Classic Carbon Nanostructures

  • Boris Ildusovich Kharisov
  • Oxana Vasilievna Kharissova


The era of carbon-based nanotechnology, as it is well-known, started from 1985 when the fullerene C60 was discovered. The rediscovery of carbon nanotubes and unexpected discovery of graphene gave a powerful impulse to the further development of carbon nanostructures. At present, these nanocarbons, as well as nanodiamonds or nanofibers, can already be considered as “conventional” carbon nanostructures.


Graphene Fullerenes Carbon nanotubes Carbon nanofibers Nanodiamonds Fullerenes Small fullerenes Endohedral fullerenes Synthesis Laser evaporation Properties Carbon nanotubes Spray pyrolysis Chemical vapor deposition Hamada indexes Dispersibility Functionalization Nanofibers Electrospinning Catalysis Oxygen reduction reactions Nanodiamonds Ultrananocrystalline diamond Chemical vapor deposition Functionalization Detonation nanodiamonds 


  1. 1.
    M.I. Katsnelson, K.S. Novoselov, Graphene: new bridge between condensed matter physics and quantum electrodynamics. Solid State Commun. 143(1), 3–13 (2007)CrossRefGoogle Scholar
  2. 2.
    A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6(3), 183–191 (2007)CrossRefGoogle Scholar
  3. 3.
    R. Heyrovska, Atomic structures of graphene, benzene and methane with bond lengths as sums of the single, double and resonance bond radii of carbon. arXiv:0804.4086, 2008, Freely accessible [physics.gen-ph].Google Scholar
  4. 4.
    O.B. Shenderova, V.V. Zhirnov, D.W. Brenner, Carbon nanostructures. Crit. Rev. Solid State Mater. Sci. 27(3–4), 227–356 (2002)CrossRefGoogle Scholar
  5. 5.
    F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A.C. Ferrari, R.S. Ruoff, V. Pellegrini, Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347(6217), 1246501 (2015)CrossRefGoogle Scholar
  6. 6.
    A.A. Balandin, S. Ghosh, W. Bao, et al., Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008)CrossRefGoogle Scholar
  7. 7.
    S. Chen, Q. Wu, C. Mishra, et al., Thermal conductivity of isotopically modified graphene. Nat. Mater. 11(3), 203–207 (2012)CrossRefGoogle Scholar
  8. 8.
    C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–358 (2008)CrossRefGoogle Scholar
  9. 9.
    Y. Talukdar, J.T. Rashkow, G. Lalwani, S. Kanakia, B. Sitharaman, The effects of graphene nanostructures on mesenchymal stem cells. Biomaterials 35(18), 4863–4877 (2014)CrossRefGoogle Scholar
  10. 10.
    Y. Gogotsi, Carbon Nanomaterials (CRC Press, 2006), Boca Raton, FL, USA, p. 344Google Scholar
  11. 11.
    A. Jorio, M.S. Dresselhaus, G. Dresselhaus, Y. Gogotsi, Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications, 1st edn. (Springer, Berlin, 2008), p. 744CrossRefGoogle Scholar
  12. 12.
    R. Haug, Advances in Solid State Physics, vol 47, 1st edn. (Springer, Berlin, 2008), p. 363Google Scholar
  13. 13.
    B. Bharat Bhushan, Springer Handbook of Nanotechnology, 1st edn. (Springer, 2008), New York, p. 363Google Scholar
  14. 14.
    C.E. Banks, D.A.C. Brownson, 2D Materials: Characterization, Production and Applications (CRC Press, Boca Raton, 2018), p. 248CrossRefGoogle Scholar
  15. 15.
    J. Zhang, Chemically Derived Graphene (Royal Society of Chemistry, Cambridge, 2018), p. 383CrossRefGoogle Scholar
  16. 16.
    A. M. Grumezescu (ed.), Fullerenes, Graphenes and Nanotubes: A Pharmaceutical Approach (William Andrew, San Diego, 2018), p. 700Google Scholar
  17. 17.
    A. Tiwari, Graphene Bioelectronics (Elsevier Science, Amsterdam, 2017), p. 388Google Scholar
  18. 18.
    D.P. Hansora, S. Mishra, Graphene Nanomaterials: Fabrication, Properties, and Applications (Pan Stanford, Singapore, 2017), p. 282Google Scholar
  19. 19.
    R. Van Noorden, Moving towards a graphene world. Nature 442, 228–229 (2006)CrossRefGoogle Scholar
  20. 20.
    S. Müller, K. Müllen, Expanding benzene to giant graphenes: towards molecular devices. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 365(1855), 1453–1472 (2007)CrossRefGoogle Scholar
  21. 21.
    T. Ando, Exotic electronic and transport properties of graphene. Physica E. 40(2), 213–227 (2007)CrossRefGoogle Scholar
  22. 22.
    T. Aida, T. Fukushima, Soft materials with graphitic nanostructures. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 365(1855), 1539–1552 (2007)CrossRefGoogle Scholar
  23. 23.
    A.D. Ghuge, A.R. Shirode, V.J. Kadam, Graphene: a comprehensive review. Curr. Drug Targets. 18(6), 724–733 (2017)CrossRefGoogle Scholar
  24. 24.
