Advertisement

Coordination/Organometallic Compounds and Composites of Carbon Allotropes

  • Boris Ildusovich Kharisov
  • Oxana Vasilievna Kharissova
Chapter

Abstract

Metal complexes have a lot of useful applications in organic and organometallic chemistry, catalysis [1], medicine as anticancer pharmaceutics and for drug delivery [2], various biological systems [3], polymers [4] and dyes, separation of isotopes [5], and heavy metals [6], among many other uses. Sometimes they are applied for increasing solubility [7, 8] of classic objects, carbon nanotubes (CNTs), which form bundle-like structures with very complex morphologies with a high number of Van der Waals interactions, causing extremely poor solubility in water or organic solvents. Metal complexes are also able to serve as precursors to fill CNTs with metals [9] or oxides [10], to decorate CNTs with metal nanoparticles [11], as well as to be encapsulated by CNTs [12].

Keywords

Metal complex Functionalization Graphene Fullerenes Nanodiamonds Nanoonions Graphite Glassy carbon 

References

  1. 1.
    P. Pérez, Alkane C-H Activation by Single-Site Metal Catalysis, Catalysis by metal complexes (Springer, Dordrecht, 2012), 200 ppCrossRefGoogle Scholar
  2. 2.
    W. Rehman, N. Bashir, Transition Metal Complexes: The Future Medicines: Synthetic Route and Bioassay of Transition Metal Complexes (VDM Verlag Dr. Müller, Saarbrücken, 2010), 64 ppGoogle Scholar
  3. 3.
    N. Hadjiliadis, E. Sletten (eds.), Metal Complex – DNA Interactions (Wiley-Blackwell, Chichester/Hoboken, 2009), 544 ppGoogle Scholar
  4. 4.
    A.D. Pomogailo, Catalysis by Polymer-Immobilized Metal Complexes (CRC Press, Boca Raton, FL, USA, 1999), 424 ppGoogle Scholar
  5. 5.
    B.M. Andreev, Separation of Isotopes of Biogenic Elements in Two-phase Systems (Elsevier Science, Oxford, 2007), 316 ppGoogle Scholar
  6. 6.
    H. Bradl, Heavy Metals in the Environment: Origin, Interaction and Remediation, Interface science and technology, vol 6 (Elsevier Science, New York, 2005), 282 ppCrossRefGoogle Scholar
  7. 7.
    D. Jain, A. Saha, A.A. Martí, Non-covalent ruthenium polypyridyl complexes-carbon nanotubes composites: An alternative for functional dissolution of carbon nanotubes in solution. Chem. Commun. 47(8), 2246–2248 (2011)CrossRefGoogle Scholar
  8. 8.
    X. Peng, H. Qin, L. Li, Y. Huang, J. Peng, Y. Cao, N. Komatsu, Water redissoluble chiral porphyrin-carbon nanotube composites. J. Mater. Chem. 22(12), 5764–5769 (2012)CrossRefGoogle Scholar
  9. 9.
    J. Cheng, X.P. Zou, G. Zhu, M.F. Wang, Y. Su, G.Q. Yang, X.M. Lu, Synthesis of iron-filled carbon nanotubes with a great excess of ferrocene and their magnetic properties. Solid State Commun. 149(39–40), 1619–1622 (2009)CrossRefGoogle Scholar
  10. 10.
    M.C. Schnitzler, M.M. Oliveira, D. Ugarte, A.J.G. Zarbin, One-step route to iron oxide-filled carbon nanotubes and bucky-onions based on the pyrolysis of organometallic precursors. Chem. Phys. Lett. 381(5), 541–548 (2003)CrossRefGoogle Scholar
  11. 11.
    V. Georgakilas, D. Gournis, V. Tzitzios, L. Pasquato, D.M. Guldi, M. Prato, Decorating carbon nanotubes with metal or semiconductor nanoparticles. J. Mater. Chem. 17, 2679–2694 (2007)CrossRefGoogle Scholar
  12. 12.
    D. Kocsis, D. Kaptas, A. Botos, A. Pekker, K. Kamaras, Ferrocene encapsulation in carbon nanotubes: Various methods of filling and investigation. Phys. Status Solidi B 248(11), 2512–2515 (2011)CrossRefGoogle Scholar
  13. 13.
    C. Backes, Noncovalent Functionalization of Carbon Nanotubes: Fundamental Aspects of Dispersion and Separation in Water (Springer, New York, 2012), 260 ppCrossRefGoogle Scholar
  14. 14.
    P.J.F. Harris, Carbon Nanotube Science: Synthesis, Properties and Applications, 2nd edn. (Cambridge University Press, Cambridge, 2011), 314 ppGoogle Scholar
  15. 15.
    L. Meng, C. Fu, Q. Lu, Advanced technology for functionalization of carbon nanotubes. Prog. Nat. Sci. 19, 801–810 (2009)CrossRefGoogle Scholar
  16. 16.
    S. Sarkar, R. Cort Haddon, Organometallic Complexes of Graphene and Carbon Nanotubes: Introducing New Perspectives in Atomtronics, Spintronics, High Mobility Graphene Electronics and Energy Conversion Catalysis. Cornell University Library, 2014, arXiv:1409.5194Google Scholar
  17. 17.
    R.E. Anderson, A.R. Barron, Solubilization of single-wall carbon nanotubes in organic solvents without sidewall functionalization. J. Nanosci. Nanotechnol. 7(10), 3646–3640 (2007)CrossRefGoogle Scholar
  18. 18.
    G. Kerric, E.J. Parra, G.A. Crespo, F.X. Riusa, P. Blondeau, Nanostructured assemblies for ion-sensors: Functionalization of multi-wall carbon nanotubes with benzo-18-crown-6 for Pb2+ determination. J. Mater. Chem. 22, 16611–16617 (2012)CrossRefGoogle Scholar
  19. 19.
    A. Khazaei, M.K. Borazjani, K.M. Moradian, Functionalization of oxidized single-walled carbon nanotubes with 4-benzo-9-crown-3 ether. J. Chem. Sci. 124(5), 1127–1135 (2012)CrossRefGoogle Scholar
  20. 20.
    Y. Wang, Y. Wu, J. Xie, H. Gea, X. Hu, Multi-walled carbon nanotubes and metal–organic framework nanocomposites as novel hybrid electrode materials for the determination of nano-molar levels of lead in a lab-on-valve format. Analyst 138, 5113–5120 (2013)CrossRefGoogle Scholar
  21. 21.
    Z. Xiang, Z. Hu, D. Cao, W. Yang, J. Lu, B. Han, W. Wang, Metal–organic frameworks with incorporated carbon nanotubes: Improving carbon dioxide and methane storage capacities by lithium doping. Angew. Chem. Int. Ed. 50, 491–494 (2011)CrossRefGoogle Scholar
  22. 22.
    A. Okia, L. Adamsa, Z. Luod, E. Osayamena, P. Bineyb, V. Khabashesku, Functionalization of single-walled carbon nanotubes with N-[3-(trimethoxysilyl)propyl]ethylenediamine and its cobalt complex. J. Phys. Chem. Solids 69(5–6), 1194–1198 (2008)CrossRefGoogle Scholar
  23. 23.
    M. Soleimani, M. Ghahraman Afshar, A. Sedghi, Amino-functionalization of multiwall carbon nanotubes and its use for solid phase extraction of mercury ions from fish sample. ISRN Nanotechnol, 2013, Article ID 674289, 8 pp (2013)Google Scholar
  24. 24.
    S. Hyun Yoon, J. Hoon Han, B. Kun Kim, H. Nim Choi, W.-Y. Lee, Tris(2,2′-bipyridyl)ruthenium(II) electrogenerated chemiluminescence sensor based on platinized carbon nanotube–zirconia–Nafion composite films. Electroanalysis 22(12), 1349–1356 (2010)CrossRefGoogle Scholar
  25. 25.
    Y. Tao, Z.-J. Lin, X.-M. Chen, X.-L. Huang, M. Oyama, X. Chen, X.-R. Wang, Functionalized multiwall carbon nanotubes combined with bis(2,2′-bipyridine)-5-amino-1,10-phenanthroline ruthenium(II) as an electrochemiluminescence sensor. Sensors Actuators B 129, 758–763 (2008)CrossRefGoogle Scholar
  26. 26.
    D. Jain, A. Sahaac, A.A. Martí, Non-covalent ruthenium polypyridyl complexes–carbon nanotubes composites: An alternative for functional dissolution of carbon nanotubes in solution. Chem. Commun. 47, 2246–2248 (2011)CrossRefGoogle Scholar
  27. 27.
    R. Martín, L. Jiménez, M. Alvaro, J.C. Scaiano, H. Garcia, Two-photon chemistry in ruthenium 2,2′-bipyridyl-functionalized single-wall carbon nanotubes. Chem. Eur. J. 16(24), 7282–7292 (2010)CrossRefGoogle Scholar
  28. 28.
    S.A. Houston, N.S. Venkataramanan, A. Suvitha, N.J. Wheate. Loading of a phenanthroline-based platinum(II) complex onto the surface of a carbon nanotube via π–π stacking. Aust. J. Chem. Article ID: CH16067 (2016)Google Scholar
  29. 29.
    H. Li, J. Wu, Y.A. Jeilani, C.W. Ingram, I.I. Harruna, Modification of multiwall carbon nanotubes with ruthenium(II) terpyridine complex. J. Nanopart. Res. 14(847) (2012)Google Scholar
  30. 30.
    S.-H. Hwang, C.N. Moorefield, L. Dai, G.R. Newkome, Functional nanohybrids constructed via complexation of multiwalled carbon nanotubes with novel hexameric metallomacrocyles. Chem. Mater. 18, 4019–4024 (2006)CrossRefGoogle Scholar
  31. 31.
    R. Rajaraoa, T.H. Kimb, B. Ramachandra Bhata, Multi-walled carbon nanotube bound nickel Schiff-base complexes as reusable catalysts for oxidation of alcohols. J. Coord. Chem. 65(15), 2671–2682 (2012)CrossRefGoogle Scholar
  32. 32.
    M. Salavati-Niasari, M. Bazarganipour, Synthesis, characterization and alcohol oxidation properties of multi-wall carbon nanotubes functionalized with a cobalt(II) Schiff base complex. Transit. Met. Chem. 34, 605–612 (2009)CrossRefGoogle Scholar
  33. 33.
    M. Salavati-Niasari, M. Bazarganipour, Covalent functionalization of multi-wall carbon nanotubes (MWNTs) by nickel(II) Schiff-base complex: Synthesis, characterization and liquid phase oxidation of phenol with hydrogen peroxide. Appl. Surf. Sci. 255(5, Part 2), 2963–2970 (2008)CrossRefGoogle Scholar
  34. 34.
    M. Salavati-Niasari, M. Bazarganipour, Synthesis, characterization and liquid phase oxidation of cyclohexane with hydrogen peroxide over oxovanadium(iv) Schiff-base tetradendate complex covalently anchored to multi-wall carbon nanotubes (mwnts). Bull. Kor. Chem. Soc. 30(2), 355–362 (2009)CrossRefGoogle Scholar
  35. 35.
    G. Magadur, J.-S. Lauret, G. Charron, F. Bouanis, E. Norman, V. Huc, C.-S. Cojocaru, S. Gomez-Coca, E. Ruiz, T. Mallah, Charge transfer and tunable ambipolar effect induced by assembly of Cu(II) binuclear complexes on carbon nanotube field effect transistor devices. J. Am. Chem. Soc. 134(18), 7896–7901 (2012)CrossRefGoogle Scholar
  36. 36.
    M. Navidi, B. Movassagh, S. Rayati, Multi-walled carbon nanotubes functionalized with a palladium(II)-Schiff base complex: A recyclable and heterogeneous catalyst for the copper-, phosphorous- and solvent-free synthesis of ynones, in 16th International Electronic Conference on Synthetic Organic Chemistry, 1–30 November 2012Google Scholar
  37. 37.
    H.-J. Lee, W.S. Choib, T. Nguyenc, Y.B. Lee, H. Lee, An easy method for direct metal coordination reaction on unoxidized single-walled carbon nanotubes. Carbon 49(15), 5150–5157 (2011)CrossRefGoogle Scholar
  38. 38.
    H. Liu, Y. Cui, P. Li, Y. Zhou, X. Zhu, Y. Tang, Y. Chen, T. Lu, Iron(III) diethylenetriaminepentaacetic acid complex on polyallylamine functionalized multiwalled carbon nanotubes: Immobilization, direct electrochemistry and electrocatalysis. Analyst 138, 2647–2653 (2013)CrossRefGoogle Scholar
  39. 39.
    C. Meyer, C. Besson, R. Frielinghaus, A.-K. Saelhoff, H. Flototto, L. Houben, P. Kogerler, C.M. Schneider, Covalent functionalization of carbon nanotubes with tetramanganese complexes. Phys. Status Solidi B 249(12), 2412–2415 (2012)CrossRefGoogle Scholar
  40. 40.
    X.M. Tu, S.L. Luo, X.B. Luo, Y.J. Zhao, L. Feng, J.H. Li, Metal chelate affinity to immobilize horseradish peroxidase on functionalized agarose/CNTs composites for the detection of catechol. Sci. China Chem. 54(8), 1319–1326 (2011)CrossRefGoogle Scholar
  41. 41.
    C. Yang, Y. Chai, R. Yuan, J. Guo, F. Jia, Ligand-modified multi-walled carbon nanotubes for potentiometric detection of silver. Anal. Sci. 28, 275–282 (2012)CrossRefGoogle Scholar
  42. 42.
    C.C. Gheorghiu, B.F. Machado, C. Salinas-Martínez de Lecea, M. Gouygou, M.C. Román-Martínez, P. Serp, Chiral rhodium complexes covalently anchored on carbon nanotubes for enantioselective hydrogenation. Dalton Trans. 43, 7455–7463 (2014)CrossRefGoogle Scholar
  43. 43.
    F. Frehill, J.G. Vos, S. Benrezzak, et al., Interconnecting carbon nanotubes with an inorganic metal complex. J. Am. Chem. Soc. 124, 13694–13695 (2002)CrossRefGoogle Scholar
  44. 44.
    S. Donck, J. Fize, E. Gravel, E. Doris, V. Artero, Supramolecular assembly of cobaloxime on nanoring-coated carbon nanotubes: Addressing the stability of the pyridine–cobalt linkage under hydrogen evolution turnover conditions. Chem. Commun. 52, 11783–11786 (2016)CrossRefGoogle Scholar
  45. 45.
    E.M.N. Mhuircheartaigh, S. Giordani, D. MacKernan, S.M. King, D. Rickard, L.M. Val Verde, M.O. Senge, W.J. Blau, Molecular engineering of nonplanar porphyrin and carbon nanotube assemblies: A linear and nonlinear spectroscopic and modeling study. J. Nanotechnol. 2011, Article ID 745202, 12 pp (2011). doi:https://doi.org/10.1155/2011/745202CrossRefGoogle Scholar
  46. 46.
    Y. Kim, S.O. Kim, W. Lee, D. Lee, W. Lee, Metal-porphyrin carbon nanotubes for use in fuel cell electrodes, US Patent 20130030175, 2013Google Scholar
  47. 47.
