aqueous suspensions of nanodiamonds using novel diblock dispersants. J. Colloid Interface Sci. 520, 119–126 (2018)CrossRefGoogle Scholar
  160. 160.
    R. Edgington, K.M. Spillane, G. Papageorgiou, W. Wray, et al., Functionalisation of Detonation Nanodiamond for Monodispersed, Soluble DNA-Nanodiamond Conjugates Using Mixed Silane Bead-Assisted Sonication Disintegration. Sci. Rep. 8(1), 728 (2018)CrossRefGoogle Scholar
  161. 161.
    Y. Zhu, X. Xu, B. Wang, Z. Feng, Surface modification and dispersion of nanodiamond in clean oil. China Particuology 2(3), 132–134 (2004)CrossRefGoogle Scholar
  162. 162.
    L. Zhao, T. Takimoto, M. Ito, N. Kitagawa, T. Kimura, N. Komatsu, Chromatographic Separation of Highly Soluble Diamond Nanoparticles Prepared by Polyglycerol Grafting. Angew. Chemie – Int Ed. 50(6), 1388–1392 (2011)CrossRefGoogle Scholar
  163. 163.
    J. Cheng, J. He, C. Li, Y. Yang, Facile approach to functionalize Nanodiamond particles with V-Shaped polymer brushes. Chem. Mater. 20(13), 4224–4230 (2008)CrossRefGoogle Scholar
  164. 164.
    H. Kato, A. Nakamura, M. Horie, S. Endoh, K. Fujita, H. Iwahashi, S. Kinugasa, Preparation and characterization of stable dispersions of carbon black and nanodiamond in culture medium for in vitro toxicity assessment. Carbon N. Y. 49(12), 3989–3997 (2011)CrossRefGoogle Scholar
  165. 165.
    A. Ito, T. Kondo, T. Aikawa, M. Yuasa, Hydrophobic/lipophilic nanodiamond particles fabricated by surface modification with 1-octadecene. Phys. Status Solidi Appl. Mater. Sci. 213(8), 2112–2116 (2016)CrossRefGoogle Scholar
  166. 166.
    M. Khan, L. Tiehu, A.A. Khurram, T.K. Zhao, C. Xiong, Z. Ali, T.A. Abbas, Asmatullah, I. Ahmad, A.L. Lone, S. Iqbal, A. Khan, Active sites determination and De-aggregation of detonation nanodiamond particles. Chiang Mai J. Sci. 44(3), 1113–1126 (2017)Google Scholar
  167. 167.
    T. Petit, L. Puskar, T. Dolenko, S. Choudhury, E. Ritter, S. Burikov, K. Laptinskiy, Q. Brzustowski, U. Schade, H. Yuzawa, M. Nagasaka, N. Kosugi, M. Kurzyp, A. Venerosy, H. Girard, J.C. Arnault, E. Osawa, N. Nunn, O. Shenderova, E.F. Aziz, Unusual water hydrogen bond network around hydrogenated nanodiamonds. J. Phys. Chem. C 121(9), 5185–5194 (2017)CrossRefGoogle Scholar
  168. 168.
    G.A. Inel, E.M. Ungureau, T.S. Varley, M. Hirani, K.B. Holt, Solvent–surface interactions between nanodiamond and ethanol studied with in situ infrared spectroscopy. Diam. Relat. Mater. 61, 7–13 (2016)CrossRefGoogle Scholar
  169. 169.
    G.M. Mikheev, R.Y. Krivenkov, T.N. Mogileva, K.G. Mikheev, N. Nunn, O.A. Shenderova, Saturable absorption in suspensions of single-digit detonation nanodiamonds. J. Phys. Chem. C 121(15), 8630–8635 (2017)CrossRefGoogle Scholar
  170. 170.
    T. Petit, Interactions with solvent, Nanodiamonds. Advanced Material Analysis, Properties and Applications. A volume in Micro and Nano Technologies, 6th edn. (Elsevier Inc., 2017), pp. 301–321Google Scholar
  171. 171.