    J. Wu, W. Pisula, K. Mullen, Graphenes as potential material for electronics. Chem. Rev. 107, 718–747 (2007)CrossRefGoogle Scholar
  25. 25.
    X. Yu, H. Cheng, M. Zhang, Y. Zhao, L. Qu, G. Shi, Graphene-based smart materials. Nat. Rev. Mater. 2, 17046 (2017)CrossRefGoogle Scholar
  26. 26.
    M. Chen, R.C. Haddon, R. Yan, E. Bekyarova, Advances in transferring chemical vapour deposition graphene: a review. Mater. Horiz. 4, 1054–1063 (2017)CrossRefGoogle Scholar
  27. 27.
    P. Solís-Fernández, M. Bissett, H. Ago, Synthesis, structure and applications of graphene-based 2D heterostructures. Chem. Soc. Rev. 46, 4572–4613 (2017)CrossRefGoogle Scholar
  28. 28.
    C. Melios, C.E. Giusca, V. Panchal, O. Kazakova, Water on graphene: review of recent progress. 2D Mater. 5(2), 022001 (2018)CrossRefGoogle Scholar
  29. 29.
    X. Li, J. Yu, S. Wageh, et al., Graphene in photocatalysis: a review. Small 12(48), 6640–6696 (2016)CrossRefGoogle Scholar
  30. 30.
    Y. Zhu, H. Ji, H.-M. Cheng, R.S. Ruoff, Mass production and industrial applications of graphene materials. Nat. Sci. Rev. nwx055 (2017). Scholar
  31. 31.
    A. Azam, N.N. Zulkapli, N. Dorah, et al., Review—critical considerations of high quality graphene synthesized by plasma-enhanced chemical vapor deposition for electronic and energy storage devices. ECS J. Solid State Sci. Technol. 6(6), M3035–M3048 (2017)CrossRefGoogle Scholar
  32. 32.
    G. Gruner, L. Hu, D. Hecht, Graphene film as transparent and electrically conducting material. U.S. patent 20070284557, 2007.
  33. 33.
    R.K. Prud’homme, B. Ozbas, I.A. Aksay, R.A. Register, D.H. Adamson, Functional graphene – rubber nanocomposites. U.S. Patent Application Filed – Invention # 07-2323-1, 2006Google Scholar
  34. 34.
    B.Z. Jang, Highly conductive nano-scaled graphene plate nanocomposites and products. US Patent 20070158618, 2007.
  35. 35.
  36. 36.
    D.A. Abanin, K.S. Novoselov, U. Zeitler, P.A. Lee, A.K. Geim, L.S. Levitov, Dissipative quantum hall effect in graphene near the Dirac point. Phys. Rev. Lett. 98(19), 196806 (2007)CrossRefGoogle Scholar
  37. 37.
    F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6(9), 652–655 (2007)CrossRefGoogle Scholar
  38. 38.
    J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, D. Obergfell, S. Roth, C. Girit, A. Zettl, On the roughness of single- and bi-layer graphene membranes. Solid State Commun. 143(1), 101–109 (2007)CrossRefGoogle Scholar
  39. 39.
    K.S. Novoselov, Z. Jiang, Y. Zhang, S.V. Morozov, H.L. Stormer, U. Zeitler, J.C. Maan, G.S. Boebinger, P. Kim, A.K. Geim, Room-temperature quantum Hall effect in graphene. Science 315(5817), 1379 (2007)CrossRefGoogle Scholar
  40. 40.
    S. Pisana, M. Lazzeri, C. Casiraghi, K.S. Novoselov, A.K. Geim, A.C. Ferrari, F. Mauri, Breakdown of the adiabatic Born-Oppenheimer approximation in graphene. Nat. Mater. 6(3), 198–201 (2007)CrossRefGoogle Scholar
  41. 41.
    K.S. Novoselov, Technology: rapid progress in producing graphene. Nature 505, 291 (2014)CrossRefGoogle Scholar
  42. 42.
    J. van den Brink, Graphene: from strength to strength. Nat. Nanotechnol. 2(4), 199–201 (2007)CrossRefGoogle Scholar
  43. 43.
    F. Hui, E. Grustan-Gutierrez, S. Long, et al., Graphene and related materials for resistive random access memories. Adv. Electron. Mater. 3(8), 1600195 (2017)CrossRefGoogle Scholar
  44. 44.
    A. Hashimoto, K. Suenaga, A. Gloter, K. Urita, S. Iijima, Direct evidence for atomic defects in graphene layers. Nature 430(7002), 870–873 (2004)CrossRefGoogle Scholar
  45. 45.
    J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, S. Roth, The structure of suspended graphene sheets. Nature 446(7131), 60–63 (2007)CrossRefGoogle Scholar
  46. 46.
    C.-T. Lin, C.-Y. Lee, H.-T. Chiu, T.-S. Chin, Graphene structure in carbon nanocones and Nanodiscs. Langmuir 23(26), 12806–12810 (2007)CrossRefGoogle Scholar
  47. 47.