    S. Cambr, W. Wenseleers, J. Culin, S. Van Doorslaer, A. Fonseca, J.B. Nagy, E. Goovaerts, Characterisation of nanohybrids of porphyrins with metallic and semiconducting carbon nanotubes by EPR and optical spectroscopy. ChemPhysChem 9, 1930–1941 (2008)CrossRefGoogle Scholar
  48. 48.
    O. Ito, F. D’Souza, Recent advances in photoinduced electron transfer processes of fullerene-based molecular assemblies and nanocomposites. Molecules 17, 5816–5835 (2012)CrossRefGoogle Scholar
  49. 49.
    L. Lvova, M. Mastroianni, G. Pomarico, M. Santonico, G. Pennazza, C. Di Natale, R. Paolesse, A. D’Amico, Carbon nanotubes modified with porphyrin units for gaseous phase chemical sensing. Sensors Actuators B 170, 163–171 (2012)CrossRefGoogle Scholar
  50. 50.
    D.M. Guldi, G.M.A. Rahman, S. Qin, M. Tchoul, W.T. Ford, M. Marcaccio, D. Paolucci, F. Paolucci, S. Campidelli, M. Prato, Versatile coordination chemistry towards multifunctional carbon nanotube nanohybrids. Chem. Eur. J. 12, 2152–2161 (2006)CrossRefGoogle Scholar
  51. 51.
    I. Ruiz-Tagle, W. Orellana, Iron porphyrin attached to single-walled carbon nanotubes: Electronic and dynamical properties from ab initio calculations. Phys. Rev. B 82, 115406 (2010)CrossRefGoogle Scholar
  52. 52.
    J. Yu, S. Mathew, B.S. Flavel, J.S. Quinton, M.R. Johnston, J.G. Shapter, Mixed assembly of ferrocene/porphyrin onto carbon nanotube arrays towards multibit information storage, in International Conference on Nanoscience and Nanotechnology, ICONN 2008, pp. 176–179, 2008Google Scholar
  53. 53.
    D.-M. Ren, Z. Guo, F. Du, Z.-F. Liu, Z.-C. Zhou, X.-Y. Shi, Y.-S. Chen, J.-Y. Zheng, A novel soluble Tin(IV) porphyrin modified single-walled carbon nanotube nanohybrid with light harvesting properties. Int. J. Mol. Sci. 9, 45–55 (2008)CrossRefGoogle Scholar
  54. 54.
    M. Mananghaya, Theoretical investigation of transition metal-incorporated porphyrin-induced carbon nanotubes: A potential hydrogen storage material. Int. J. Sci. Eng. Res. 4(1), 4 pp (2013)Google Scholar
  55. 55.
    D. Hyun Lee, W. Jun Lee, W. Jong Lee, S. Ouk Kim, Y.-H. Kim, Theory, synthesis, and oxygen reduction catalysis of Fe-porphyrin-like carbon nanotube. Phys. Rev. Lett. 106, 175502, 4 pp. (2011)Google Scholar
  56. 56.
    G. de la Torre, G. Bottari, T. Torres, Phthalocyanines and subphthalocyanines: Perfect partners for fullerenes and carbon nanotubes in molecular photovoltaics. Adv. Energy Mater. 7(10), 1601700 (2017)CrossRefGoogle Scholar
  57. 57.
    Y. Gao, S. Li, X. Wang, et al., Carbon nanotubes chemically modified by metal phthalocyanines with excellent electrocatalytic activity to Li/SOCl2 battery. J. Electrochem. Soc. 164(6), A1140–A1147 (2017)CrossRefGoogle Scholar
  58. 58.
    A.Y. Tolbin, V.N. Khabashesku, L.G. Tomilova, Synthesis of phthalocyanine tert-butyl ligand conjugates with fluorinecontaining single-walled carbon nanotubes having mobile ether bonds. Mendeleev Commun. 22, 59–61 (2012)CrossRefGoogle Scholar
  59. 59.
    I. Kruusenberg, L. Matisen, K. Tammeveski, Oxygen electroreduction on multi-walled carbon nanotube supported metal phthalocyanines and porphyrins in acid media. Int. J. Electrochem. Sci. 8, 1057–1066 (2013)Google Scholar
  60. 60.
    I. Kruusenberg, L. Matisen, K. Tammeveski, Oxygen electroreduction on multi-walled carbon nanotube supported metal phthalocyanines and porphyrins in alkaline media. J. Nanosci. Nanotechnol. 13(1), 621–627 (2013)CrossRefGoogle Scholar
  61. 61.
    W. Orellana, Metal-phthalocyanine functionalized carbon nanotubes as catalyst for the oxygen reduction reaction: A theoretical study. Chem. Phys. Lett. 541, 81–84 (2012)CrossRefGoogle Scholar
  62. 62.
    Y. Yuan, B. Zhao, Y. Jeon, S. Zhong, S. Zhou, S. Kim, Iron phthalocyanine supported on amino-functionalized multi-walled carbon nanotube as an alternative cathodic oxygen catalyst in microbial fuel cells. Bioresourse Technol. 102(10), 5849–5854 (2011)CrossRefGoogle Scholar
  63. 63.
    G. Dong, M. Huang, L. Guan, Iron phthalocyanine coated on single-walled carbon nanotubes composite for the oxygen reduction reaction in alkaline media. Phys. Chem. Chem. Phys. 14, 2557–2559 (2012)CrossRefGoogle Scholar
  64. 64.
    P. d’Ambrosio, M. Carchesio, N. d’Alessandro, G. de la Torre, T. Torres, Linking Pd(II) and Ru(II) phthalocyanines to single-walled carbon nanotubes. Dalton Trans. 43, 7473–7747 (2014)CrossRefGoogle Scholar
  65. 65.
    Y. Wang, N. Hu, Z. Zhou, D. Xu, Z. Wang, Z. Yang, H. Wei, E. Siu-Wai Kong, Y. Zhang, Single-walled carbon nanotube/cobalt phthalocyanine derivative hybrid material: Preparation, characterization and its gas sensing properties. J. Mater. Chem. 21, 3779–3787 (2011)CrossRefGoogle Scholar
  66. 66.
    L. Zhang, H. Yu, L. Liu, L. Wang, Study on the preparation of multi-walled carbon nanotube/phthalocyanine composites and their optical limiting effects. J. Compos. Mater. 48(8), 959–967 (2014)CrossRefGoogle Scholar
  67. 67.
    J. Bartelmess, B. Ballesteros, G. de la Torre, D. Kiessling, S. Campidelli, M. Prato, T. Torres, D.M. Guldi, Phthalocyanine−pyrene conjugates: A powerful approach toward carbon nanotube solar cells. J. Am. Chem. Soc. 132(45), 16202–16211 (2010)CrossRefGoogle Scholar
  68. 68.
    R.O. Ogbodu, E. Antunesa, T. Nyokong, Physicochemical properties of a zinc phthalocyanine – pyrene conjugate adsorbed onto single walled carbon nanotubes. Dalton Trans. 42, 10769–10777 (2013)CrossRefGoogle Scholar
  69. 69.
    K. Malika Tripathi, A. Begum, S. Kumar Sonkar, S. Sarkar, Nanospheres of copper(III) 1,2-dicarbomethoxy-1,2-dithiolate and its composite with water soluble carbon nanotubes. New J. Chem. 37, 2708–2715 (2013)CrossRefGoogle Scholar
  70. 70.
    S. Park, S. Woong Yoon, K.-B. Lee, D. Jin Kim, Y. Hwan Jung, Y. Do, H.-j. Paik, I.S. Choi, Carbon nanotubes as a ligand in Cp2ZrCl2-based ethylene polymerization. Macromol. Rapid Commun. 27, 47–50 (2006)CrossRefGoogle Scholar
  71. 71.
    D. Priftis, N. Petzetakis, G. Sakellariou, M. Pitsikalis, D. Baskaran, J.W. Mays, N. Hadjichristidis, Surface-initiated titanium-mediated coordination polymerization from catalyst-functionalized single and multiwalled carbonnanotubes. Macromolecules 42, 3340–3346 (2009)CrossRefGoogle Scholar
  72. 72.
    A.S. Lobach, R.G. Gasanov, E.D. Obraztsova, A.N. Shchegolikhin, V.I. Sokolov, Sidewall functionalization of single-walled carbon nanotubes by organometallic chromium-centered free radicals. Fullerenes, Nanotubes, Carbon Nanostruct. 13, 287–297 (2005)CrossRefGoogle Scholar
  73. 73.
    Z. Zhang, C. Heath Turner, Structural and electronic properties of carbon nanotubes and graphenes functionalized with cyclopentadienyl–transition metal complexes: A DFT study. J. Phys. Chem. C 117(17), 8758–8766 (2013)CrossRefGoogle Scholar
  74. 74.
    A. Chernov, M. Havlicek, W. Jantsch, M.H. Rümmeli, A. Bachmatiuk, K. Yanagi, H. Peterlik, H. Kataura, F. Sauerzopf, R. Resel, F. Simon, H. Kuzmany, Ferromagnetic decoration in metal–semiconductor separated and ferrocene functionalized single-walled carbon nanotubes. Phys. Status Solidi B 249(12), 2323–2327 (2012)CrossRefGoogle Scholar
  75. 75.
    G. Zhang, S. Peng, Y. Shang, Z.-D. Yang, X. Cheng Zeng, Electronic and transport properties of carbon and boron-nitride ferrocene nanopeapods. J. Mater. Chem. C 2, 10017–10030 (2014)CrossRefGoogle Scholar
  76. 76.
    X.-J. Huang, H.-S. Im, D.-H. Lee, H.-S. Kim, Y.-K. Choi, Ferrocene functionalized single-walled carbon nanotube bundles. Hybrid interdigitated construction film for L-glutamate detection. J. Phys. Chem. C 111, 1200–1206 (2007)CrossRefGoogle Scholar
  77. 77.
    N. Allali, V. Urbanova, V. Mamane, J. Waldbock, M. Etienne, M. Mallet, X. Devaux, B. Vigolo, Y. Fort, A. Walcarius, M. Noel, A.V. Soldatov, E. McRae, M. Dossot, Covalent functionalization of few-wall carbon nanotubes by ferrocene derivatives for bioelectrochemical devices. Phys. Status Solidi B 249(12), 2349–2352 (2012)CrossRefGoogle Scholar
  78. 78.
    P. Singh, C. Menard-Moyon, J. Kumar, B. Fabre, S. Verma, A. Bianco, Nucleobase-pairing triggers the self-assembly of uracil-ferrocene on adenine functionalized multi-walled carbon nanotubes. Carbon 50, 3170–3177 (2012)CrossRefGoogle Scholar
  79. 79.
    A. Le Goff, F. Moggia, N. Debou, P. Jegou, V. Artero, M. Fontecave, B. Jousselme, S. Palacin, Facile and tunable functionalization of carbon nanotube electrodes with ferrocene by covalent coupling and p-stacking interactions and their relevance to glucose bio-sensing. J. Electroanal. Chem. 641, 57–63 (2010)CrossRefGoogle Scholar
  80. 80.
    S. Banerjee, S.S. Wong, Functionalization of carbon nanotubes with a metal-containing molecular complex. Nano Lett. 2(1), 49–53 (2002)CrossRefGoogle Scholar
  81. 81.
    F. Mercuri, A. Sgamellotti, Functionalization of carbon nanotubes with Vaska’s complex: A theoretical approach. J. Phys. Chem. B 110, 15291–15294 (2006)CrossRefGoogle Scholar
  82. 82.
    J.-P. Lellouche, M. Piran, L. Shahar, J. Grinblat, C. Pirlot, A reversible decoration of multi-walled carbon nanotubes (MWCNTs) by acyclic η4-(1E,3E)-dienyl-Fe(CO)3 complexes. J. Mater. Chem. 18, 1093–1099 (2008)CrossRefGoogle Scholar
  83. 83.
    L.J. Brennan, Y.K. Gun’ko, Advances in the organometallic chemistry of carbon nanomaterials. Organometallics 34, 2086–2097 (2015)CrossRefGoogle Scholar
  84. 84.
    I. Kalinina, E. Bekyarova, S. Sarkar, F. Wang, M.E. Itkis, X. Tian, S. Niyogi, N. Jha, R.C. Haddon, Hexahapto-metal complexes of single-walled carbon nanotubes. Macromol. Chem. Phys. 213, 1001–1019 (2012)CrossRefGoogle Scholar
  85. 85.
    X. Tian, M.L. Moser, A. Pekker, S. Sarkar, J. Ramirez, E. Bekyarova, M.E. Itkis, R.C. Haddon, Effect of atomic interconnects on percolation in single-walled carbon nanotube thin film networks. Nano Lett. 14, 3930–3937 (2014)CrossRefGoogle Scholar
  86. 86.
    S. Sarkar, S. Niyogi, E. Bekyarova, R.C. Haddon, Organometallic chemistry of extended periodic π-electron systems: Hexahapto-chromium complexes of graphene and single-walled carbon nanotubes. Chem. Sci. 2, 1326–1333 (2011)CrossRefGoogle Scholar
  87. 87.
    R.L. McSweeney, T.W. Chamberlain, E.S. Davies, A.N. Khlobystov, Single-walled carbon nanotubes as nanoelectrode and nano-reactor to control the pathways of a redox reaction. Chem. Commun. 50, 14338–14340 (2014)CrossRefGoogle Scholar
  88. 88.
    P. Plachinda, D.R. Evans, R. Solanki, Electronic properties of metal-arene functionalized graphene. J. Chem. Phys. 135, 044103, 9 pp (2011)CrossRefGoogle Scholar
  89. 89.
    E.L. Sceats, J.C. Green, Charge transfer composites of bis(cyclopentadienyl) and bis(benzene) transition metal complexes encapsulated in single-walled carbon nanotubes. Phys. Rev. B 75(24), 245441 (2007)CrossRefGoogle Scholar
  90. 90.
    M. Koleini, M. Paulsson, M. Brandbyge, Efficient organometallic spin filter between single-wall carbon nanotube or graphene electrodes. Phys. Rev. Lett. 98, 197202, 4 pp (2007)Google Scholar
  91. 91.
    C.H. Li, A.M.C. Ng, C.S.K. Mak, A.B. Djurišić, W.K. Chan, Ruthenium complex containing block copolymer for the enhancement of carbon nanotube photoconductivity. ACS Appl. Mater. Interfaces 4(1), 74–80 (2012)CrossRefGoogle Scholar
  92. 92.
    E.W. McQueen, J.I. Golsmith, Electrochemical analysis of single-walled carbon nanotubes functionalized with pyrene-pendant transition metal complexes. J. Am. Chem. Soc. 131(48), 17554–17556 (2009)CrossRefGoogle Scholar
  93. 93.
    P.D. Tran, A. Le Goff, J. Heidkamp, B. Jousselme, N. Guillet, S. Palacin, H. Dau, M. Fontecave, V. Artero, Noncovalent modification of carbon nanotubes with pyrene-functionalized nickel complexes: Carbon monoxide tolerant catalysts for hydrogen evolution and uptake. Angew. Chem. Int. Ed. Engl. 50(6), 1371–1374 (2011)CrossRefGoogle Scholar
  94. 94.