    R. Sekiya, Y. Uemura, H. Naito, K. Naka, T. Haino, Chemical functionalisation and photoluminescence of Graphene Quantum Dots. Chem. - A Eur. J. 22(24), 8198–8206 (2016)CrossRefGoogle Scholar
  172. 172.
    Y.Z. Fan, Y. Zhang, N. Li, S.G. Liu, T. Liu, N.B. Li, H.Q. Luo, A facile synthesis of water-soluble carbon dots as a label-free fluorescent probe for rapid, selective and sensitive detection of picric acid. Sensors Actuators B Chem. 240, 949–955 (2017)CrossRefGoogle Scholar
  173. 173.
    L. Deng, X. Wang, Y. Kuang, C. Wang, L. Luo, F. Wang, X. Sun, Development of hydrophilicity gradient ultracentrifugation method for photoluminescence investigation of separated non-sedimental carbon dots. Nano Res. 8(9), 2810–2821 (2015)CrossRefGoogle Scholar
  174. 174.
    M. Wu, Y. Wang, W. Wu, C. Hu, X. Wang, J. Zheng, Z. Li, B. Jiang, J. Qiu, Preparation of functionalized water-soluble photoluminescent carbon quantum dots from petroleum coke. Carbon 78, 480–489 (2014)CrossRefGoogle Scholar
  175. 175.
    Y. Wang, Y. Meng, S. Wang, C. Li, W. Shi, J. Chen, J. Wang, R. Huang, Direct solvent-derived polymer-coated Nitrogen-Doped Carbon Nanodots with high water solubility for targeted fluorescence imaging of Glioma. Small 11(29), 3575–3581 (2015)CrossRefGoogle Scholar
  176. 176.
    F. Arcudi, L. Dordevic, M. Prato, Synthesis, separation, and characterization of small and highly fluorescent Nitrogen-Doped Carbon NanoDots. Angew. Chemie – Int Ed. 55(6), 2107–2112 (2016)CrossRefGoogle Scholar
  177. 177.
    J. Wei, X. Zhang, Y. Sheng, J. Shen, P. Huang, S. Guo, J. Pan, B. Feng, Dual functional carbon dots derived from cornflour via a simple one-pot hydrothermal route. Mater. Lett. 123, 107–111 (2014)CrossRefGoogle Scholar
  178. 178.
    A. Seral-Ascaso, R. Garriga, M.L. Sanjuán, et al., Laser chemistry synthesis, physicochemical properties, and chemical processing of nanostructured carbon foams. Nanoscale Res. Lett. 8, 233 (2013)CrossRefGoogle Scholar
  179. 179.
    Z. Said, A. Allagui, M. Ali Abdelkareem, H. Alawadhi, K. Elsaid, Acid-functionalized carbon nanofibers for high stability, thermoelectrical and electrochemical properties of nanofluids. J. Colloid Interface Sci. 520, 50–57 (2018)CrossRefGoogle Scholar
  180. 180.
    C.W. Tucker, Aqueous dispersion of carbon black. US Patent 2046758 (1936)Google Scholar
  181. 181.
    R.A. Forrester, P.P. Ells, Preparation of carbon black dispersions. US Patent 3118844A (1964)Google Scholar
  182. 182.
    C. Eisermann, C. Damm, W. Peukert. Dispersing and stabilization of carbon black with CTAB. http://www.ecis-web.eu/abstracts/berlin2011/T_678.pdf. Accessed 3 June 2018
  183. 183.
    M. Sharif, S.F. Golestani, F.E. Khatibi, H. Sarpoolaky, Dispersion and stability of carbon black nanoparticles, studied by ultraviolet–visible spectroscopy. J. Taiwan Inst. Chem. Eng. 40(5), 524–527 (2009)CrossRefGoogle Scholar
  184. 184.