    Y. Chen, J. Lu, Z. Gao, Structural and electronic study of nanoscrolls rolled up by a single graphene sheet. J. Phys. Chem. C. 111(4), 1625–1630 (2007)CrossRefGoogle Scholar
  48. 48.
    X. Li, L. Tao, Z. Chen, et al., Graphene and related two-dimensional materials: Structure-property relationships for electronics and optoelectronics. Appl. Phys. Rev. 4, 021306 (2017)CrossRefGoogle Scholar
  49. 49.
    Z. Peralta-Inga, J.S. Murray, M. Edward Grice, S. Boyd, C.J. O'Connor, P. Politzer, Computational characterization of surfaces of model graphene systems. THEOCHEM J. Mol. Struct. 549(1), 147–158 (2001)CrossRefGoogle Scholar
  50. 50.
    K.A. Ritter, J.W. Lyding, The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nat. Mater. 8, 235–242 (2009)CrossRefGoogle Scholar
  51. 51.
    Y. Liu, G. Wang, Q. Huang, L. Guo, X. Chen, Structural and electronic properties of T graphene: a two-dimensional carbon allotrope with tetrarings. Phys. Rev. Lett. 108, 225505 (2012)CrossRefGoogle Scholar
  52. 52.
    A.D. Güçlü, P. Potasz, P. Hawrylak, Electric-field controlled spin in bilayer triangular graphene quantum dots. Phys. Rev. B 84, 035425 (2011)CrossRefGoogle Scholar
  53. 53.
    L. Tang, R. Ji, X. Cao, et al., Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano 8(6), 5102–5110 (2012)CrossRefGoogle Scholar
  54. 54.
    X. Gao, J. Jang, S. Nagase, Hydrazine and thermal reduction of graphene oxide: reaction mechanisms, product structures, and reaction design. J. Phys. Chem. C 114(2), 832–842 (2009)CrossRefGoogle Scholar
  55. 55.
    D. Konios, M.M. Stylianakis, E. Stratakis, E. Kymakis, Dispersion behaviour of graphene oxide and reduced graphene oxide. J. Colloid Interface Sci. 430, 108–112 (2014)CrossRefGoogle Scholar
  56. 56.
    H. He, J. Klinowski, M. Forster, A. Lerf, A new structural model for graphite oxide. Chem. Phys. Lett. 287(1–2), 53–56 (1998). Scholar
  57. 57.
    S. Pei, H.-M. Cheng, The reduction of graphene oxide. Carbon 50(9), 3210–3228 (2012)CrossRefGoogle Scholar
  58. 58.
    S. Pei, J. Zhao, J. Du, W. Ren, H.-M. Cheng, Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 48(15), 4466–4474 (2010)CrossRefGoogle Scholar
  59. 59.
    M. Inagaki, F. Kang, Graphene derivatives: graphane, fluorographene, graphene oxide, graphyne and graphdiyne. J. Mater. Chem. A 2, 13193–13206 (2014)CrossRefGoogle Scholar
  60. 60.
    J. Sun, Y. Deng, J. Li, et al., A new graphene derivative: hydroxylated graphene with excellent biocompatibility. ACS Appl. Mater. Interfaces 8(16), 10226–10233 (2016)CrossRefGoogle Scholar
  61. 61.
    Image gallery - graphite and graphene. Accessed 26 Jan 2008
  62. 62.
    M. Pumera, Z. Sofer, Towards stoichiometric analogues of graphene: graphane, fluorographene, graphol, graphene acid and others. Chem. Soc. Rev. 46, 4450–4463 (2017)CrossRefGoogle Scholar
  63. 63.
    Z. Lin, X. Ye, J. Han, Q. Chen, et al., Precise control of the number of layers of graphene by picosecond laser thinning. Sci. Rep. 5, 11662 (2015)CrossRefGoogle Scholar
  64. 64.
    B. Andonovic, A. Ademi, A. Grozdanov, Enhanced model for determining the number of graphene layers and their distribution from X-ray diffraction data. Beilstein J. Nanotechnol. 6, 2113–2122 (2015)CrossRefGoogle Scholar
  65. 65.
    H. Shigeo, G. Takuya, F. Masahiro, A. Toru, Y. Tadahiro, M. Yoshio, Single graphene sheet detected in a carbon nanofilm. Appl. Phys. Lett. 84, 2403 (2004)CrossRefGoogle Scholar
  66. 66.
    Z.H. Ni, H.M. Wang, J. Kasim, H.M. Fan, T. Yu, Y.H. Wu, Y.P. Feng, Z.X. Shen, Graphene thickness determination using reflection and contrast spectroscopy. Nano Lett. 7(9), 2758–2763 (2007)CrossRefGoogle Scholar
  67. 67.
    C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K.S. Novoselov, A.C. Ferrari, Rayleigh imaging of graphene and graphene layers. Nano Lett. 7(9), 2711–2717 (2007)CrossRefGoogle Scholar
  68. 68.
    S. Grimme, C. Muck-Lichtenfeld, J. Antony, Noncovalent interactions between graphene sheets and in multishell (hyper)fullerenes. J. Phys. Chem. C 111(30), 11199–11207 (2007)CrossRefGoogle Scholar
  69. 69.