    C. Vriamont, M. Devillers, O. Riant, S. Hermans, Catalysis with gold complexes immobilised on carbon nanotubes by π–π stacking interactions: Heterogeneous catalysis versus the boomerang effect. Chem. Eur. J. 19, 12009–12017 (2013)CrossRefGoogle Scholar
  95. 95.
    A. Le Goff, B. Reuillard, S. Cosnier, A pyrene-substituted tris(bipyridine)osmium(II) complex as a versatile redox probe for characterizing and functionalizing carbon nanotube- and graphene-based electrodes. Langmuir 29(27), 8736–8742 (2013)CrossRefGoogle Scholar
  96. 96.
    S.-N. Ding, D. Shan, S. Cosnier, A. Le Goff, Single-walled carbon nanotubes noncovalently functionalized by ruthenium(II) complex tagged with pyrene: Electrochemical and electrogenerated chemiluminescence properties. Chem. Eur. J. 18(37), 11564–11568 (2012)CrossRefGoogle Scholar
  97. 97.
    M. Blanco, P. Álvarez, C. Blanco, M.V. Jiménez, J. FernÁndez-Tornos, J.J. Pérez-Torrente, L.A. Oro, R. Menéndez, Enhanced hydrogen-transfer catalytic activity of iridium N-heterocyclic carbenes by covalent attachment on carbon nanotubes. ACS Catal. 3, 1307–1317 (2013)CrossRefGoogle Scholar
  98. 98.
    G. Liang, L. Zheng, S. Bao, B. Fei, H. Gao, F. Zhu, Q. Wu, Growing tiny flowers of organometallic polymers along carbon nanotubes. Macromolecules 48, 4115–4121 (2015)CrossRefGoogle Scholar
  99. 99.
    S.A.V. Jannuzzi, B. Martins, L.E.S.C. Huamanía, A.L.B. Formiga, Supramolecular approach to decorate multi-walled carbon nanotubes with negatively charged iron(II) complexes. J. Braz. Chem. Soc. 28(1), 2–10 (2017)Google Scholar
  100. 100.
    H. Cui, K. Zhang, Y. Zhang, Y. Sun, J. Wang, W. Zhang, J. Luong, Immobilization of glucose oxidase into a nanoporous TiO2 film layered on metallophthalocyanine modified vertically-aligned carbon nanotubes for efficient direct electron transfer. Biosens. Bioelectron. 46, 113–118 (2013)CrossRefGoogle Scholar
  101. 101.
    Y. Song, D. Su, Y. Shen, C. Gong, Y. Songa, L. Wang, Nitrogen-doped carbon foam as an efficient enzymatic biosensing platform for glucose sensing. Anal. Methods 8, 4547–4553 (2016)CrossRefGoogle Scholar
  102. 102.
    T.W. Chamberlain, J.C. Meyer, J. Biskupek, et al., Reactions of the inner surface of carbon nanotubes and nanoprotrusion processes imaged at the atomic scale. Nat. Chem. 3, 732–737 (2011)CrossRefGoogle Scholar
  103. 103.
    V. Strauss, A. Roth, M. Sekita, D.M. Guldi, Efficient energy-conversion materials for the future: Understanding and tailoring charge-transfer processes in carbon nanostructures. Chem 1, 531–556 (2016)CrossRefGoogle Scholar
  104. 104.
    A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007)CrossRefGoogle Scholar
  105. 105.
    A.K. Geim, Graphene: Status and prospects. Science 324, 1530–1534 (2009)CrossRefGoogle Scholar
  106. 106.
    P. Pérez, Alkane C-H Activation by Single-Site Metal Catalysis, Catalysis by metal complexes (Springer, Dordrecht, 2012), 200 ppCrossRefGoogle Scholar
  107. 107.
    W. Rehman, N. Bashir, Transition Metal Complexes: The Future Medicines: Synthetic Route and Bioassay of Transition Metal Complexes (VDM Verlag Dr. Müller, Saarbrücken, 2010), 64 ppGoogle Scholar
  108. 108.
    N. Hadjiliadis, E. Sletten (eds.), Metal Complex – DNA Interactions (Wiley-Blackwell, Chichester/Hoboken, 2009), 544 ppGoogle Scholar
  109. 109.
    B.J. Schultz, R.V. Dennis, V. Lee, S. Banerjee, An electronic structure perspective of graphene interfaces. Nanoscale 6, 3444–3466 (2014)CrossRefGoogle Scholar
  110. 110.
    B.J. Schultz, C. Jaye, P.D. Lysaght, D.A. Fischer, D. Prendergast, S. Banerjee, On chemical bonding and electronic structure of graphene–metal contacts. Chem. Sci. 4, 494–502 (2013)CrossRefGoogle Scholar
  111. 111.
    T. Abtew, B.-C. Shih, S. Banerjee, P. Zhang, Graphene-ferromagnet interfaces: Hybridization, magnetization and charge transfer. Nanoscale 5, 1902–1909 (2013)CrossRefGoogle Scholar
  112. 112.
    J. Wintterlin, M.-L. Bocquet, Graphene on metal surfaces. Surf. Sci. 603, 1841–1852 (2009)CrossRefGoogle Scholar
  113. 113.
    G. Giovannetti, P. Khomyakov, G. Brocks, V. Karpan, J. van den Brink, P. Kelly, Doping graphene with metal contacts. Phys. Rev. Lett. 101, 026803 (2008)CrossRefGoogle Scholar
  114. 114.
    R.V. Dennis, V. Patil, J.L. Andrews, J.P. Aldinger, G.D. Yadav, S. Banerjee, Hybrid nanostructured coatings for corrosion protection of base metals: A sustainability perspective. Mater. Res. Express 2, 032001/1–23 (2015)CrossRefGoogle Scholar
  115. 115.
    D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228–240 (2010)CrossRefGoogle Scholar
  116. 116.
    L.R. DeJesus, R.V. Dennis, S.W. Depner, C. Jaye, D.A. Fischer, S. Banerjee, Inside and outside: X-ray absorption spectroscopy mapping of chemical domains in graphene oxide. J. Phys. Chem. Lett. 4, 3144–3151 (2013)CrossRefGoogle Scholar
  117. 117.
    A. Lerf, H. He, M. Forster, J. Klinowski, Structure of graphite oxide revisited. J. Phys. Chem. B 102, 4477 (1998)CrossRefGoogle Scholar
  118. 118.
    W. Gao, L.B. Alemany, L. Ci, P.M. Ajayan, New insights into the structure and reduction of graphite oxide. Nat. Chem. 1, 403–408 (2009)CrossRefGoogle Scholar
  119. 119.
    W. Cai, R.D. Piner, F.J. Stadermann, S. Park, M.A. Shaibat, Y. Ishii, D. Yang, A. Velamakanni, S. Jin An, M. Stoller, J. An, D. Chen, R.S. Ruoff, Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide. Science 321, 1815–1817 (2008)CrossRefGoogle Scholar
  120. 120.
    V. Georgakilas (ed.), Functionalization of Graphene, 1st edn. (Wiley-VCH, Weinheim, 2014), 424 ppGoogle Scholar
  121. 121.
    A. J. L. Pombeiro (ed.), Advances in Organometallic Chemistry and Catalysis: The Silver/Gold Jubilee International Conference on Organometallic Chemistry Celebratory Book, 1st edn. (Wiley, Hoboken, 2013), 736 ppGoogle Scholar
  122. 122.
    C.N.R. Rao, U. Maitra, H.S.S. Ramakrishna Matte, Synthesis, characterization, and selected properties of graphene, in Graphene: Synthesis, Properties, and Phenomena, ed. by C. N. R. Rao, A. K. Sood, 1st edn., (Wiley-VCH Verlag, Weinheim, 2013)Google Scholar
  123. 123.
    S. Sarkar, E. Bekyarova, R.C. Haddon, Chapter 9. Organometallic chemistry of carbon nanotubes and graphene, in Carbon Nanotubes and Graphene, ed. by K. Tanaka, S. Iijima, (Elsevier, Amsterdam, 2014)CrossRefGoogle Scholar
  124. 124.
    M.J. Lu, J. Li, X.Y. Yang, Y. Xu, X.A. Zhang, J. Yang, H. Hu, X.B. Wang, Applications of graphene-based materials in environmental protection and detection. Chin. Sci. Bull. 58(22), 2698–2710 (2013)CrossRefGoogle Scholar
  125. 125.
    C. Su, K.P. Loh, Carbocatalysts: Graphene oxide and its derivatives. Acc. Chem. Res. 46(10), 2275–2285 (2013)CrossRefGoogle Scholar
  126. 126.
    S.P. Lonkar, Y.S. Deshmukh, A.A. Abdala, Recent advances in chemical modifications of graphene. Nano Res. 8(4), 1039–1074 (2015)CrossRefGoogle Scholar
  127. 127.
    I. Ahmed, S.H. Jhung, Composites of metal–organic frameworks: Preparation and application in adsorption. Mater. Today 17(3), 136–146 (2014)CrossRefGoogle Scholar
  128. 128.
    V. Georgakilas, M. Otyepka, A.B. Bourlinos, V. Chandra, N. Kim, K.C. Kemp, P. Hobza, R. Zboril, K.S. Kim, Functionalization of graphene: Covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 112(11), 6156–6214 (2012)CrossRefGoogle Scholar
  129. 129.
    J.D. Roy-Mayhew, I.A. Aksay, Graphene materials and their use in dye-sensitized solar cells. Chem. Rev. 114(12), 6323–6348 (2014)CrossRefGoogle Scholar
  130. 130.
    B. Garg, T. Bisht, Y.-C. Ling, Graphene-based nanomaterials as heterogeneous acid catalysts: A comprehensive perspective. Molecules 19, 14582–14614 (2014)CrossRefGoogle Scholar
  131. 131.
    L.J. Brennan, Y.K. Gun’ko, Advances in the organometallic chemistry of carbon nanomaterials. Organometallics 34(11), 2086–2097 (2015)CrossRefGoogle Scholar
  132. 132.
    M. Arab Fashapoyeh, M. Mirzaei, H. Eshtiagh-Hosseini, Recent advances in crystal engineering from nanoscience views: A brief review. Nanochem. Res. 2(1), 1–7 (2017)Google Scholar
  133. 133.
    Y. Wang, X. Ke, X. Zhou, J. Li, J. Ma, Graphene for separation and preconcentration of trace amounts of cobalt in water samples prior to flame atomic absorption spectrometry. J. Saudi Chem. Soc. 20(1), S145–S152 (2016)CrossRefGoogle Scholar
  134. 134.
    S. Hou, Chelating agent modified graphene oxides, methods of preparation and use, US 2012/0330044 A1, 2012Google Scholar
  135. 135.
    Y. Yamada, Y. Suzuki, H. Yasuda, S. Uchizawa, K. Hirose-Takai, Y. Sato, K. Suenaga, S. Sato, Functionalized graphene sheets coordinating metal cations. Carbon 75, 81–94 (2014)CrossRefGoogle Scholar
  136. 136.
    I.L. Laure, S.V. Tkachev, E.Y. Buslaeva, E.V. Fatushina, S.P. Gubin, The coordination chemistry of graphene oxide: Interactions with metal ions in water. Russ. J. Coord. Chem. 39(7), 487–492 (2013)CrossRefGoogle Scholar
  137. 137.
    P. Dev, T.L. Reinecke, Stabilizing graphene-based organometallic sandwich structures through defect engineering. Phys. Rev. B 91, 035436 (2015)CrossRefGoogle Scholar
  138. 138.
    Q. Zhao, Y. Zhu, Z. Sun, Y. Li, G. Zhang, F. Zhang, X. Fan, Combining palladium complex and organic amine on graphene oxide for promoted Tsuji–Trost allylation. J. Mater. Chem. A 3, 2609–2616 (2015)CrossRefGoogle Scholar
  139. 139.
    R.C. Haddon, S. Sarkar, S. Niyogi, E. Bekyarova, M.E. Itkis, X. Tian, F. Wang, Organometallic chemistry of extended periodic π-electron systems, US 20130202515 A1, 2013Google Scholar
  140. 140.
    S. Sarkar, H. Zhang, J.-W. Huang, F. Wang, E. Bekyarova, C.N. Lau, R.C. Haddon, Organometallic hexahapto functionalization of single layer graphene as a route to high mobility graphene devices. Adv. Mater. 25(8), 1131–1136 (2013)CrossRefGoogle Scholar
  141. 141.
    S.M. Avdoshenko, I.N. Ioffe, G. Cuniberti, L. Dunsch, A.A. Popov, Organometallic complexes of graphene: Toward atomic spintronics using a graphene web. ACS Nano 5(12), 9939–9949 (2011)CrossRefGoogle Scholar
  142. 142.
    M. Chen, X. Tian, W. Li, E. Bekyarova, G. Li, M. Moser, R.C. Haddon, Application of organometallic chemistry to the electrical interconnection of graphene nanoplatelets. Chem. Mater. 28(7), 2260–2266 (2016)CrossRefGoogle Scholar
  143. 143.
    J. Dai, Y. Zhao, X. Wu, X. Cheng Zeng, J. Yang, Organometallic hexahapto-functionalized graphene: Band gap engineering with minute distortion to the planar structure. J. Phys. Chem. C 117, 22156–22161 (2013)CrossRefGoogle Scholar
  144. 144.
    P. Plachinda, D.R. Evans, R. Solanki, Electronic properties of metal-arene functionalized graphene. J. Chem. Phys. 135, 044103 (2011)CrossRefGoogle Scholar
  145. 145.
    Z. Zhang, C.H. Turner, Redox properties of graphenes functionalized with cyclopentadiene–transition metal complexes: A potential redox-active material. J. Phys. Chem. C 118(42), 24633–24640 (2014)CrossRefGoogle Scholar
  146. 146.
    L. Fan, Q. Zhang, K. Wang, F. Li, L. Niu, Ferrocene functionalized graphene: Preparation, characterization and efficient electron transfer toward sensors of H2O2. J. Mater. Chem. 22, 6165–6170 (2012)CrossRefGoogle Scholar
  147. 147.
    B. Choi, J. Lee, S. Lee, J.-H. Ko, K.-S. Lee, J. Oh, J. Han, Y.-H. Kim, I.S. Choi, S. Park, Generation of ultra-high-molecular-weight polyethylene from metallocenes immobilized onto N-doped graphene nanoplatelets. Macromol. Rapid Commun. 34, 533–538 (2013)CrossRefGoogle Scholar
  148. 148.
    N. Xia, L. Liu, Z. Sun, B. Zhou, Nanocomposites of graphene with ferrocene or hemin: Preparation and application in electrochemical sensing. J. Nanomater. 2015, Article ID 892674, 9 pp (2015)Google Scholar
  149. 149.
    P. Wan, S. Yin, L. Liu, et al., Graphene carrier for magneto-controllable bioelectrocatalysis. Small 10(4), 647–652 (2014)CrossRefGoogle Scholar
  150. 150.
    S. Sabater, J.A. Mata, E. Peris, Immobilization of pyrene-tagged palladium and ruthenium complexes onto reduced graphene oxide: An efficient and highly recyclable catalyst for hydrodefluorination. Organometallics 34, 1186–1190 (2015)CrossRefGoogle Scholar
  151. 151.