    J. Cao, C.J. Jafta, J. Gong, et al., Synthesis of dispersible Mesoporous Nitrogen-Doped Hollow Carbon nanoplates with uniform hexagonal morphologies for supercapacitors. ACS Appl. Mater. Interfaces 8, 29628–29636 (2016)CrossRefGoogle Scholar
  185. 185.
    P. Pérez, Alkane C-H Activation by Single-Site Metal Catalysis (Catalysis by Metal Complexes) (Springer, 2012), p. 200Google Scholar
  186. 186.
    W. Rehman, N. Bashir, Transition Metal Complexes: The Future Medicines: Synthetic Route and Bioassay of Transition Metal Complexes (VDM Verlag Dr. Müller, Riga, Latvia, 2010), p. 64Google Scholar
  187. 187.
    N. Hadjiliadis, E. Sletten (eds.), Metal Complex - DNA Interactions (Wiley-Blackwell, 2009), p. 544Google Scholar
  188. 188.
    A.D. Pomogailo, Catalysis by Polymer-Immobilized Metal Complexes (CRC Press, Boca Raton, FL, USA,1999), p. 424Google Scholar
  189. 189.
    B.M. Andreev, Separation of Isotopes of Biogenic Elements in Two-phase Systems (Elsevier Science, New York, 2007), p. 316CrossRefGoogle Scholar
  190. 190.
    H. Bradl, Heavy Metals in the Environment: Origin, Interaction and Remediation, vol 6 (Interface Science and Technology, Elsevier Science, New York, 2005), p. 282CrossRefGoogle Scholar
  191. 191.
    D. Jain, A. Saha, A.A. Martí, Non-covalent ruthenium polypyridyl complexes-carbon nanotubes composites: an alternative for functional dissolution of carbon nanotubes in solution. Chem. Commun. 47(8), 2246–2248 (2011)CrossRefGoogle Scholar
  192. 192.
    X. Peng, H. Qin, L. Li, Y. Huang, J. Peng, Y. Cao, N. Komatsu, Water redissoluble chiral porphyrin-carbon nanotube composites. J. Mater. Chem. 22(12), 5764–5769 (2012)CrossRefGoogle Scholar
  193. 193.
    J. Cheng, X.P. Zou, G. Zhu, M.F. Wang, Y. Su, G.Q. Yang, X.M. Lu, Synthesis of iron-filled carbon nanotubes with a great excess of ferrocene and their magnetic properties. Solid State Commun. 149(39–40), 1619–1622 (2009)CrossRefGoogle Scholar
  194. 194.
    M.C. Schnitzler, M.M. Oliveira, D. Ugarte, A.J.G. Zarbin, One-step route to iron oxide-filled carbon nanotubes and bucky-onions based on the pyrolysis of organometallic precursors. Chem. Phys. Lett. 381(5), 541–548 (2003)CrossRefGoogle Scholar
  195. 195.
    V. Georgakilas, D. Gournis, V. Tzitzios, L. Pasquato, D.M. Guldi, M. Prato, Decorating carbon nanotubes with metal or semiconductor nanoparticles. J. Mater. Chem. 17, 2679–2694 (2007)CrossRefGoogle Scholar
  196. 196.
    B.I. Kharisov, O.V. Kharissova, U. Ortiz-Mendez, Decoration of carbon nanotubes with metal nanoparticles: recent trends. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry 46(1), 55–76 (2016)CrossRefGoogle Scholar
  197. 197.
    D. Kocsis, D. Kaptas, A. Botos, A. Pekker, K. Kamaras, Ferrocene encapsulation in carbon nanotubes: various methods of filling and investigation. Phys. Status Solidi B 248(11), 2512–2515 (2011)CrossRefGoogle Scholar
  198. 198.
    C. Backes, Noncovalent Functionalization of Carbon Nanotubes: Fundamental Aspects of Dispersion and Separation in Water (Springer, 2012), p. 260Google Scholar
  199. 199.