    M. Ishigami, J.H. Chen, W.G. Cullen, M.S. Fuhrer, E.D. Williams, Atomic structure of graphene on SiO2. Nano Lett. 7(6), 1643–1648 (2007)CrossRefGoogle Scholar
  70. 70.
    Y.A. Sitenko, N.D. Vlasii, Electronic properties of graphene with a topological defect. Nucl. Phys. B 787(3), 241–259 (2007)CrossRefGoogle Scholar
  71. 71.
    V. Barone, O. Hod, G.E. Scuseria, Electronic structure and stability of semiconducting graphene. Nanoribbons. Nano Lett. 6(12), 2748–2754 (2006)CrossRefGoogle Scholar
  72. 72.
    A. Cortijo, M.A.H. Vozmediano, Electronic properties of curved graphene sheets. Europhysics Lett. 77(4), 47002 (2007)CrossRefGoogle Scholar
  73. 73.
    F. Lopez-Urias, J.A. Rodriguez-Manzo, E. Munoz-Sandoval, M. Terrones, H. Terrones, Magnetic response in finite carbon graphene sheets and nanotubes. Opt. Mater. 29(1), 110–115 (2006)CrossRefGoogle Scholar
  74. 74.
    T. Christensen, Electronic properties of graphene, in From Classical to Quantum Plasmonics in Three and Two Dimensions, (Springer, Cham, 2017), pp. 83–96CrossRefGoogle Scholar
  75. 75.
    J. Zhang, C. Zhao, N. Liu, et al., Tunable electronic properties of graphene through controlling bonding configurations of doped nitrogen atoms. Sci. Rep. 6, 28330 (2016)CrossRefGoogle Scholar
  76. 76.
    M.I. Katsnelson, Graphene: carbon in two dimensions. Mater. Today 10(1), 20–27 (2007)CrossRefGoogle Scholar
  77. 77.
    Graphene makes movement easy for electrons., posted January 08, 2008
  78. 78.
    E. McCann, D.S.L. Abergel, V.I. Fal’ko, Electrons in bilayer graphene. Solid State Commun. 143(1), 110–115 (2007)CrossRefGoogle Scholar
  79. 79.
    O. Hod, V. Barone, J.E. Peralta, G.E. Scuseria, Enhanced half-metallicity in edge-oxidized zigzag graphene nanoribbons. Nano Lett. 7(8), 2295–2299 (2007)CrossRefGoogle Scholar
  80. 80.
    C. Gomez-Navarro, R.T. Weitz, A.M. Bittner, M. Scolari, A. Mews, M. Burghard, K. Kern, Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett. 7(11), 3499–3503 (2007)CrossRefGoogle Scholar
  81. 81.
    W.L. Wang, S. Meng, E. Kaxiras, Graphene nanoflakes with large spin. Nano Lett. 8(1), 241–245 (2008)CrossRefGoogle Scholar
  82. 82.
    D.-e. Jiang, B.G. Sumpter, S. Dai, First principles study of magnetism in nanographenes. J. Chem. Phys. 127(12), 124703 (2007)CrossRefGoogle Scholar
  83. 83.
    J. Fernández-Rossier, J.J. Palacios, Magnetism in graphene nanoislands. Phys. Rev. Lett. 99, 177204 (2007)CrossRefGoogle Scholar
  84. 84.
    S.K. Sarkar, K.K. Raul, S.S. Pradhan, S. Basu, A. Nayak, et al., Magnetic properties of graphite oxide and reduced graphene oxide. Physica E 64, 78–82 (2014)CrossRefGoogle Scholar
  85. 85.
    A. Jabar, R. Masrour, Magnetic properties of graphene structure: a Monte Carlo simulation. J. Supercond. Nov. Magn. 29(5), 1363–1369 (2016)CrossRefGoogle Scholar
  86. 86.
    T. Tang, F. Liu, Y. Liu, et al., Identifying the magnetic properties of graphene oxide. Appl. Phys. Lett. 104, 123104 (2014)CrossRefGoogle Scholar
  87. 87.
    S. Niyogi, E. Bekyarova, M.E. Itkis, J.L. McWilliams, M.A. Hamon, R.C. Haddon, Solution properties of graphite and graphene. J. Am. Chem. Soc. 128(24), 7720–7721 (2006)CrossRefGoogle Scholar
  88. 88.
    K.A. Worsley, P. Ramesh, S.K. Mandal, S. Niyogi, M.E. Itkis, R.C. Haddon, Soluble graphene derived from graphite fluoride. Chem. Phys. Lett. 445(1), 51–56 (2007)CrossRefGoogle Scholar
  89. 89.
    S. Yu, X. Wang, R. Zhang, et al., Complex roles of solution chemistry on graphene oxide coagulation onto titanium dioxide: batch experiments, spectroscopy analysis and theoretical calculation. Sci. Rep. 7, 39625 (2017)CrossRefGoogle Scholar
  90. 90.