    A. Le Goff, B. Reuillard, S. Cosnier, A pyrene-substituted Tris(bipyridine)osmium(II) complex as a versatile redox probe for characterizing and functionalizing carbon nanotube- and graphene-based electrodes. Langmuir 29, 8736–8742 (2013)CrossRefGoogle Scholar
  152. 152.
    S. Sabater, J.A. Mata, E. Peris, Catalyst enhancement and recyclability by immobilization of metal complexes onto graphene surface by noncovalent interactions. ACS Catal. 4, 2038–2047 (2014)CrossRefGoogle Scholar
  153. 153.
    G. Ren, Y.-n. Li, Z. Guo, G. Xiao, Y. Zhu, L. Dai, L. Jiang, A bio-inspired Co3O4-polypyrrole-graphene complex as an efficient oxygen reduction catalyst in one-step ball milling. Nano Res. 8(11), 3461–3471 (2015)CrossRefGoogle Scholar
  154. 154.
    X. Zhou, T. Zhang, C.W. Abney, Z. Li, W. Lin, Graphene-immobilized monomeric bipyridine-Mx+ (Mx+ = Fe3+, Co2+, Ni2+, or Cu2+) complexes for electrocatalytic water oxidation. ACS Appl. Mater. Interfaces 6, 18475–18479 (2014)CrossRefGoogle Scholar
  155. 155.
    T. Szabó, T. Szabó-Plánka, D. Jónás, N.V. Nagy, A. Rockenbauer, I. Dékány, Intercalation and coordination of copper (II) 2,2′-bipyridine complexes into graphite oxide. Carbon 72, 425–428 (2014)CrossRefGoogle Scholar
  156. 156.
    M. Veerapandian, S. Neethirajan, Graphene oxide chemically decorated with Ag–Ru/chitosan nanoparticles: Fabrication, electrode processing and immunosensing properties. RSC Adv. 5, 75015–75024 (2015)CrossRefGoogle Scholar
  157. 157.
    D. Zhou, Q.-Y. Cheng, Y. Cui, T. Wang, X. Li, B.-H. Han, Graphene–terpyridine complex hybrid porous material for carbon dioxide adsorption. Carbon 66, 592–598 (2014)CrossRefGoogle Scholar
  158. 158.
    E.V. Basiuk, M. Martínez-Herrera, E. Álvarez-Zauco, L.V. Henao-Holguín, I. Puente-Lee, V.A. Basiuk, Noncovalent functionalization of graphene with a Ni(II) tetraaza[14]annulene complex. Dalton Trans. 43, 7413–7428 (2014)CrossRefGoogle Scholar
  159. 159.
    R. Kumar, K. Jayaramulu, T. Kumar Maji, C.N.R. Rao, Growth of 2D sheets of a MOF on graphene surfaces to yield composites with novel gas adsorption characteristics. Dalton Trans. 43, 7383–7386 (2014)CrossRefGoogle Scholar
  160. 160.
    V.A. Basiuk, E.V. Rybak-Akimova, E.V. Basiuk, Graphene oxide and nanodiamond: Same carboxylic groups, different complexation properties. RSC Adv. 7, 17442–17450 (2017)CrossRefGoogle Scholar
  161. 161.
    V.A. Basiuk, N. Alzate-Carvajal, L.V. Henao-Holguín, E.V. Rybak-Akimova, E.V. Basiuk, Coordination functionalization of graphene oxide with tetraazamacrocyclic complexes of nickel(II): Generation of paramagnetic centers. Appl. Surf. Sci. 371, 16–27 (2016)CrossRefGoogle Scholar
  162. 162.
    C.M. Parnell, B. Chhetri, A. Brandt, F. Watanabe, Z.A. Nima, T.K. Mudalige, A.S. Biris, A. Ghosh, Polydopamine-coated manganese complex/graphene nanocomposite for enhanced electrocatalytic activity towards oxygen reduction. Sci. Rep. 6, 31415 (2016)CrossRefGoogle Scholar
  163. 163.
    J. Liebscher, R. Mrówczyński, H.A. Scheidt, C. Filip, N.D. Hădade, R. Turcu, A. Bende, S. Beck, Structure of polydopamine: A never-ending story? Langmuir 29(33), 10539–10548 (2013)CrossRefGoogle Scholar
  164. 164.
    G.I. Cardenas-Jiron, P. Leon-Plata, D. Cortes-Arriagada, J.M. Seminario, Electrical characteristics of cobalt phthalocyanine complexes adsorbed on graphene. J. Phys. Chem. C 115, 16052–16062 (2011)CrossRefGoogle Scholar
  165. 165.
    Y. Wei-Guo, L. Dan, P. Xiao-Feng, D. Wei-Dong, Interfacial electronic structure at a metal–phthalocyanine/graphene interface: Copper–phthalocyanine versus iron–phthalocyanine. Chin. Phys. B 22(11), 117301 (2013)CrossRefGoogle Scholar
  166. 166.
    R. Devasenathipathy, V. Mani, S.-M. Chen, K. Manibalan, S.-T. Huang, Determination of 4-nitrophenol at iron phthalocyanine decorated graphene nanosheets film modified electrode. Int. J. Electrochem. Sci. 10, 1384–1392 (2015)Google Scholar
  167. 167.
    J. Ren, S. Meng, Y.-L. Wang, X.-C. Ma, Q.-K. Xue, E. Kaxiras, Properties of copper (fluoro-)phthalocyanine layers deposited on epitaxial graphene. J. Chem. Phys. 134, 194706 (2011)CrossRefGoogle Scholar
  168. 168.
    J. Zhu, Y. Li, Y. Chen, J. Wang, B. Zhang, J. Zhang, W.J. Blau, Graphene oxide covalently functionalized with zinc phthalocyanine for broadband optical limiting. Carbon 49(6), 1900–1905 (2011)CrossRefGoogle Scholar
  169. 169.
    N. Kafle, A. Buldum, The interaction between fullerene-porphyrin dyad and graphene. AIMS Mater. Sci. 4(2), 505–514 (2017)CrossRefGoogle Scholar
  170. 170.
    F. Montiel, A. Miralrio, L.E. Sansores, S. Fomine, Complexes of graphene nanoribbons with porphyrins and metal-encapsulated C28 as molecular rectifiers: A theoretical study. Mol. Simul. 43(9), 706–713 (2017)CrossRefGoogle Scholar
  171. 171.
    V. Tripkovic, M. Vanin, M. Karamad, M.E. Björketun, K.W. Jacobsen, K.S. Thygesen, J. Rossmeisl, Electrochemical CO2 and CO reduction on metal-functionalized porphyrin-like graphene. J. Phys. Chem. C 117, 9187–9195 (2013)CrossRefGoogle Scholar
  172. 172.
    M.M. Bernal, E.M. Pérez, One-pot exfoliation of graphite and synthesis of nanographene/dimesitylporphyrin hybrids. Int. J. Mol. Sci. 16, 10704–10714 (2015)CrossRefGoogle Scholar
  173. 173.
    M. Jurow, V. Manichev, C. Pabon, B. Hageman, Y. Matolina, C.M. Drain, Self-organization of Zr(IV) porphyrinoids on graphene oxide surfaces by axial metal coordination. Inorg. Chem. 52, 10576–10582 (2013)CrossRefGoogle Scholar
  174. 174.
    K. Karimne Zhad, A. Moghimi, Separation of Cr(III) from by functionalized graphene oxide with covalently linked porphyrin (GO–H2NP) adsorbed on surfactant coated C18. Orient. J. Chem. 30(1), 187–194 (2014)CrossRefGoogle Scholar
  175. 175.
    S. Zhang, S. Tang, J. Lei, H. Dong, H. Ju, Functionalization of graphene nanoribbons with porphyrin for electrocatalysis and amperometric biosensing. J. Electroanal. Chem. 656, 285–288 (2011)CrossRefGoogle Scholar
  176. 176.
    T. Poursaberi, M. Hassanisadi, Application of metalloporphyrin grafted-graphene oxide for the construction of a novel salicylate-selective electrode. J. Porphyrins Phthalocyanines 16, 1140 (2012)CrossRefGoogle Scholar
  177. 177.
    H. Su, S. Wu, Z. Li, Q. Huo, J. Guan, Q. Kan, Co(II), Fe(III) or VO(II) Schiff base metal complexes immobilized on graphene oxide for styrene epoxidation. Appl. Organomet. Chem. 29, 462–467 (2015)CrossRefGoogle Scholar
  178. 178.
    Q. Zhao, C. Bai, W. Zhang, Y. Li, G. Zhang, F. Zhang, X. Fan, Catalytic epoxidation of olefins with graphene oxide supported copper (Salen) complex. Ind. Eng. Chem. Res. 53, 4232–4238 (2014)CrossRefGoogle Scholar
  179. 179.
    Z. Li, S. Wu, D. Zheng, J. Liu, H. Liu, H. Lu, Q. Huo, J. Guan, Q. Kan, Dioxomolybdenum(VI) complex covalently attached to amino-modified graphene oxide: Heterogeneous catalyst for the epoxidation of alkenes. Appl. Organomet. Chem. 28, 317–323 (2014)CrossRefGoogle Scholar
  180. 180.
    H.P. Mungse, S. Verma, N. Kumar, B. Sain, O.P. Khatri, Grafting of oxo-vanadium Schiff base on graphene nanosheets and its catalytic activity for the oxidation of alcohols. J. Mater. Chem. 22, 5427–5433 (2012)CrossRefGoogle Scholar
  181. 181.
    P.K. Khatri, S. Choudhary, R. Singh, S.L. Jain, O.P. Khatri, Dalton Trans. 43, 8054–8061 (2014)CrossRefGoogle Scholar
  182. 182.
    S. Ragu, S.-M. Chen, P. Ranganathan, S.-P. Rwei, Fabrication of a novel nickel-curcumin/graphene oxide nanocomposites for superior electrocatalytic activity toward the detection of toxic p-nitrophenol. Int. J. Electrochem. Sci. 11, 9133–9144 (2016)CrossRefGoogle Scholar
  183. 183.
    J.-W. Liu, Y. Zhang, X.-W. Chen, J.-H. Wang, Graphene oxide–rare earth metal–organic framework composites for the selective isolation of hemoglobin. ACS Appl. Mater. Interfaces 6, 10196–10204 (2014)CrossRefGoogle Scholar
  184. 184.
    Y. Guo, Y. Han, S. Shuang, C. Dong, Rational synthesis of graphene–metal coordination polymer composite nanosheet as enhanced materials for electrochemical biosensing. J. Mater. Chem. 22, 13166–13173 (2012)CrossRefGoogle Scholar
  185. 185.
    W. Lu, X. Qin, A.M. Asiri, A.O. Al-Youbibc, X. Sun, Facile synthesis of novel Ni(II)-based metal–organic coordination polymer nanoparticle/reduced graphene oxide nanocomposites and their application for highly sensitive and selective nonenzymatic glucose sensing. Analyst 138, 429–433 (2013)CrossRefGoogle Scholar
  186. 186.
    M. Jahan, Z. Liu, K. Ping Loh, A graphene oxide and copper-centered metal organic framework composite as a tri-functional catalyst for HER, OER, and ORR. Adv. Funct. Mater. 23, 5363–5372 (2013)CrossRefGoogle Scholar
  187. 187.
    Y. Zhao, Y. Cao, Q. Zhong, CO2 capture on metal-organic framework and graphene oxide composite using a high-pressure static adsorption apparatus. J. Clean Energy Technol. 2(1), 34–37 (2014)CrossRefGoogle Scholar
  188. 188.
    J.H. Lee, J. Jaworski, J. Hwa Jung, Luminescent metal–organic framework-functionalized graphene oxide nanocomposites and the reversible detection of high explosives. Nanoscale 5, 8533–8540 (2013)CrossRefGoogle Scholar
  189. 189.
    G. Cheng, Z.-G. Wang, S. Denagamage, S.-Y. Zheng, Graphene-templated synthesis of magnetic metal organic framework nanocomposites for selective enrichment of biomolecules. ACS Appl. Mater. Interfaces 8(16), 10234–10242 (2016)CrossRefGoogle Scholar
  190. 190.
    D.D. Chronopoulos, A. Bakandritsos, P. Lazar, M. Pykal, K. Čeṕe, R. Zborǐl, M. Otyepka, High-yield alkylation and arylation of graphene via grignard reaction with fluorographene. Chem. Mater. 29, 926–930 (2017)CrossRefGoogle Scholar
  191. 191.
    Z.-C. Zhang, H.-Y. Jiang, Z.-W. Yua, Surface-enhanced Raman scattering, electron paramagnetic resonance, and electrochemical activity of copper(II) l-methionine complex/silver nanoparticles/graphene-coupled nanoaggregates. J. Coord. Chem. 68(1), 18–26 (2015)CrossRefGoogle Scholar
  192. 192.
    A.V. Akimov, C. Williams, A.B. Kolomeisky, Charge transfer and chemisorption of fullerene molecules on metal surfaces: Application to dynamics of nanocars. J. Phys. Chem. C 116, 13816–13826 (2012)CrossRefGoogle Scholar
  193. 193.
    R. Singhal, D.C. Agarwal, S. Mohapatra, Y.K. Mishra, D. Kabiraj, et al., Synthesis and characterizations of silver-fullerene C70 nanocomposite. Appl. Phys. Lett. 93, 103114 (2008)CrossRefGoogle Scholar
  194. 194.
    H. Kawabata, H. Tachikawa, DFT Study on the Interaction of the Smallest Fullerene C20 with Lithium Ions and Atoms. C (J. Carbon Res.) 3, 15, 8 pp (2017)Google Scholar
  195. 195.
    M. Robledo, N.F. Aguirre, S. Díaz-Tendero, F. Martín, M.I. Alcami, Bonding in exohedral metal–fullerene cationic complexes. RSC Adv. 4, 53010–53020 (2014)CrossRefGoogle Scholar
  196. 196.
    G. Bottari, G. de la Torre, T. Torres, Phthalocyanine-nanocarbon ensembles: From discrete molecular and supramolecular systems to hybrid nanomaterials. Acc. Chem. Res. 48(4), 900–910 (2015)CrossRefGoogle Scholar
  197. 197.
    A.L. Balch, M.M. Olmstead, Reactions of transition metal complexes with fullerenes (C60, C70, etc.) and related materials. Chem. Rev. 98, 2123–2165 (1998)CrossRefGoogle Scholar
  198. 198.
    D.T. Thompson, Platinum group metal fullerenes. Some recent studies on systems containing C60. Platin. Met. Rev. 40(l), 23–25 (1996)Google Scholar
  199. 199.
    K.B. Ghiassi, M.M. Olmstead, A.L. Balch, Gadolinium-containing endohedral fullerenes: Structures and function as magnetic resonance imaging (MRI) agents. Dalton Trans. 43, 7346–7358 (2014)CrossRefGoogle Scholar
  200. 200.
    E. Sheka, Fullerenes: Nanochemistry, Nanomagnetism, Nanomedicine, Nano-photonics, 1st edn. (CRC Press, Boca Raton, 2011), 328 ppCrossRefGoogle Scholar
  201. 201.