    P.J.F. Harris, Carbon Nanotube Science: Synthesis, Properties and Applications, 2nd edn. (Cambridge University Press, 2011), p. 314Google Scholar
  200. 200.
    L. Meng, C. Fu, Q. Lu, Advanced technology for functionalization of carbon nanotubes. Prog. Nat. Sci. 19, 801–810 (2009)CrossRefGoogle Scholar
  201. 201.
    L. Henao-Holguín, V. Meza-Laguna, T.Y. Gromovoy, E. Basiuk, M. Rivera, V.A. Basiuk, Solvent-free covalent functionalization of Fullerene C60 and Pristine multi-walled carbon nanotubes with Crown Ethers. J. Nanosci. Nanotechnol. 16(6), 6173–6184 (2016)CrossRefGoogle Scholar
  202. 202.
    E. Khaled, H.N.A. Hassan, M.A. Ahmed, R.O. El-Attar, Crown Ether/Carbon nanotubes based Biperiden disposable potentiometric sensor. Electroanalysis 29(4), 975–982 (2017)CrossRefGoogle Scholar
  203. 203.
    E. Khaled, M.S. Kamel, H.N.A. Hassan, Novel multi walled carbon nanotubes/Crown Ether based disposable sensors for determination of Lead in water samples. Analytical Chemistry Letters 5(6), 329–337 (2015)CrossRefGoogle Scholar
  204. 204.
    R.E. Anderson, A.R. Barron, Solubilization of single-wall carbon nanotubes in organic solvents without sidewall functionalization. J. Nanosci. Nanotechn. 7(10), 3646–3640 (2007)CrossRefGoogle Scholar
  205. 205.
    G. Kerric, E.J. Parra, G.A. Crespo, F.X. Riusa, P. Blondeau, Nanostructured assemblies for ion-sensors: functionalization of multi-wall carbon nanotubes with benzo-18-crown-6 for Pb2+ determination. J. Mater. Chem. 22, 16611–16617 (2012)CrossRefGoogle Scholar
  206. 206.
    C. Jiang, A. Saha, C. Xiang, et al., Increased solubility, liquid-crystalline phase, and selective functionalization of single-walled carbon nanotube polyelectrolyte dispersions. ACS Nano 7(5), 4503–4510 (2013)CrossRefGoogle Scholar
  207. 207.
    A.A. Marti-Arbona, C. Jiang, A. Saha, M. Pasquali, C. Young, Liquid crystals from single-walled carbon nanotube polyelectrolytes and their use for making various materials. US 9,249,023 B2 (2016)Google Scholar
  208. 208.
    A. Khazaei, M.K. Borazjani, K.M. Moradian, Functionalization of oxidized single-walled carbon nanotubes with 4-benzo-9-crown-3 ether. J. Chem. Sci. 124(5), 1127–1135 (2012)CrossRefGoogle Scholar
  209. 209.
    K. Huang, A. Saha, K. Dirian, C. Jiang, P.-L. Chu, J.M. Tour, D.M. Guldi, A.A. Martí, Carbon nanotubes dispersed in aqueous solution by ruthenium(II) polypyridyl complexes. Nanoscale 8, 13488–13497 (2016)CrossRefGoogle Scholar
  210. 210.
    D. Jain, A. Sahaac, A.A. Martí, Non-covalent ruthenium polypyridyl complexes–carbon nanotubes composites: an alternative for functional dissolution of carbon nanotubes in solution. Chem. Commun. 47, 2246–2248 (2011)CrossRefGoogle Scholar
  211. 211.
    R. Martín, L. Jiménez, M. Alvaro, J.C. Scaiano, H. Garcia, Two-photon chemistry in Ruthenium 2,2′-Bipyridyl-functionalized single-wall carbon nanotubes. Chem. Eur. J. 16(24), 7282–7292 (2010)CrossRefGoogle Scholar
  212. 212.