    L. Yang, M.L. Cohen, S.G. Louie, Excitonic effects in the optical spectra of graphene nanoribbons. Nano Lett. 7(10), 3112–3115 (2007)CrossRefGoogle Scholar
  91. 91.
    I. Jung, M. Pelton, R. Piner, D.A. Dikin, S. Stankovich, S. Watcharotone, M. Hausner, R.S. Ruoff, Simple approach for high-contrast optical imaging and characterization of graphene-based sheets. Nano Lett. 7(12), 3569–3575 (2007)CrossRefGoogle Scholar
  92. 92.
    D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, L. Wirtz, Spatially resolved Raman spectroscopy of single- and few-layer graphene. Nano Lett. 7(2), 238–242 (2007)CrossRefGoogle Scholar
  93. 93.
    I. Calizo, F. Miao, W. Bao, C.N. Lau, A.A. Balandin, Variable temperature Raman microscopy as a nanometrology tool for graphene layers and graphene-based devices. Appl. Phys. Lett. 91, 071913 (2007)CrossRefGoogle Scholar
  94. 94.
    I. Calizo, A.A. Balandin, W. Bao, F. Miao, C.N. Lau, Temperature dependence of the Raman spectra of graphene and graphene multilayers. Nano Lett. 7(9), 2645–2649 (2007)CrossRefGoogle Scholar
  95. 95.
    D.Y. Usachov, V.Y. Davydov, V.S. Levitskii, et al., Raman spectroscopy of lattice-matched graphene on strongly interacting metal surfaces. ACS Nano 11(6), 6336–6345 (2017)CrossRefGoogle Scholar
  96. 96.
    S. Reichardt, L. Wirtz, Raman Spectroscopy of Graphene. 2017, arXiv:1703.06909, p. 25.Google Scholar
  97. 97.
    C. Ferrante, A. Virga, L. Benfatto et al. Raman spectroscopy of graphene under ultrafast laser excitation. 2017, arXiv:1704.00186, p .18.Google Scholar
  98. 98.
    I. Calizo, W. Bao, F. Miao, C.N. Lau, A.A. Balandin, The effect of substrates on the Raman spectrum of graphene: graphene- on-sapphire and graphene-on-glass. Appl. Phys. Lett. 91, 201904 (2007)CrossRefGoogle Scholar
  99. 99.
    S.A. Yerişkin, M. Balbaşı, İ. Orak, Frequency dependent electrical characteristics and origin of anomalous capacitance–voltage (C–V) peak in Au/(graphene-doped PVA)/n-Si capacitors. J. Mater. Sci. Mater. Electron. V28(11), 7819–7826 (2017)CrossRefGoogle Scholar
  100. 100.
    G. Luongo, F. Giubileo, L. Genovese, et al., I-V and C-V characterization of a high-responsivity graphene/silicon photodiode with embedded MOS capacitor. Nanomaterials (Basel) 7(7), 158 (2017)CrossRefGoogle Scholar
  101. 101.
    J. Guo, Y. Yoon, Y. Ouyang, Gate electrostatics and quantum capacitance of graphene nanoribbons. Nano Lett. 7(7), 1935–1940 (2007)CrossRefGoogle Scholar
  102. 102.
    Y.-W. Son, M.L. Cohen, S.G. Louie, Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97, 216803 (2006)CrossRefGoogle Scholar
  103. 103.
    Y.-W. Son, M.L. Cohen, S.G. Louie, Half-metallic graphene nanoribbons. Nature 444, 347 (2006)CrossRefGoogle Scholar
  104. 104.
    L. Yang, C.H. Park, Y.-W. Son, M.L. Cohen, S.G. Louie, Quasiparticle energies and band gaps of graphene nanoribbons. Phys. Rev. Lett. 99, 186801 (2007)CrossRefGoogle Scholar
  105. 105.
    T.B. Martins, R.H. Miwa, A.J.R. da Silva, A. Fazzio, Electronic and transport properties of boron-doped graphene nanoribbons. Phys. Rev. Lett. 98(19), 196803 (2007)CrossRefGoogle Scholar
  106. 106.
    P. Shemella, Y. Zhang, M. Mailman, P.M. Ajayan, S.K. Nayak, Energy gaps in zero-dimensional graphene nanoribbons. Appl. Phys. Lett. 91, 042101 (2007)CrossRefGoogle Scholar
  107. 107.
    G. Liang, N. Neophytou, M.S. Lundstrom, D.E. Nikonov, Ballistic graphene nanoribbon metal-oxide-semiconductor field-effect transistors: a full real-space quantum transport simulation. J. Appl. Phys. 102, 054307 (2007)CrossRefGoogle Scholar
  108. 108.
    D.-e. Jiang, B.G. Sumpter, S. Dai, Unique chemical reactivity of a graphene nanoribbon’s zigzag edge. J. Chem. Phys. 126(13), 134701 (2007)CrossRefGoogle Scholar
  109. 109.
    V. Ryzhii, Terahertz plasma waves in gated graphene heterostructures. Jpn. J. Appl. Phys. 45, L923 (2006). Scholar
  110. 110.