    S. Yang, C.-R. Wang, Endohedral Fullerenes: From Fundamentals to Applications (World Scientific Publishing Company, Singapore, 2014), 448 ppCrossRefGoogle Scholar
  202. 202.
    H. Shinohara, N. Tagmatarchis, Endohedral Metallofullerenes: Fullerenes with Metal Inside, 1st edn. (Wiley, Chichester/Hoboken, 2015), 296 ppCrossRefGoogle Scholar
  203. 203.
    M. Petrukhina, L.T. Scott, Fragments of Fullerenes and Carbon Nanotubes: Designed Synthesis, Unusual Reactions, and Coordination Chemistry, 1st edn. (Wiley, Hoboken, 2011), 440 ppCrossRefGoogle Scholar
  204. 204.
    D.M. Guldi, N. Martin, Fullerenes: From Synthesis to Optoelectronic Properties, Developments in fullerene science, 1st edn. (Springer, Dordrecht, 2003), 441 ppGoogle Scholar
  205. 205.
    P.J. Bracher, D.I. Schuster, Electron transfer in functionalized fullerenes, in Fullerenes: From Synthesis to Optoelectronic Properties, ed. by D. M. Guldi, N. Martín, (Kluwer Academic Publishers, Dordrecht, 2002), pp. 163–212CrossRefGoogle Scholar
  206. 206.
    S. Filippone, E.E. Maroto, A. Martín-Domenech, N. Martín, Metal catalysis in fullerene chemistry, in Advances in Organometallic Chemistry and Catalysis: The Silver/Gold Jubilee International Conference on Organometallic Chemistry Celebratory Book, ed. by A. J. L. Pombeiro, (Wiley, Hoboken, 2013)CrossRefGoogle Scholar
  207. 207.
    Y. Matsuo, E. Nakamura, Application of fullerenes to nanodevices, in Chemistry of Nanocarbons, ed. by T. Akasaka, F. Wudl, S. Nagase, (Wiley, Chichester, 2010)CrossRefGoogle Scholar
  208. 208.
    M.A. Lebedeva, T.W. Chamberlain, A.N. Khlobystov, Harnessing the synergistic and complementary properties of fullerene and transition metal compounds for nanomaterial applications. Chem. Rev. 115(20), 11301–11351 (2015)CrossRefGoogle Scholar
  209. 209.
    K. Kamarás, G. Klupp, Metallicity in fullerides. Dalton Trans. 43, 7366–7378 (2014)CrossRefGoogle Scholar
  210. 210.
    E.F. Sheka, B.S. Razbirin, A.N. Starukhin, D.K. Nelson, M.Yu. Degunov, R.N. Lyubovskaya, P.A. Troshin, N.V. Kamanina. Nonlinear photonics of fullerene solutions. https://arxiv.org/ftp/arxiv/papers/0901/0901.3728.pdf. Accessed on 23 Aug 2017
  211. 211.
    B.K. Reddy, S.C. Gadekar, V.G. Anand, Non-covalent composites of antiaromatic isophlorin–fullerene. Chem. Commun. 51, 8276–8279 (2015)CrossRefGoogle Scholar
  212. 212.
    P. Bhyrappa, K. Karunanithi, Porphyrin−fullerene, C60, cocrystallates: Influence of C60 on the porphyrin ring conformation. Inorg. Chem. 49(18), 8389–8400 (2010)CrossRefGoogle Scholar
  213. 213.
    M. Jurow, A. Varotto, V. Manichev, et al., Self-organized nanostructured materials of alkylated phthalocyanines and underivatized C60 on ITO. RSC Adv. 3, 21360–21364 (2013)CrossRefGoogle Scholar
  214. 214.
    D.V. Konarev, R.N. Lyubovskaya, New approaches to the synthesis of transition-metal complexes of fullerenes C60 and C70. Russ. Chem. Rev. 85(11), 1215–1228 (2016)CrossRefGoogle Scholar
  215. 215.
    D.V. Konarev, S.S. Khasanov, R.N. Lyubovskaya, Transition from free rotation of C70 molecules to static disorder in the molecular C70 complex with covalently linked porphyrin dimers: {(FeIIITPP)2O}·C70. J. Porphyrins Phthalocyanines 14, 293 (2010)CrossRefGoogle Scholar
  216. 216.
    A.Y. Vul, V.I. Sokolov, Nanocarbon studies in Russia: From fullerenes to nanotubes and nanodiamonds. Nanotechnol Russ 4(7–8), 397–414 (2009)CrossRefGoogle Scholar
  217. 217.
    D. Soto, R. Salcedo, Coordination modes and different hapticities for fullerene organometallic complexes. Molecules 17, 7151–7168 (2012)CrossRefGoogle Scholar
  218. 218.
    S.-K. Goh, D.S. Marynick, Ability of fullerenes to act as η6 ligands in transition metal complexes. A comparative PM3(tm)–density functional theory study. J. Comput. Chem. 22(16), 1881–1886 (2001)CrossRefGoogle Scholar
  219. 219.
    F. Banim, C.J. Cardin, D.J. Cardin, M. Pistocchi, A. Todd, The synthesis of dicobalt and dinickel complexes of trimethylsilylethynyl-1, 2-dihydrofullerene; characterisation by n.m.r. and structure of the first acyclic metal fullerene derivative: Molecular structure of [η2-{2-H-1-(Me3SiC≡C)-C60}Ni2(η-C5H5)2]. J. Phys. Chem. Solids 58(11), 1919–1923 (1997)CrossRefGoogle Scholar
  220. 220.
    A. Bianco, M. Maggini, S. Mondini, A. Polese, G. Scorrano, C. Toniolo, D.M. Guldi, Synthesis and characterization of a peptide-linked C60 Dyad, in Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials, ed. by K. M. Kadish, R. S. Ruoff, vol. 6, (The Electrochemical Society Inc., Pennington, 1998), pp. 1145–1151Google Scholar
  221. 221.
    T.V. Magdesieva, V.V. Bashilov, D.N. Kravchuk, V.I. Sokolov, K.P. Butin, Electrochemical metallation and arylation of C60. Russ. J. Electrochem. 35(9), 992–999 (1999)Google Scholar
  222. 222.
    W. Zhao, J. Tang, A.U. Falster, W.B. Simmons, R.L. Sweany, Infrared transmission study of lanthanide fullerides SmxC60 prepared by metal vapor synthesis. Proc. Electrochem. Soc. 96–10 (Recent Advances in the Chemistry and Physics of Fullerenes, Vol. 3), 1115–1126 (1996); J. Alloys Compd. 249(1–2), 241–245 (1997)CrossRefGoogle Scholar
  223. 223.
    Y. Matsuo, Y. Kuninobu, A. Muramatsu, M. Sawamura, E. Nakamura, Synthesis of metal fullerene complexes by the use of fullerene halides. Organometallics 27(14), 3403–3409 (2008)CrossRefGoogle Scholar
  224. 224.
    H. Zheng, X. Zhao, S. Sakaki, [2+2]-type reaction of metal–metal σ-bond with fullerene forming an η1-C60 metal complex: Mechanistic details of formation reaction and prediction of a new η1-C60 metal complex. Inorg. Chem. 56(11), 6746–6754 (2017)CrossRefGoogle Scholar
  225. 225.
    N. Kishi, M. Akita, M. Kamiya, et al., Facile catch and release of fullerenes using a photoresponsive molecular tube. J. Am. Chem. Soc. 135(35), 12976–12979 (2013)CrossRefGoogle Scholar
  226. 226.
    N.B. Jayaratna, M.M. Olmstead, B.I. Kharisov, H.V. Rasika Dias, Coinage metal pyrazolates [(3,5-(CF3)2Pz)M]3 (M = Au, Ag, Cu) as Buckycatchers. Inorg. Chem. 55(17), 8277–8280 (2016)CrossRefGoogle Scholar
  227. 227.
    Y. Eda, K. Itoh, Y.N. Ito, M. Fujitsuka, T. Majima, T. Kawato, Synthesis and properties of fullerene (C70) complexes of 2,6-bis(porphyrin)-substituted pyrazine derivatives bound to a Pd(II) ion. J. Supramol. Chem. 22(9), 517–523 (2010)CrossRefGoogle Scholar
  228. 228.
    F. Langa, J.-F. Nierengarten (eds.), Fullerenes: Principles and Applications (The Royal Society of Chemistry, Cambridge, 2007). http://pubs.rsc.org/en/content/ebook/9780854045518Google Scholar
  229. 229.
    B.M. Rosen, C.J. Wilson, D.A. Wilson, M. Peterca, M.R. Imam, V. Percec, Dendron-mediated self-assembly, disassembly, and self-organization of complex systems. Chem. Rev. 109(11), 6275–6540 (2009)CrossRefGoogle Scholar
  230. 230.
    G. Bottari, J.A. Suanzes, O. Trukhina, T. Torres, Phthalocyanine−carbon nanostructure materials assembled through supramolecular interactions. J. Phys. Chem. Lett. 2, 905–913 (2011)CrossRefGoogle Scholar
  231. 231.
    G. Vives, J.M. Tour, Synthesis of single-molecule nanocars. Acc. Chem. Res. 42, 473–487 (2009)CrossRefGoogle Scholar
  232. 232.
    H. Yamada, H. Imahori, Y. Nishimura, Y. Nishimura, I. Yamazaki, T.K. Ahn, S.K. Kim, D. Kim, S. Fukuzumi, Photovoltaic properties of self-assembled monolayers of porphyrins and porphyrin−fullerene dyads on ITO and gold surfaces. J. Am. Chem. Soc. 125(30), 9129–9139 (2003)CrossRefGoogle Scholar
  233. 233.
    H. Imahori, M. Kimura, K. Hosomizu, T. Sato, T.K. Ahn, S.K. Kim, D. Kim, Y. Nishimura, I. Yamazaki, Y. Araki, O. Ito, S. Fukuzumi, Vectorial electron relay at ITO electrodes modified with self-assembled monolayers of ferrocene–porphyrin–fullerene triads and porphyrin–fullerene dyads for molecular photovoltaic devices. Chem. Eur. J. 10, 5111–5122 (2004)CrossRefGoogle Scholar
  234. 234.
    N.V. Tkachenko, H. Lemmetyinen, J. Sonoda, K. Ohkubo, T. Sato, H. Imahori, S. Fukuzumi, Ultrafast photodynamics of exciplex formation and photoinduced electron transfer in porphyrin−fullerene dyads linked at close proximity. J. Phys. Chem. A 107, 8834–8844 (2003)CrossRefGoogle Scholar
  235. 235.
    N. Armaroli, G. Accorsi, F.Y. Song, A. Palkar, L. Echegoyen, D. Bonifazi, F. Diederich, Photophysical and electrochemical properties of meso,meso-linked oligoporphyrin rods with appended fullerene terminals. ChemPhysChem 6, 732–743 (2005)CrossRefGoogle Scholar
  236. 236.
    P.D.W. Boyd, C.A. Reed, Fullerene-porphyrin constructs. Acc. Chem. Res. 38, 235–242 (2005)CrossRefGoogle Scholar
  237. 237.
    G. Bottari, G. de la Torre, T. Torres, Phthalocyanine–nanocarbon ensembles: From discrete molecular and supramolecular systems to hybrid nanomaterials. Acc. Chem. Res. 48(4), 900–910 (2015)CrossRefGoogle Scholar
  238. 238.
    Y.-J. Cho, T.K. Ahn, H. Song, et al., ZnP-C60 dyad (Os) structure on ITO. J. Am. Chem. Soc. 127, 2380–2381 (2005)CrossRefGoogle Scholar
  239. 239.
    R. Koeppe, N.S. Sariciftci, P.A. Troshin, R.N. Lyubovskaya, Complexation of pyrrolidinofullerenes and zinc-phthalocyanine in a bilayer organic solar cell structure. Appl. Phys. Lett. 87, 244102 (2005)CrossRefGoogle Scholar
  240. 240.
    M.G. Walter, A.B. Rudine, C.C. Wamser, Porphyrins and phthalocyanines in solar photovoltaic cells. J. Porphyrins Phthalocyanines 14, 759–792 (2010)CrossRefGoogle Scholar
  241. 241.
    T. Hasobe, H. Imahori, P.V. Kamat, T.K. Ahn, S.K. Kim, D. Kim, A. Fujimoto, T. Hirakawa, S. Fukuzumi, Photovoltaic cells using composite nanoclusters of porphyrins and fullerenes with gold nanoparticles. J. Am. Chem. Soc. 127, 1216–1228 (2005)CrossRefGoogle Scholar
  242. 242.
    T. Hasobe, H. Imahori, P.V. Kamat, S. Fukuzumi, Quaternary self-organization of porphyrin and fullerene units by clusterization with gold nanoparticles on SnO2 electrodes for organic solar cells. J. Am. Chem. Soc. 125, 14962–14963 (2003)CrossRefGoogle Scholar
  243. 243.
    H. Imahori, S. Fukuzumi, Porphyrin- and fullerene-based molecular photovoltaic devices. Adv. Funct. Mater. 14(6), 525–536 (2004)CrossRefGoogle Scholar
  244. 244.
    E.S. Zyablikova, N.A. Bragina, A.F. Mironov, Covalent-bound conjugates of fullerene C60 and metal complexes of porphyrins with long-chain substituents. Mendeleev Commun. 22, 257–259 (2012)CrossRefGoogle Scholar
  245. 245.
    S.J. Dammer, P.V. Solntsev, J.R. Sabin, V.N. Nemykin, Synthesis, characterization, and electron-transfer processes in indium ferrocenyl-containing porphyrins and their fullerene adducts. Inorg. Chem. 52, 9496–9510 (2013)CrossRefGoogle Scholar
  246. 246.
    D.M. Wood, W. Meng, T.K. Ronson, A.R. Stefankiewicz, J.K.M. Sanders, J.R. Nitschke, Guest-induced transformation of a porphyrin-edged FeII4L6 capsule into a CuIFeII2L4 fullerene receptor. Angew. Chem. 54(13), 3988–3992 (2015)CrossRefGoogle Scholar
  247. 247.
    M. Yamamoto, J. Föhlinger, J. Petersson, L. Hammarström, H. Imahori, A ruthenium complex–porphyrin–fullerene-linked molecular pentad as an integrative photosynthetic model. Angew. Chem. 56, 3329–3333 (2017)CrossRefGoogle Scholar
  248. 248.
    W. Cao, Y. Zhang, H. Wang, K. Wang, J. Jiang, Influence of porphyrin meso-attached substituent on the SMM behavior of dysprosium(III) double- deckers with mixed tetrapyrrole ligands. RSC Adv. 5, 17732–17737 (2015)CrossRefGoogle Scholar
  249. 249.
    L. Moreira, J. Calbo, B.M. Illescas, et al., Metal-atom impact on the self-assembly of cup-and-ball metalloporphyrin-fullerene conjugates. Angew. Chem. 54(4), 1255–1260 (2015)CrossRefGoogle Scholar
  250. 250.
    H. Wang, K. Qian, D. Qi, W. Cao, K. Wang, S. Gao, J. Jiang, Co-crystallized fullerene and a mixed (phthalocyaninato)(porphyrinato) dysprosium double-decker SMM. Chem. Sci. 5, 3214–3220 (2014)CrossRefGoogle Scholar
  251. 251.