    S.A.V. Jannuzzi, B. Marins, L.E.S.C. Huamani, A.L.B. Formiga, Supramolecular approach to decorate multi-walled carbon nanotubes with negatively charged Iron(II) complexes. J. Braz. Chem. Soc. 28(1), 2–10 (2017)Google Scholar
  213. 213.
    H. Murakami, T. Nomura, N. Nakashima, Noncovalent porphyrin-functionalized single-walled carbon nanotubes in solution and the formation of porphyrin-nanotube nanocomposites. Chem. Phys. Lett. 378(5), 481–485 (2003)CrossRefGoogle Scholar
  214. 214.
    E.M.N. Mhuircheartaigh, S. Giordani, D. MacKernan, S.M. King, D. Rickard, L.M. Val Verde, M.O. Senge, W.J. Blau, Molecular engineering of nonplanar porphyrin and carbon nanotube assemblies: a linear and nonlinear spectroscopic and modeling study. J. Nanotechnol. 2011, 745202, 12 pp (2011)Google Scholar
  215. 215.
    Z. Guo, J. Mao, Q. Ouyang, Y. Zhu, L. He, X. Lv, L. Liang, D. Ren, Y. Chen, J. Zheng, Noncovalent functionalization of single-walled carbon nanotube by porphyrin: dispersion of carbon nanotubes in water and formation of self-assembly donor-acceptor nanoensemble. J. Dispers. Sci. Technol. 31(1), 57–61 (2010)CrossRefGoogle Scholar
  216. 216.
    Y. Kim, S.O. Kim, W. Lee, D. Lee, W. Lee, Metal-porphyrin carbon nanotubes for use in fuel cell electrodes. US Patent 20130030175 (2013)Google Scholar
  217. 217.
    O. Ito, F. D’Souza, Recent advances in photoinduced electron transfer processes of fullerene-based molecular assemblies and nanocomposites. Molecules 17, 5816–5835 (2012)CrossRefGoogle Scholar
  218. 218.
    L. Lvova, M. Mastroianni, G. Pomarico, M. Santonico, G. Pennazza, C. Di Natale, R. Paolesse, A. D’Amico, Carbon nanotubes modified with porphyrin units for gaseous phase chemical sensing. Sensors Actuators B 170, 163–171 (2012)CrossRefGoogle Scholar
  219. 219.
    J. Chen, P.C. Collier, Noncovalent functionalization of single-walled carbon nanotubes with water-soluble porphyrins. J. Phys. Chem. B 109(16), 7605–7609 (2005)CrossRefGoogle Scholar
  220. 220.
    C.Z. Huang, Q.G. Liao, Y.F. Li, Non-covalent anionic porphyrin functionalized multi-walled carbon nanotubes as an optical probe for specific DNA detection. Talanta 75(1), 163–166 (2008)Google Scholar
  221. 221.
    E.M.N. Mhuircheartaigh, W.J. Blau, M. Prato, S. Giordani, Spectroscopic changes induced by sonication of porphyrin-carbon nanotube composites in chlorinated solvents. Carbon 45(13), 2665–2671 (2007)CrossRefGoogle Scholar
  222. 222.
    D.M. Guldi, G.M. Aminur Rahman, S. Qin, M. Tchoul, W.T. Ford, M. Marcaccio, D. Paolucci, F. Paolucci, S. Campidelli, M. Prato, Versatile coordination chemistry towards multifunctional carbon nanotube nanohybrids. Chem. Eur. J. 12, 2152–2161 (2006)CrossRefGoogle Scholar
  223. 223.
    F. Cheng, A. Adronov, Noncovalent functionalization and solubilization of carbon nanotubes by using a conjugated Zn-porphyrin polymer. Chemistry 12(19), 5053–5059 (2006)CrossRefGoogle Scholar
  224. 224.