    V. Ryzhii, A. Satou, T. Otsuji, Plasma waves in two-dimensional electron-hole system in gated graphene heterostructures. J. Appl. Phys. 101, 024509 (2007). Scholar
  111. 111.
    K. Novoselov, S.D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Two-dimensional atomic crystals. PNAS 102, 10451 (2005). Scholar
  112. 112.
    H.C. Lee, W.-W. Liu, S.-P. Chai, et al., Review of the synthesis, transfer, characterization and growth mechanisms of single and multilayer graphene. RSC Adv. 7, 15644–15693 (2017)CrossRefGoogle Scholar
  113. 113.
    N. Woehrl, O. Ochedowski, S. Gottlieb, K. Shibasaki, S. Schulz, Plasma-enhanced chemical vapor deposition of graphene on copper substrates. AIP Adv. 4, 047128 (2014)CrossRefGoogle Scholar
  114. 114.
    P.R. Somani, S.P. Somani, M. Umeno, Planer nano-graphenes from camphor by CVD. Chem. Phys. Lett. 430(1), 56–59 (2006)CrossRefGoogle Scholar
  115. 115.
    E. Rollings, G.H. Gweon, S.Y. Zhou, B.S. Mun, J.L. McChesney, B.S. Hussain, A.V. Fedorov, P.N. First, W.A. de Heer, A. Lanzara, Synthesis and characterization of atomically thin graphite films on a silicon carbide substrate. J. Phys. Chem. Sol. 67(9), 2172–2177 (2006)CrossRefGoogle Scholar
  116. 116.
    B.Z. Jang, W.C Huang, Nano-scaled graphene plates. U.S. Patent 7071258, 2006.
  117. 117.
    Y. Zhang, L. Zhang, C. Zhou, Review of chemical vapor deposition of graphene and related applications. Acc. Chem. Res. 46(10), 2329–2339 (2013)CrossRefGoogle Scholar
  118. 118.
    S. Cai, X. Liu, J. Huang, Z. Liu, Feasibility of polyethylene film as both supporting material for transfer and target substrate for flexible strain sensor of CVD graphene grown on Cu foil. RSC Adv. 7, 48333–48340 (2017)CrossRefGoogle Scholar
  119. 119.
    T. Ohta, A. Bostwick, T. Seyller, K. Horn, E. Rotenberg, Controlling the electronic structure of bilayer graphene. Science 313(5789), 951–954 (2006)CrossRefGoogle Scholar
  120. 120.
    W.A. de Heer, C. Berger, X. Wu, P.N. First, E.H. Conrad, T. Li, M. Sprinkle, J. Hass, M.L. Sadowski, M. Potemski, G. Martinez, Epitaxial graphene. Solid State Commun. 143(1), 92–100 (2007)CrossRefGoogle Scholar
  121. 121.
    C. Riedl, U. Starke, Structural properties of the graphene-SiC(0001) interface as a key for the preparation of homogeneous large-terrace graphene surfaces. Phys. Rev. B 76, 245406 (2007)CrossRefGoogle Scholar
  122. 122.
    J. Hass, R. Feng, T. Li, X. Li, Z. Zong, W.A. de Heer, P.N. First, E.H. Conrad, C.A. Jeffrey, C. Berger, Highly ordered graphene for two dimensional electronics. Appl. Phys. Lett. 89, 143106 (2006)CrossRefGoogle Scholar
  123. 123.
    C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A.N. Marchenkov, E.H. Conrad, P.N. First, W.A. de Heer, Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191 (2006). Scholar
  124. 124.
    Z. Osvath, A.L. Darabont, P. Nemes-Incze, E. Horvath, Z.E. Horvath, L.P. Biro, Graphene layers from thermal oxidation of exfoliated graphite plates. Carbon 45(15), 3022–3026 (2007)CrossRefGoogle Scholar
  125. 125.
    S. Eigler, M. Enzelberger-Heim, S. Grimm, et al., Wet chemical synthesis of graphene. Adv. Mater. 25(26), 3583–3587 (2013)CrossRefGoogle Scholar
  126. 126.
    M. Antonietti, K. Müllen (eds.), Chemical Synthesis and Applications of Graphene and Carbon Materials (Wiley-VCH, Weinheim, 2017), p. 256Google Scholar
  127. 127.
    W. Wei, B. Hu, F. Jin, et al., Potassium-chemical synthesis of 3D graphene from CO2 and its excellent performance in HTM-free perovskite solar cells. J. Mater. Chem. A 5, 7749–7752 (2017)CrossRefGoogle Scholar
  128. 128.
    Z. Zhu, D. Su, G. Weinberg, R. Schlogl, Supermolecular self-assembly of graphene sheets: formation of tube-in-tube nanostructures. Nano Lett. 4(11), 2255–2259 (2004)CrossRefGoogle Scholar
  129. 129.
    S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.B.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7), 1558–1565 (2007)CrossRefGoogle Scholar
  130. 130.
    H. Cui, Z. Zhou, D. Jia, Heteroatom-doped graphene as electrocatalysts for air cathodes. Mater. Horiz. 4, 7–19 (2017)CrossRefGoogle Scholar
  131. 131.