    H.M. Rhoda, M.P. Kayser, Y. Wang, A.Y. Nazarenko, R.V. Belosludov, P. Kiprof, D.A. Blank, V.N. Nemykin, Tuning up an electronic structure of the subphthalocyanine derivatives toward electron-transfer process in noncovalent complexes with C60 and C70 fullerenes: Experimental and theoretical studies. Inorg. Chem. 55, 9549–9563 (2016)CrossRefGoogle Scholar
  252. 252.
    Y. Matsuo, B.K. Park, Y. Mitani, Y.-W. Zhong, M. Maruyama, E. Nakamura, Synthesis of ruthenium pentamethyl[60]fullerene complexes bearing monodentate diphenylphosphino-methane, −ferrocene, and -butane Ligands. Bull. Kor. Chem. Soc. 31(3), 697–699 (2010)CrossRefGoogle Scholar
  253. 253.
    Y. Matsuo, Y. Kuninobu, S. Ito, M. Sawamura, E. Nakamura, Friedel–Crafts functionalization of the cyclopentadienyl ligand in buckymetallocenes. Dalton Trans. 43, 7407–7412 (2014)CrossRefGoogle Scholar
  254. 254.
    A.L. Svitova, Y. Krupskaya, N. Samoylova, R. Kraus, J. Geck, L. Dunsch, A.A. Popov, Magnetic moments and exchange coupling in nitride clusterfullerenes GdxSc3–xN@C80 (x = 1–3). Dalton Trans. 43, 7387–7390 (2014)CrossRefGoogle Scholar
  255. 255.
    S. Stevenson, K.A. Rottinger, J.S. Field, Fractionation of rare-earth metallofullerenes via reversible uptake and release from reactive silica. Dalton Trans. 43, 7435–7441 (2014)CrossRefGoogle Scholar
  256. 256.
    A. Botos, A.N. Khlobystov, B. Botka, et al., Investigation of fullerene encapsulation in carbon nanotubes using a complex approach based on vibrational spectroscopy. Phys. Status Solidi B 247(11–12), 2743–2745 (2010)CrossRefGoogle Scholar
  257. 257.
    M. Koshino, Multiple reaction pathways of metallofullerenes investigated by transmission electron microscopy. Dalton Trans. 43, 7359–7365 (2014)CrossRefGoogle Scholar
  258. 258.
    A.S. Sinitsa, I.V. Lebedeva, A.A. Knizhnik, A.M. Popov, S.T. Skowronf, E. Bichoutskaia, Formation of nickel–carbon heterofullerenes under electron irradiation. Dalton Trans. 43, 7499–7513 (2014)CrossRefGoogle Scholar
  259. 259.
    B. Molina, L. Pérez-Manríquez, R. Salcedo, On the π coordination of organometallic fullerene complexes. Molecules 16, 4652–4659 (2011)CrossRefGoogle Scholar
  260. 260.
    B.I. Kharisov, O.V. Kharissova, M. Jimenez Gomez, U. Ortiz Mendez, Recent advances in the synthesis, characterization, and applications of fulleropyrrolidines. Ind. Eng. Chem. Res. 48(2), 545–571 (2009)CrossRefGoogle Scholar
  261. 261.
    T. Oku, A. Suzuki, Y. Yamasaki, Theoretical study of gallium phthalocyanine dimer-fullerene complex for photovoltaic device. J. Mod. Phys. 2(9), ID:7137, 4 pp (2011)Google Scholar
  262. 262.
    V. Strauss, A.A. Roth, M. Sekita, D.M. Guldi, Efficient energy-conversion materials for the future: Understanding and tailoring charge-transfer processes in carbon nanostructures. Chem 1, 531–556 (2016)CrossRefGoogle Scholar
  263. 263.
    A.F. Mironov, Synthesis, properties, and potential applications of porphyrin-fullerenes. Macroheterocycles 4(3), 186–208 (2011)CrossRefGoogle Scholar
  264. 264.
    A. Loboda, Quantum-chemical studies on Porphyrins, Fullerenes and Carbon Nanostructures (Springer, Berlin, 2013), 144 ppCrossRefGoogle Scholar
  265. 265.
    C. García-Simón, M. Costas, X. Ribas, Metallosupramolecular receptors for fullerene binding and release. Chem. Soc. Rev. 45, 40–62 (2016)CrossRefGoogle Scholar
  266. 266.
    S. Sarkar, S.M. Rezayat, A. Buchachenko, S. Sarkar, S.M. Rezayat, A.L. Buchachenko, D.A. Kuznetsov, M.A. Orlova, M.A. Yurovskaya, European Union Patents № 07009881.9 and № 07009882.7, 2007, Munich, GermanyGoogle Scholar
  267. 267.
    I. Rašović, Water-soluble fullerenes for medical applications. Mater. Sci. Technol. 33(7), 777–794 (2017)CrossRefGoogle Scholar
  268. 268.
    S. Prylutska, S. Politenkova, K. Afanasieva, et al., A nanocomplex of C60 fullerene with cisplatin: Design, characterization and toxicity. Beilstein J. Nanotechnol. 8, 1494–1501 (2017)CrossRefGoogle Scholar
  269. 269.
    N. Mar, L.E. Sansores, E. Ramos, R. Salcedo, Iron complexes of nanodiamond: Theoretical approach. Comput. Theor. Chem. 1035(1–5), 1 (2014)CrossRefGoogle Scholar
  270. 270.
    K. Bray, R. Previdi, B.C. Gibson, O. Shimoni, and I. Aharonovich, Enhanced photoluminescence from single nitrogen-vacancy defects in nanodiamonds coated with metal-phenolic networks. arXiv:1501.07632 [physics.optics] (2015). https://arxiv.org/abs/1501.07632
  271. 271.
    K. Bray, R. Previdi, B.C. Gibson, O. Shimoni, I. Aharonovich, Enhanced photoluminescence from single nitrogen-vacancy defects in nanodiamonds coated with phenol-ionic complexes. Nanoscale 7, 4869–4874 (2015)CrossRefGoogle Scholar
  272. 272.
    M.A. Ilyushin, A.S. Kozlov, A.V. Smirnov, A.S. Tver’yanovich, Y.S. Tver’yanovich, G.O. Abdrashitov, A.O. Aver’yanov, M.D. Bal’makov, The effect of carbon nanoparticles on the thermal and photolytic properties of the (5-nitrotetrazolato-N2) pentaammin-cobalt(III) perchlorate complex. Glas. Phys. Chem. 43(1), 111–113 (2017)CrossRefGoogle Scholar
  273. 273.
    J.H.E. Phua, W.K. Leong, Nanodiamonds decorated with organometallic clusters. http://www.nus.edu.sg/nurop/2010/Proceedings/FoS/Chemistry/Phua%20Jia%20Han%20Eunice_U062023A.pdf
  274. 274.
    G. Dördelmann, T. Meinhardt, T. Sowik, A. Krueger, U. Schatzschneider, CuAAC click functionalization of azide-modified nanodiamond with a photoactivatable CO-releasing molecule (PhotoCORM) based on [Mn(CO)3(tpm)]+. Chem. Commun. 48, 11528–11530 (2012)CrossRefGoogle Scholar
  275. 275.
    X. Zhao, S. Zhang, C. Bai, B. Li, Y. Li, L. Wang, R. Wen, M. Zhang, L. Ma, S. Li, Nano-diamond particles functionalized with single/double-arm amide–thiourea ligands for adsorption of metal ions. J. Colloid Interface Sci. 469, 109–119 (2016)CrossRefGoogle Scholar
  276. 276.
    L.S. Sundar, M.K. Singh, E. Venkata Ramana, B. Singh, J. Gracio, A.C.M. Sousa, Enhanced thermal conductivity and viscosity of nanodiamond-nickel nanocomposite nanofluids. Sci. Rep. 4, 4039, 14 pp (2014)Google Scholar
  277. 277.
    C.-L. Lin, C.-H. Lin, H.-C. Chang, M.-C. Su, Protein attachment on nanodiamonds. J. Phys. Chem. A 119(28), 7704–7711 (2015)CrossRefGoogle Scholar
  278. 278.
    H.B. Na, T. Hyeon, Nanostructured T1 MRI contrast agents. J. Mater. Chem. 19, 6267–6273 (2009)CrossRefGoogle Scholar
  279. 279.
    L.M. Manus, D.J. Mastarone, E.A. Waters, X.-Q. Zhang, E.A. Schultz-Sikma, K.W. MacRenaris, D. Ho, T.J. Meade, Gd(III)-nanodiamond conjugates for MRI contrast enhancement. Nano Lett. 10, 484–489 (2009)CrossRefGoogle Scholar
  280. 280.
    Q. Le Trequesser, H. Seznec, M.-H. Delville. Functionalized nanomaterials: Their use as contrast agents in bioimaging: Mono- and multimodal approaches. Nanotechnol Rev, 2(2), 125–169 (2013). HAL Id: hal-00814288 https://hal.archives-ouvertes.fr/hal-00814288
  281. 281.
    Y. Zhu, Y. Zhang, G. Shi, et al., Nanodiamonds act as Trojan horse for intracellular delivery of metal ions to trigger cytotoxicity. Part. Fibre Toxicol. 12(2), 11 pp (2015)Google Scholar
  282. 282.
    Y.Y. Hui, C.-L. Cheng, H.-C. Chang, Nanodiamonds for optical bioimaging. J. Phys. D. Appl. Phys. 43, 374021 (2010)CrossRefGoogle Scholar
  283. 283.
    V.N. Mochalin, O. Shenderova, D. Ho, Y. Gogotsi, The properties and applications of nanodiamonds. Nat. Nanotechnol 7, 11–23 (2012)CrossRefGoogle Scholar
  284. 284.
    A.S. Barnard, Diamond standard in diagnostics: Nanodiamond biolabels make their mark. Analyst 134, 1751–1764 (2009)CrossRefGoogle Scholar
  285. 285.
    Y. Xing, L. Dai, Nanodiamonds for nanomedicine. Nanomedicine 4, 207–218 (2009)CrossRefGoogle Scholar
  286. 286.
    L. Echegoyen, A. Ortiz, M.N. Chaur, A.J. Palkar, Carbon nano onions, in Chemistry of Nanocarbons, ed. by T. Akasaka, S. Nagase, F. Wudl, (Wiley, Chichester, 2010)CrossRefGoogle Scholar
  287. 287.
    J. Bartelmess, S. Giordani, Carbon nano-onions (multi-layer fullerenes): Chemistry and applications. Beilstein J. Nanotechnol. 5, 1980–1998 (2014)CrossRefGoogle Scholar
  288. 288.
    J. Bartelmess, M. Frasconi, P.B. Balakrishnan, A. Signorelli, L. Echegoyen, T. Pellegrino, S. Giordani, Non-covalent functionalization of carbon nanoonions with pyrene–BODIPY dyads for biological imaging. RSC Adv. 5, 50253–50258 (2015)CrossRefGoogle Scholar
  289. 289.
    A. Palkar, A. Kumbhar, A.J. Athans, L. Echegoyen, Pyridyl-functionalized and water-soluble carbon nano onions: First supramolecular complexes of carbon nano onions. Chem. Mater. 20, 1685–1687 (2008)CrossRefGoogle Scholar
  290. 290.
    V. Spampinato, G. Ceccone, Surface analysis of zinc-porphyrin functionalized carbon nano-onions. Biointerphases 10, 019006 (2015)CrossRefGoogle Scholar
  291. 291.
    C.T. Cioffi, A. Palkar, F. Melin, A. Kumbhar, L. Echegoyen, M. Melle-Franco, F. Zerbetto, G.M.A. Rahman, C. Ehli, V. Sgobba, D.M. Guldi, M. Prato, Chem. Eur. J. 15, 4419–4427 (2009)CrossRefGoogle Scholar
  292. 292.
    M.B. Seymour, C. Su, Y. Gao, Y. Lu, Y. Li, Characterization of carbon nano-onions for heavy metal ion remediation. J. Nanopart. Res. 14, 1087 (2012)CrossRefGoogle Scholar
  293. 293.
    Y. Li, M. Seymour, Fullerenes and carbon nano-onions for environmental application, in Nanotechnology for Water Treatment and Purification, Part of the lecture notes in nanoscale science and technology book series (LNNST), vol. 22, (Springer, Cham, 2014), pp. 145–158Google Scholar
  294. 294.
    M. Klose, K. Pinkert, M. Zier, M. Uhlemann, et al., Hollow carbon nano-onions with hierarchical porosity derived from commercial metal organic framework. Carbon 79, 302–309 (2014)CrossRefGoogle Scholar
  295. 295.
    C.P. Hauser, N. Jagielski, J. Heller, D. Hinderberger, H.W. Spiess, I. Lieberwirth, C.K. Weiss, K. Landfester, Structure formation in metal complex/polymer hybrid nanomaterials prepared by miniemulsion. Langmuir 27, 12859–12868 (2011)CrossRefGoogle Scholar
  296. 296.
    A. Seral-Ascaso, R. Garriga, M.L. Sanjuán, J.M. Razal, R. Lahoz, M. Laguna, G.F. de la Fuente, E. Muñoz, Laser chemistry’ synthesis, physicochemical properties, and chemical processing of nanostructured carbon foams. Nanoscale Res. Lett. 8, 233 (2013)CrossRefGoogle Scholar
  297. 297.
    K. Kongpatpanich, S. Horike, Y.-i. Fujiwara, N. Ogiwara, H. Nishihara, S. Kitagawa, Formation of foam-like microstructural carbon material by carbonization of porous coordination polymers through a ligand-assisted foaming process. Chem. Eur. J. 21, 13278–13283 (2015)CrossRefGoogle Scholar
  298. 298.
    A. Peña, A. Guerrero, J. Puerta, J.L. Brito, T.K. Heckel, Characterisation of carbon nanotube foam for improved gas storage capability, in Proceedings of the SEM Annual Conference June 7–10, 2010 Indianapolis, 2010 Society for Experimental Mechanics IncGoogle Scholar
  299. 299.
    S.R. Stoyanov, P. Král, Multifunctional metal-doped carbon nanocapsules. J. Chem. Phys. 129, 234702 (2008)CrossRefGoogle Scholar
  300. 300.
    A. Guven, I.A. Rusakova, M.T. Lewis, L.J. Wilson, Cisplatin@US-tube carbon nanocapsules for enhanced chemotherapeutic delivery. Biomaterials 33(5), 1455–1461 (2012)CrossRefGoogle Scholar
  301. 301.
    T. Kizuka, K. Miyazawa, D. Matsuura, Synthesis of carbon nanocapsules and nanotubes using Fe-doped fullerene nanowhiskers. J. Nanotechnol. 2012, Article ID 613746, 6 pp (2012)Google Scholar
  302. 302.
    D. Jain, A. Winkel, R. Wilhelm, Solid-state synthesis of well-defined carbon nanocapsules from organometallic precursors. Small 2(6), 752–755 (2006)CrossRefGoogle Scholar
  303. 303.
    B. Kumar, M. Asadi, D. Pisasale, et al., Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction. Nat. Commun. 4, 2819 (2013)CrossRefGoogle Scholar
  304. 304.