    N. Komatsu, A. Osuka, S. Isoda, N. Nakashima, H. Murakami, Carbon nanotube and method of purifying the same. EP1702885 (2006)Google Scholar
  225. 225.
    Y. Du, N. Dong, M. Zhang, Porphyrin–poly(arylene ether sulfone) covalently functionalized multi-walled carbon nanotubes: synthesis and enhanced broadband nonlinear optical properties. RSC Adv. 6, 75530–75540 (2016)CrossRefGoogle Scholar
  226. 226.
    D.M. Guldi, G.N.A. Rahman, J. Ramey, M. Marcaccio, D. Paolucci, F. Paolucci, S. Qin, M. Prato, Donor-acceptor nanoensembles of soluble carbon nanotubes. Chem. Commun. 18, 2034–2035 (2004)CrossRefGoogle Scholar
  227. 227.
    D.-M. Ren, Z. Guo, F. Du, Z.-F. Liu, Z.-C. Zhou, X.-Y. Shi, Y.-S. Chen, J.-Y. Zheng, A novel soluble Tin(IV) Porphyrin modified single-walled carbon nanotube nanohybrid with light harvesting properties. Int. J. Mol. Sci. 9, 45–55 (2008)CrossRefGoogle Scholar
  228. 228.
    R.A. Hatton, N.P. Blanchard, A.J. Miller, S.R.P. Silva, A multi-wall carbon nanotube-molecular semiconductor composite for bi-layer organic solar cells. Physica E 37(1), 124–127 (2007)CrossRefGoogle Scholar
  229. 229.
    H. Wu, Z. Chen, J. Zhang, et al., Stably dispersed carbon nanotubes covalently bonded to phthalocyanine cobalt(II) for ppb-level H2S sensing at room temperature. J. Mater. Chem. A 4, 1096–1104 (2016)CrossRefGoogle Scholar
  230. 230.
    M. Raïssi, L. Vignau, E. Cloutet, B. Ratier, Soluble carbon nanotubes/phthalocyanines transparent electrode and interconnection layers for flexible inverted polymer tandem solar cells. Org. Electron. 21, 86–91 (2015)CrossRefGoogle Scholar
  231. 231.
    A.H. Ross, S.S. Ravi, Production of carbon nanotube-molecular semiconductor thin film. GB2428135 (2007)Google Scholar
  232. 232.
    R.A. Hatton, S.R. Silva, Improvements in thin film production. WO07007061 (2007)Google Scholar
  233. 233.
    K. Malika Tripathi, A. Begum, S. Kumar Sonkar, S. Sarkar, Nanospheres of copper(III) 1,2-dicarbomethoxy-1,2-dithiolate and its composite with water soluble carbon nanotubes. New J. Chem. 37, 2708–2715 (2013)CrossRefGoogle Scholar
  234. 234.
    D. Priftis, N. Petzetakis, G. Sakellariou, M. Pitsikalis, D. Baskaran, J.W. Mays, N. Hadjichristidis, Surface-initiated Titanium-Mediated coordination polymerization from catalyst-functionalized single and multiwalled carbonnanotubes. Macromolecules 42, 3340–3346 (2009)CrossRefGoogle Scholar
  235. 235.
    J. Chen, C. Xue, A new method for the preparation of stable carbon nanotube organogels. Carbon 44(11), 2142–2146 (2006)CrossRefGoogle Scholar
  236. 236.
    N. Tagmatarchis, M. Prato, D.M. Guldi, Soluble carbon nanotube ensembles for light-induced electron transfer interactions. Physica E 29(3), 546–550 (2005)CrossRefGoogle Scholar
  237. 237.
    A.V. Ellis, Functionalised carbon nanotubes and methods of preparation. WO07067079 (2007)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Boris Ildusovich Kharisov
    • 1
  • Oxana Vasilievna Kharissova
    • 1
  1. 1.Universidad Autónoma de Nuevo LeónMonterreyMexico

Personalised recommendations