    J. Duan, S. Chen, M. Jaroniec, S.Z. Qiao, Heteroatom-doped graphene-based materials for energy-relevant electrocatalytic processes. ACS Catal. 5(9), 5207–5234 (2015)CrossRefGoogle Scholar
  132. 132.
    D.J. Gregg, E. Bothe, P. Höfer, P. Passaniti, S.M. Draper, Extending the nitrogen-heterosuperbenzene family: the spectroscopic, redox, and photophysical properties of “half-cyclized” N-1/2HSB and its Ru(II) complex. Inorg. Chem. 44(16), 5654–5660 (2005)CrossRefGoogle Scholar
  133. 133.
    M.S. Draper, D.J. Gregg, E.R. Schofield, W.R. Browne, M. Duati, J.G. Vos, P. Passaniti, J. Am. Chem. Soc. 126, 8694 (2004)CrossRefGoogle Scholar
  134. 134.
    S. Gilje, S. Han, M. Wang, K.L. Wang, R.B. Kaner, A chemical route to graphene for device applications. Nano Lett. 7(11), 3394–3398 (2007)CrossRefGoogle Scholar
  135. 135.
    M.J. McAllister, J.-L. Li, D.H. Adamson, H.C. Schniepp, A.A. Abdala, J. Liu, M. Herrera-Alonso, D.L. Milius, R. Car, R.K. Prud'homme, I.A. Aksay, Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 19(18), 4396–4404 (2007)CrossRefGoogle Scholar
  136. 136.
    H.C. Schniepp, J.-L. Li, M.J. McAllister, H. Sai, M. Herrera-Alonso, D.H. Adamson, R.K. Prud'homme, R. Car, D.A. Saville, I.A. Aksay, Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 110(17), 8535–8539 (2006)CrossRefGoogle Scholar
  137. 137.
    S. Stankovich, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 44(15), 3342–3347 (2006)CrossRefGoogle Scholar
  138. 138.
    L.M. Viculis, J.J. Mack, R.B. Kaner, A chemical route to carbon nanoscrolls. Science 299, 1361 (2003)CrossRefGoogle Scholar
  139. 139.
    Y.W. Son, Physics of graphene and graphene nanoribbons. Posted on 05 Dec 2007
  140. 140.
    Y. Sun, J. Tang, K. Zhang, et al., Comparison of reduction products from graphite oxide and graphene oxide for anode applications in lithium-ion batteries and sodium-ion batteries. Nanoscale 9, 2585–2595 (2017)CrossRefGoogle Scholar
  141. 141.
    A. Lerf, H. He, M. Forster, J. Klinowski, Structure of graphite oxide revisited. J. Phys. Chem. B 102, 4477–4482 (1998)CrossRefGoogle Scholar
  142. 142.
    I.A. Aksay, Developing fundamental developing fundamental insights pertinent to the design and processing of multifunctional nanocomposites. Posted on 02 Mar 2006
  143. 143.
    A.N. Sidorov, M.M. Yazdanpanah, R. Jalilian, P.J. Ouseph, R.W. Cohn, G.U. Sumanasekera, Electrostatic deposition of graphene. Nanotechnology 18(13), 135301 (2007)CrossRefGoogle Scholar
  144. 144.
    B.H. Northrop, J.E. Norton, K.N. Houk, On the mechanism of peripentacene formation from pentacene: computational studies of a prototype for graphene formation from smaller acenes. J. Am. Chem. Soc. 129(20), 6536–6546 (2007)CrossRefGoogle Scholar
  145. 145.
    A.M. Dimiev, S. Eigler, 2. Mechanism of formation and chemical structure of graphene oxide, in Graphene Oxide: Fundamentals and Applications, (John Wiley & Sons, Ltd, Chichester, 2016)CrossRefGoogle Scholar
  146. 146.
    H. Cui, J. Zheng, P. Yang, et al., Understanding the formation mechanism of graphene frameworks synthesized by solvothermal and rapid pyrolytic processes based on an alcohol–sodium hydroxide system. ACS Appl. Mater. Interfaces 7(21), 11230–11238 (2015)CrossRefGoogle Scholar
  147. 147.
    A.M. Dimiev, J.M. Tour, Mechanism of graphene oxide formation. ACS Nano 8(3), 3060–3068 (2014)CrossRefGoogle Scholar
  148. 148.
    R. Whitesides, A.C. Kollias, D. Domin, W.A. Lester, M. Frenklach, Graphene layer growth: collision of migrating five-member rings. Proc. Combust. Inst. 31(1), 539–546 (2007)CrossRefGoogle Scholar
  149. 149.
    Y. Carissan, W. Klopper, Growing graphene sheets from reactions with methyl radicals: a quantum chemical study. Chemphyschem 7(8), 1770–1778 (2006)CrossRefGoogle Scholar
  150. 150.
    M. Frenklach, J. Ping, On the role of surface migration in the growth and structure of graphene layers. Carbon 42(7), 1209–1212 (2004)CrossRefGoogle Scholar
  151. 151.