    L. Feng, N. Xie, J. Zhong, Carbon nanofibers and their composites: A review of synthesizing, properties and applications. Materials 7, 3919–3945 (2014)CrossRefGoogle Scholar
  305. 305.
    D.A. Bulushev, M. Zacharska, A.S. Lisitsyn, O.Y. Podyacheva, F.S. Hage, Q.M. Ramasse, U. Bangert, L.G. Bulusheva, Single atoms of Pt-group metals stabilized by N-doped carbon nanofibers for efficient hydrogen production from formic acid. ACS Catal. 6, 3442–3451 (2016)CrossRefGoogle Scholar
  306. 306.
    T.G. Ros, A.J. van Dillen, J.W. Geus, D.C. Koningsberger, Modification of carbon nanofibres for immobilisation of metal complexes. A case study with rhodium-anthranilic acid. Chem. Eur. J. 8(13), 2868–2878 (2002)CrossRefGoogle Scholar
  307. 307.
    B. Zhou, W. Chen, Preparation and catalytic activity of carbon nanofibers anchored metallophthalocyanine in decomposing acid orange 7. Materials 7, 1370–1383 (2014)CrossRefGoogle Scholar
  308. 308.
    C. Wang, C. Liu, J. Li, X. Sun, J. Shen, W. Han, L. Wang, Electrospun metal–organic framework derived hierarchical carbon nanofibers with high performance for supercapacitors. Chem. Commun. 53, 1751–1754 (2017)CrossRefGoogle Scholar
  309. 309.
    W. Zhang, Z.-Y. Wu, H.-L. Jiang, S.-H. Yu, Nanowire-directed templating synthesis of metal−organic framework nanofibers and their derived porous doped carbon nanofibers for enhanced electrocatalysis. J. Am. Chem. Soc. 136, 14385–14388 (2014)CrossRefGoogle Scholar
  310. 310.
    J. Shuia, C. Chen, L. Grabstanowicz, D. Zhaod, D.-J. Liu, Highly efficient nonprecious metal catalyst prepared with metal–organic framework in a continuous carbon nanofibrous network. PNAS 112(34), 10629–10634 (2015)CrossRefGoogle Scholar
  311. 311.
    J. Zhang, S.-H. Yu, Carbon dots: Large-scale synthesis, sensing and bioimaging. Mater. Today 19(7), 382–393 (2016)CrossRefGoogle Scholar
  312. 312.
    A. Sciortino, A. Madonia, M. Gazzetto, et al., The interaction of photoexcited carbon nanodots with metal ions disclosed down to the femtosecond scale. Nanoscale 9, 11902–11911 (2017)CrossRefGoogle Scholar
  313. 313.
    C. Liu, B. Tang, S. Zhang, et al., Photoinduced electron transfer mediated by coordination between carboxyl on carbon nanodots and Cu2+ quenching photoluminescence. J. Phys. Chem. C 122, 3662–3668 (2018)CrossRefGoogle Scholar
  314. 314.
    N. Dhenadhayalan, K.-C. Lin, Chemically induced fluorescence switching of carbon-dots and its multiple logic gate implementation. Sci. Rep. 5, 10012 (2015)CrossRefGoogle Scholar
  315. 315.
    B. Mu, P.M. Schoenecker, K.S. Walton, Gas adsorption study on mesoporous metal−organic framework UMCM-1. J. Phys. Chem. C 114(14), 6464–6471 (2010)CrossRefGoogle Scholar
  316. 316.
    J.-S. Li, Y.-J. Tang, S.-L. Li, et al., Carbon nanodots functional MOFs composites by a stepwise synthetic approach: Enhanced H2 storage and fluorescent sensing. CrystEngComm 17, 1080–1085 (2015)CrossRefGoogle Scholar
  317. 317.
    S. Kim, J. Kyo Seo, J. Hong Park, et al., White-light emission of blue-luminescent graphene quantum dots by europium (III)complex incorporation. Carbon 124, 479–485 (2017)CrossRefGoogle Scholar
  318. 318.
    L. Wang, S. Tricard, P. Yue, et al., Polypyrrole and graphene quantum dots@Prussian Blue hybrid film on graphite felt electrodes: Application for amperometric determination of L-cysteine. Biosens. Bioelectron. 77, 1112–1118 (2016)CrossRefGoogle Scholar
  319. 319.
    G. Fomo, O.J. Achadu, T. Nyokong, One-pot synthesis of graphene quantum dots–phthalocyanines supramolecular hybrid and the nvestigation of their photophysical properties. J. Mater. Sci. 53, 538–548 (2018)CrossRefGoogle Scholar
  320. 320.
    Z. Tian, X. Yao, K. Ma, et al., Metal−organic framework/graphene quantum dot nanoparticles used for synergistic chemo- and photothermal therapy. ACS Omega 2, 1249–1258 (2017)CrossRefGoogle Scholar
  321. 321.
    B. Zheng, C. Wang, X. Xin, et al., Electron transfer from graphene quantum dots to the copper complex enhances its nuclease activity. J. Phys. Chem. C 118(14), 7637–7642 (2014)CrossRefGoogle Scholar
  322. 322.
    J. Marwan, T. Addou, D. Belanger, Functionalization of glassy carbon electrodes with metal-based species. Chem. Mater. 17, 2395–2403 (2005)CrossRefGoogle Scholar
  323. 323.
    L. Fotouhi, M. Naseri, Recent electroanalytical studies of metal-organic frameworks: A mini-review. Crit. Rev. Anal. Chem. 46(4), 323–331 (2015)CrossRefGoogle Scholar
  324. 324.
    O. Fatibello-Filho, E.R. Dockal, L.H. Marcolino-Junior, M.F.S. Teixeira, Electrochemical modified electrodes based on metal-salen complexes. Anal. Lett. 40, 1825–1852 (2007)CrossRefGoogle Scholar
  325. 325.
    G. March, T.D. Nguyen, B. Piro, Modified electrodes used for electrochemical detection of metal ions in environmental analysis. Biosensors 5, 241–275 (2015)CrossRefGoogle Scholar
  326. 326.
    W. Zhou, J. Jia, J. Lu, L. Yang, D. Hou, G. Li, S. Chen, Recent developments of carbon-based electrocatalysts for hydrogen evolution reaction. Nano Energy 28, 29–43 (2016)CrossRefGoogle Scholar
  327. 327.
    S. Zhao, Y. Wang, J. Dong et al., Ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy, 1, Art. No. 16184 (2016)Google Scholar
  328. 328.
    A. Ciszewski, G. Milczarek, Glassy carbon electrode modified by conductive, polymeric nickel(II) porphyrin complex as a 3D homogeneous catalytic system for methanol oxidation in basic media. J. Electroanal. Chem. 426, 125–130 (1997)CrossRefGoogle Scholar
  329. 329.
    C. Canales, F. Varas-Concha, T.E. Mallouk, G. Ramírez, Enhanced electrocatalytic hydrogen evolution reaction: Supramolecular assemblies of metalloporphyrins on glassy carbonelectrodes. Appl. Catal. B Environ. 188, 169–176 (2016)CrossRefGoogle Scholar
  330. 330.
    Q. He, G. Wu, K. Liu, S. Khene, Q. Li, T. Mugadza, E. Deunf, T. Nyokong, S.W. Chen, Effects of redox mediators on the catalytic activity of iron porphyrins towards oxygen reduction in acidic media. ChemElectroChem 1, 1508–1515 (2014)CrossRefGoogle Scholar
  331. 331.
    S. Brüller, H.-W. Liang, U.I. Kramm, J.W. Krumpfer, X. Feng, K. Müllen, Bimetallic porous porphyrin polymer-derived non-precious metal electrocatalysts for oxygen reduction reactions. J. Mater. Chem. A 3, 23799–23808 (2015)CrossRefGoogle Scholar
  332. 332.
    K. Calfumán, M.J. Aguirre, D. Villagra, C. Yañez, C. Arévalo, B. Matsuhiro, L. Mendoza, M. Isaacs, Nafion/tetraruthenated porphyrin glassy carbon-modified electrode: Characterization and voltammetric studies of sulfite oxidation in water–ethanol solutions. J. Solid State Electrochem. 14, 1065–1072 (2010)CrossRefGoogle Scholar
  333. 333.
    T. Ikai, T. Yonekura, T. Ohsaka, F. Kitamura, Oxygen reduction at the rare-earth phthalocyanine-modified glassy carbon electrode in aqueous media. http://www.electrochem.org/dl/ma/206/pdfs/2310.pdf, Accessed on 13 Sept 2017
  334. 334.
    S. Realista, P. Ramgi, B. de P Cardoso, A.I. Melato, A.S. Viana, M.J. Calhorda, P.N. Martinho, Heterodinuclear Ni(II) and Cu(II) Schiff base complexes and their activity in oxygen reduction. Dalton Trans. 45, 14725–14733 (2016)CrossRefGoogle Scholar
  335. 335.
    S. Praveen Kumar, R. Suresh, K. Giribabu, R. Manigandan, S. Munusamy, S. Muthamizh, T. Dhanasekaran, A. Padmanaban, V. Narayanan, Synthesis, characterization of nickel Schiff base complex and its electrocatalytic sensing nature for Hg+2. Third National Conference on Advances in Chemistry (NCAC–2015). Int. J. Innov. Res. Sci. Eng. Technol, 4(Special Issue 1) (2015)Google Scholar
  336. 336.
    O.V. Levin, M.P. Karushev, A.M. Timonov, E.V. Alekseeva, S. Zhang, V.V. Malev, Charge transfer processes on electrodes modified by polymer films of metal complexes with Schiff bases. Electrochim. Acta 109, 153–161 (2013)CrossRefGoogle Scholar
  337. 337.
    L. Abdullah Alshahrani, X. Li, H. Luo, The simultaneous electrochemical detection of catechol and hydroquinone with [Cu(Sal-β-Ala)(3,5-DMPz)2]/SWCNTs/GCE. Sensors 14, 22274–22284 (2014)CrossRefGoogle Scholar
  338. 338.
    C.A. Caro, L. Lillo, F.J. Valenzuela, G. Cabello, E. Lang, D. Vallejos, C. Castillo, Oxidation of melatonin on a glassy carbon electrode modified with metallic glucosamines. Synthesis and characterization. J. Solid State Electrochem. 20, 993–1000 (2016)CrossRefGoogle Scholar
  339. 339.
    P. Kumar Sonkar, V. Ganesan, S. Abraham John, D. Kumar Yadava, R. Gupta, Non-enzymatic electrochemical sensing platform based on metal complex immobilized carbon nanotubes for glucose determination. RSC Adv. 6, 107094–107103 (2016)CrossRefGoogle Scholar
  340. 340.
    Y. Wang, Y. Wu, J. Xie, X. Hu, Metal–organic framework modified carbon paste electrode for lead sensor. Sensors Actuators B 177, 1161–1166 (2013)CrossRefGoogle Scholar
  341. 341.
    X. Wang, Q. Wang, Q. Wang, F. Gao, F. Gao, Y. Yang, H. Guo, Highly dispersible and stable copper terephthalate metal−organic framework−graphene oxide nanocomposite for an electrochemical sensing application. ACS Appl. Mater. Interfaces 6, 11573–11580 (2014)CrossRefGoogle Scholar
  342. 342.
    Q. Wu, M. Maskus, F. Pariente, F. Tobalina, V.M. Fernandez, E. Lorenzo, H.D. Abruna, Electrocatalytic oxidation of NADH at glassy carbon electrodes modified with transition metal complexes containing 1,10-phenanthroline-5,6-dione ligands. Anal. Chem. 68, 3688–3696 (1998)CrossRefGoogle Scholar
  343. 343.
    B.J. Sanghavi, S.M. Mobin, P. Mathur, G.K. Lahiri, A.K. Srivastava, Biomimetic sensor for certain catechol amines employing copper(II) complex and silver nanoparticle modified glassy carbon paste electrode. Biosens. Bioelectron. 39(1), 124–132 (2013)CrossRefGoogle Scholar
  344. 344.
    A. Yeşildağ, D. Ekinci, Covalent attachment of pyridine-type molecules to glassy carbon surfaces by electrochemical reduction of in situ generated diazonium salts. Formation of ruthenium complexes on ligand-modified surfaces. Electrochim. Acta 55, 7000–7009 (2010)CrossRefGoogle Scholar
  345. 345.
    D.Z. Zee, T. Chantarojsiri, J.R. Long, C.J. Chang, Metal−polypyridyl catalysts for electro- and photochemical reduction of water to hydrogen. (Published as part of the Accounts of Chemical Research special issue “Earth Abundant Metals in Homogeneous Catalysis”). Acc. Chem. Res. 48(7), 2027–2036 (2015)CrossRefGoogle Scholar
  346. 346.
    V. Ramírez-Delgado, G. Osorio-Monreal, L.F. Hernández-Ayala, Y. Reyes-Vidal, J.C. García-Ramos, L. Ruiz-Azuara, L. Ortiz-Frade, Electrochemical behavior of Ni(II) complexes with N2S2 and N6 ligands as potential catalysts in hydrogen evolution reaction. J. Mex. Chem. Soc. 59(4), 294–301 (2015)Google Scholar
  347. 347.
    O.R. Luca, J.D. Blakemore, S.J. Konezny, et al., Organometallic Ni pincer complexes for the electrocatalytic production of hydrogen. Inorg Chem 51, 8704–8709 (2012)CrossRefGoogle Scholar
  348. 348.
    J.C. Swarts, D. Laws, W.E. Geiger, An organometallic electrode based on covalent attachment of the cobaltocenium group to carbon. Organometallics 24, 341–343 (2005)CrossRefGoogle Scholar
  349. 349.
    A. Ayadi, A. El Alamy, O. Alévêque, M. Allain, N. Zouari, M. Bouachrine, A. El-Ghayoury, Tetrathiafulvalene-based azine ligands for anion and metal cation coordination. Beilstein J. Org. Chem. 11, 1379–1391 (2015)CrossRefGoogle Scholar
  350. 350.
    O. Buriez, L.M. Moretto, P. Ugo, Ion-exchange voltammetry of tris(2,2′-bipyridine) nickel(II), cobalt(II), and Co(salen) at polyestersulfonated ionomer coated electrodes in acetonitrile: Reactivity of the electrogenerated low-valent complexes. Electrochim. Acta 52, 958–964 (2006)CrossRefGoogle Scholar
  351. 351.
    L. Luzuriaga, M.F. Cerdá, Analysis of the interaction between [Ru(phenanthroline)3]2+ and bovine serum albumin. Adv Biol. Chem. 2, 262–267 (2012)CrossRefGoogle Scholar
  352. 352.
    Z. Zheng, R. Wu, Y. Xiao, H.E.M. Christensen, F. Zhao, J. Zhang, Electrochemical catalysis of inorganic complex K4[Fe(CN)6] by Shewanella oneidensis MR-1, in Abstract from Forth EuCheMS Inorganic Chemistry Conference (EICC-4), Copenhagen, 2017Google Scholar
  353. 353.
    K.S. Shaju, T.K. Joby, P.R. Vinod, K. Nimmy, Spectral and cyclic voltammetric studies on Cu(II)-Schiff base complex derived from anthracene-9(10H)-one. IOSR J. Appl. Chem. (IOSR-JAC) 7(10), 64–68 (2014)CrossRefGoogle Scholar
  354. 354.
    M. Landman, J. Conradie, P.H. van Rooyen, Computational chemistry insights in the REDOX Behaviour of Cr and W Fischer carbene complexes, in 4th International Conference on Mathematical Modeling in Physical Sciences (IC-MSquare 2015). IOP Publishing Journal of Physics: Conference Series, 633, 012068, 2015Google Scholar
  355. 355.
    H. Wu, J. Yuan, B. Qi, J. Kong, F. Kou, F. Jia, X. Fan, Y. Wang, A seven-coordinate manganese(II) complex formed with the tripodal tetradentate ligand tris(N-methylbenzimidazol-2-ylmethyl)amine. Z. Naturforsch. 65b, 1097–1100 (2010)CrossRefGoogle Scholar
  356. 356.
    N. Ramalakshmi, S. Muthukumar, B. Marichamy, Electrochemical study of Mn2+ Redox system on 4-hydroxybenzylidene-Carbamide-CTAB modified glassy carbon electrode. Res. J. Chem. Sci. 3(8), 29–37 (2013)Google Scholar
  357. 357.
    E.S. Wiedner, J.Y. Yang, W.G. Dougherty, W.S. Kassel, R.M. Bullock, M.R. DuBois, D.L. DuBois, Comparison of cobalt and nickel complexes with sterically demanding cyclic diphosphine ligands: Electrocatalytic H2 production by [Co(PtBu2NPh2)(CH3CN)3](BF4)2. Organometallics 29, 5390–5401 (2010)CrossRefGoogle Scholar
  358. 358.
    K. Jong Lee, Y. Il, S. Sung Lee, B. Yong Lee, Iron(II) tris(3-bromo-1,10-phenanthroline) complex: Synthesis, crystal structure and electropolymerization. Bull. Kor. Chem. Soc. 23(3), 399–403 (2002)CrossRefGoogle Scholar
  359. 359.
    K.N. Kumar, G. Venkatachalam, R. Ramesh, Y. Liu, Half-sandwich para-cymene ruthenium(II) naphthylazophenolato complexes: Synthesis, molecular structure, light emission, redox behavior and catalytic oxidation properties. Polyhedron 27, 157–166 (2008)CrossRefGoogle Scholar
  360. 360.
    A. Ciszewski, I. Stepniak, Non-enzymatic sensing of glucose using glassy carbon electrode modified with organometallic complex of nickel. Int. J. Electrochem. Sci. 10, 8298–8307 (2015)Google Scholar
  361. 361.
    Md Sohel. Rana, M. Arifur Rahman, A.M. Shafiqul Alam, A CV study of copper complexation with guanine using glassy carbon electrode in aqueous medium. ISRN Electrochem, 2014, Article ID 308382, 7 pp (2014)Google Scholar
  362. 362.
    Z.-N. Gao, J.-F. Ma, W.-Y. Liu, Electrocatalytic oxidation of sulfite by acetylferrocene at glassy carbon electrode. Appl. Organomet. Chem. 19, 1149–1154 (2005)CrossRefGoogle Scholar
  363. 363.
    Q. Sun, L. Cai, S. Wang, R. Widmer, H. Ju, J. Zhu, L. Li, Y. He, P. Ruffieux, R. Fasel, W. Xu, Bottom-up synthesis of metalated carbyne. J. Am. Chem. Soc. 138, 1106–1109 (2016)CrossRefGoogle Scholar
  364. 364.
    R.J. Lagow, J.J. Kampa, H.-C. Wei, S.L. Battle, J.W. Genge, D.A. Laude, C.J. Harper, R. Bau, R.C. Stevens, J.F. Haw, E. Munson, Synthesis of linear acetylenic carbon: The “sp” carbon allotrope. Science 267, 362–367 (1995)CrossRefGoogle Scholar
  365. 365.
    W.A. Chalifoux, R.R. Tykwinski, Synthesis of polyynes to model the sp-carbon allotrope carbyne. Nat. Chem. 2, 967–971 (2010)CrossRefGoogle Scholar
  366. 366.
    S. Eisler, A.D. Slepkov, E. Elliott, T. Luu, R. McDonald, F.A. Hegmann, R.R. Tykwinski, Polyynes as a model for carbyne: Synthesis, physical properties, and nonlinear optical response. J. Am. Chem. Soc. 127, 2666–2676 (2005)CrossRefGoogle Scholar
  367. 367.
    Q. Zheng, J.A. Gladysz, A synthetic breakthrough into an unanticipated stability regime: Readily isolable complexes in which C16-C28 polyynediyl chains span two platinum atoms. J. Am. Chem. Soc. 127, 10508–10509 (2005)CrossRefGoogle Scholar
  368. 368.
    U. Schubert, Syntheses of transition metal–carbyne complexes, in The Metal-Carbon Bond, ed. by F. R. Hartley, S. Patai, vol. 1, (Wiley, Chichester, 1983)Google Scholar
  369. 369.
    R. Dembinski, T. Bartik, B. Bartik, M. Jaeger, J.A. Gladysz, Toward metal-capped one-dimensional carbon allotropes: Wirelike C6−C20 polyynediyl chains that span two redox-active (η5-C5Me5)Re(NO)(PPh3) endgroups. J. Am. Chem. Soc. 122(5), 810–822 (2000)CrossRefGoogle Scholar
  370. 370.
    Z. Cao, B. Xi, D.S. Jodoin, L. Zhang, S.P. Cummings, Y. Gao, S.F. Tyler, P.E. Fanwick, R.J. Crutchley, Diruthenium–polyyn-diyl–diruthenium wires: Electronic coupling in the long distance regime. J. Am. Chem. Soc. 136(34), 12174–12183 (2014)CrossRefGoogle Scholar
  371. 371.
    A. Sakurai, M. Akita, Y. Moro-oka, Synthesis and characterization of the dodecahexaynediyldiiron complex, Fp*−(C≡C)6−Fp* [Fp*= Fe(η5-C5Me5)(CO)2], the longest structurally characterized polyynediyl complex. Organometallics 18(16), 3241–3244 (1999)CrossRefGoogle Scholar
  372. 372.
    B. Pigulski, N. Gulia, S. Szafert, Synthesis of long, palladium end-capped polyynes through the use of asymmetric 1-iodopolyynes. Chem. 21, 17769–17778 (2015)CrossRefGoogle Scholar
  373. 373.
    R. Dembinski, T. Bartik, B. Bartik, M. Jaeger, J.A. Gladysz, Toward metal-capped one-dimensional carbon allotropes: Wirelike C6-C20 polyynediyl chains that span two redox-active (η5-C5Me5)Re(NO)(PPh3) end groups. J. Am. Chem. Soc. 122, 810–822 (2000)CrossRefGoogle Scholar
  374. 374.
    A. Kucherik, S. Kutrovskaya, A. Osipov, I. Skryabin, S. Arakelian, Metal-carbon nanoclusters for SERS, in IOP Conf. Series: Journal of Physics: Conf. Series, vol. 784, 012031 International Symposium Physics, Engineering and Technologies for Bio-Medicine, 2017Google Scholar
  375. 375.
    S. Arakelian, S. Kutrovskaya, A. Kucherik, A. Osipov, A. Povolotckaia, A. Povolotskiy, A. Manshina, Laser-induced synthesis of nanostructured metal–carbon clusters and complexes. Opt. Quant. Electron. 48, 505 (2016)CrossRefGoogle Scholar
  376. 376.
    B. Pigulski, N. Gulia, S. Szafert, Synthesis of long, palladium end-capped polyynes through the use of asymmetric 1-iodopolyynes. Chem. Eur. J. 21, 17769–17778 (2015)CrossRefGoogle Scholar
  377. 377.
    Z. Cao, B. Xi, D.S. Jodoin, L. Zhang, S.P. Cummings, Y. Gao, S.F. Tyler, P.E. Fanwick, R.J. Crutchley, T. Ren, Diruthenium−polyyn-diyl−diruthenium wires: Electronic coupling in the long distance regime. J. Am. Chem. Soc. 136, 12174–12183 (2014)CrossRefGoogle Scholar
  378. 378.
    A. Sakurai, M. Akita, Y. Moro-oka, Synthesis and characterization of the dodecahexaynediyldiiron complex, Fp*-(CtC)6-Fp* [(Fp*)Fe(η5-C5Me5)(CO)5], the longest structurally characterized polyynediyl Complex. Organometallics 18, 3241–3244 (1999)CrossRefGoogle Scholar
  379. 379.
    M.I. Bruce, N.N. Zaitseva, B.K. Nicholson, B.W. Skelton, A.H. White, Syntheses and molecular structures of some compounds containing many-atom chains end-capped by tricobalt carbonyl clusters. J. Organomet. Chem. 693, 2887–2897 (2008)CrossRefGoogle Scholar
  380. 380.
    M.E. Vol’pin, Y.N. Novikov, Coordination chemistry of graphite. Pure Appl. Chem. 60(8), 1133–1140 (1988)CrossRefGoogle Scholar
  381. 381.
    Y. Wang, Y. Wu, H. Ge, et al., Fabrication of metal-organic frameworks and graphite oxide hybrid composites for solid-phase extraction and preconcentration of luteolin. Talanta 122, 91–96 (2014)CrossRefGoogle Scholar
  382. 382.
    Z. Bian, J. Xu, S. Zhang, X. Zhu, H. Liu, J. Hu, Interfacial growth of metal organic framework/graphite oxide composites through pickering emulsion and their CO2 capture performance in the presence of humidity. Langmuir 31(26), 7410–7417 (2015)CrossRefGoogle Scholar
  383. 383.
    Y. Zhao, Y. Cao, Q. Zhong, CO2 capture on metal-organic framework and graphene oxide composite using a high-pressure static adsorption apparatus. J. Clean Energy Technol. 2(1), 34–47 (2014)CrossRefGoogle Scholar
  384. 384.
    Z. Zhang, H. Wang, X. Chen, et al., Chromium-based metal–organic framework/mesoporous carbon composite: Synthesis, characterization and CO2 adsorption. Adsorption 21(1–2), 77–86 (2015)CrossRefGoogle Scholar
  385. 385.
    S. Zhang, Z. Du, G. Li, Metal-organic framework-199/graphite oxide hybrid composites coated solid-phase microextraction fibers coupled with gas chromatography for determination of organochlorine pesticides from complicated samples. Talanta 115, 32–39 (2013)CrossRefGoogle Scholar
  386. 386.
    C. Petit, T.J. Bandosz, Exploring the coordination chemistry of MOF–graphite oxide composites and their applications as adsorbents. Dalton Trans. 41, 4027–4035 (2012)CrossRefGoogle Scholar
  387. 387.
    M. Ko, A. Aykanat, M.K. Smith, K.A. Mirica, Drawing sensors with ball-milled blends of metal-organic frameworks and graphite. Sensors 17, 2192 (2017)., 17 ppCrossRefGoogle Scholar
  388. 388.
    T.J. Bandosz, C. Petit, MOF/graphite oxide hybrid materials: Exploring the new concept of adsorbents and catalysts. Adsorption 17(1), 5–16 (2011)CrossRefGoogle Scholar
  389. 389.
    C. Petit, T.J. Bandosz, MOF–graphite oxide nanocomposites: Surface characterization and evaluation as adsorbents of ammonia. J. Mater. Chem. 19, 6521–6528 (2009)CrossRefGoogle Scholar
  390. 390.
    M. Chen, Y. Ding, Y. Liu, et al., Adsorptive desulfurization of thiophene from the model fuels onto graphite oxide/metal-organic framework composites. Pet. Sci. Technol. 36(2), 141–147 (2018)CrossRefGoogle Scholar
  391. 391.
    I. Ahmed, N. Abedin Khan, S. Hwa Jhung, Graphite oxide/metal–organic framework (MIL-101): Remarkable performance in the adsorptive denitrogenation of model fuels. Inorg. Chem. 52(24), 14155–14161 (2013)CrossRefGoogle Scholar
  392. 392.
    N. Lin, S. Stepanow, F. Vidal, et al., Surface-assisted coordination chemistry and self-assembly. Dalton Trans., 2794–2800 (2006)Google Scholar
  393. 393.
    T. Szabó, T. Szabó-Plánka, D. Jónás, N. Veronika Nagy, A. Rockenbauer, I. Dékány, Intercalation and coordination of copper (II) 2,2′-bipyridine complexes into graphite oxide. Carbon 72, 425–428 (2014)CrossRefGoogle Scholar
  394. 394.
    D. Kunzel, T. Markert, A. Groß, D.M. Benoit, Bis(terpyridine)-based surface template structures on graphite: A force field and DFT study. Phys. Chem. Chem. Phys. 11, 8867–8878 (2009)CrossRefGoogle Scholar
  395. 395.
    J. Otsuki, T. Tokimoto, Y. Noda, et al., Ordered arrays of organometallic iridium complexes with long alkyl chains on graphite. Chemistry 13(8), 2311–2319 (2007)CrossRefGoogle Scholar
  396. 396.
    J. Otsuki, S. Kawaguchi, T. Yamakawa, M. Asakawa, K. Miyake, Arrays of double-decker porphyrins on highly oriented pyrolytic graphite. Langmuir 22, 5708–5715 (2006)CrossRefGoogle Scholar
  397. 397.
    Y. Li, L. Cheng, C. Liu et al., On-surface observation of the formation of organometallic complex in a supramolecular network. Sci. Rep. 5, Article number: 10972 (2015)Google Scholar
  398. 398.
    T.G. Gopakumar, M. Lackinger, M. Hackert, F. Müller, M. Hietschold, Adsorption of palladium phthalocyanine on graphite: STM and LEED study. J. Phys. Chem. B 108(23), 7839–7843 (2004)CrossRefGoogle Scholar
  399. 399.
    A.-Z. Liu, S.-B. Lei, Structure dependent packing behavior of phthalocyanine on the surface of graphite. Surf. Interface Anal. 39, 33–38 (2007)CrossRefGoogle Scholar
  400. 400.
    Y. Zhao, Y.-H. Kim, L.J. Simpson, et al., Opening space for H2 storage: Cointercalation of graphite with lithium and small organic molecules. Phys. Rev. B 78, 144102 (2008)CrossRefGoogle Scholar
  401. 401.
    X. Tian, S. Sarkar, M.L. Moser, et al., Effect of group 6 transition metal coordination on the conductivity of graphite nanoplatelets. Mater. Lett. 80, 171–174 (2012)CrossRefGoogle Scholar
  402. 402.
    P. Qian, H. Nanjo, N. Sanada, T. Yokoyama, T.M. Suzuki, Self-assembly of alkyl substituted Schiff base and Its Cu(II) complex observed on solution–graphite interface by scanning tunneling microscopy. Chem. Lett. 29, 1118–1119 (2000)CrossRefGoogle Scholar
  403. 403.
    W. Li, Z. Wang, X. Leng et al., Organometallic nanostructures of 1,4-dibromo-2,5-diiodobenzene by metal ions construction on HOPG surface. Surf. Rev. Lett. 23, 1650020, 8 pp (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Boris Ildusovich Kharisov
    • 1
  • Oxana Vasilievna Kharissova
    • 1
  1. 1.Universidad Autónoma de Nuevo LeónMonterreyMexico

Personalised recommendations