    E. Cappelli, S. Orlando, V. Morandi, M. Servidori, C. Scilletta, Nano-graphene growth and texturing by Nd:YAG pulsed laser ablation of graphite on silicon. J. Phys. Conf. Ser. 59(1), 616–624 (2007)CrossRefGoogle Scholar
  152. 152.
    G.R. Kiran, B. Chandu, S.G. Acharyya, et al., One-step synthesis of bulk quantities of graphene from graphite by femtosecond laser ablation under ambient conditions. Philos. Mag. Lett., 1–6 (2017). Scholar
  153. 153.
    Y. Miura, H. Kasai, W. Diño, H. Nakanishi, T. Sugimoto, First principles studies for the dissociative adsorption of H2 on graphene. J. Appl. Phys. 93, 3395 (2003)CrossRefGoogle Scholar
  154. 154.
    R. Nagar, B.P. Vinayan, S.S. Samantaray, S. Ramaprabhu, Recent advances in hydrogen storage using catalytically and chemically modified graphene nanocomposites. J. Mater. Chem. A 5, 22897–22912 (2017)CrossRefGoogle Scholar
  155. 155.
    Y. Hao, X. Zhao, X. Song, H. Li, X. Zhu, C. Hao, The interaction between graphene and oxygen atom. Open Phys. 14, 690–694 (2016)CrossRefGoogle Scholar
  156. 156.
    K. Takeuchi, S. Yamamoto, Y. Hamamoto, et al., Adsorption of CO2 on graphene: a combined TPD, XPS, and vdW-DF study. J. Phys. Chem. C 121(5), 2807–2814 (2017)CrossRefGoogle Scholar
  157. 157.
    B. Kerkeni, D.C. Clary, Quantum dynamics study of the Langmuir–Hinshelwood H + H recombination mechanism and H2 formation on a graphene model surface. Chem. Phys. 338(1), 1–10 (2007)CrossRefGoogle Scholar
  158. 158.
    L.A. Chernozatonskii, P.B. Sorokin, Two-dimensional semiconducting nanostructures based on single graphene sheets with lines of adsorbed hydrogen atoms. Appl. Phys. Lett. 91, 183103 (2007)CrossRefGoogle Scholar
  159. 159.
    Y. Okamoto, Y. Miyamoto, Ab Initio investigation of physisorption of molecular hydrogen on planar and curved graphenes. J. Phys. Chem. B 105(17), 3470–3474 (2001)CrossRefGoogle Scholar
  160. 160.
    I. Cabria, M.J. López, J.A. Alonso, Enhancement of hydrogen physisorption on graphene and carbon nanotubes by Li doping. J. Chem. Phys. 123, 204721 (2005)CrossRefGoogle Scholar
  161. 161.
    V.G. Zavodinsky, E.A. Mikhailenko, Quantum-mechanics simulation of carbon nanoclusters and their activities in reactions with molecular oxygen. Comput. Mater. Sci. 36(1), 159–165 (2006)CrossRefGoogle Scholar
  162. 162.
    F. Cataldo, Ozone reaction with carbon nanostructures. 2: The reaction of ozone with milled graphite and different carbon black grades. J. Nanosci. Nanotech. 7(4–5), 1446–1454 (2007)CrossRefGoogle Scholar
  163. 163.
    M.T. Hasan, B.J. Senger, C. Ryan, et al., Optical band gap alteration of graphene oxide via ozone treatment. Sci. Rep. 7, 6411 (2017)CrossRefGoogle Scholar
  164. 164.
    P.A. Gauden, M. Wisniewski, CO2 sorption on substituted carbon materials. Appl. Surf. Sci. 253(13), 5726–5731 (2007)CrossRefGoogle Scholar
  165. 165.
    R. Strzelczyk, C.E. Giusca, F. Perrozzi, et al., Role of substrate on interaction of water molecules with graphene oxide and reduced graphene oxide. Carbon 122, 168–175 (2017)CrossRefGoogle Scholar
  166. 166.
    E. Rangel Cortes, L.F. Magana Solıs, J.S. Arellano, Interaction of a water molecule with a graphene layer. Rev. Mex. Fís. S59(1), 118–125 (2013)Google Scholar
  167. 167.
    M.K. Kostov, E.E. Santiso, A.M. George, K.E. Gubbins, M.B. Nardelli, Dissociation of water on defective carbon substrates. Phys. Rev. Lett. 95(13), 136105 (2005)CrossRefGoogle Scholar
  168. 168.
    N.A. Cordero, J.A. Alonso, The interaction of sulfuric acid with graphene and formation of adsorbed crystals. Nanotechnology 18(48), 485705 (2007)CrossRefGoogle Scholar
  169. 169.
    D.-E. Jiang, B.G. Sumpter, S. Dai, How do aryl groups attach to a graphene sheet? J. Phys. Chem. B 110(47), 23628–23632 (2006)CrossRefGoogle Scholar
  170. 170.
    P.A. Denis, On the addition of aryl radicals to graphene: the importance of nonbonded interactions. Chem. Phys. Chem. 14(14), 3271–3277 (2013)CrossRefGoogle Scholar
  171. 171.
    X. Liu, C.-Z. Wang, M. Hupalo, et al., Metals on graphene: interactions, growth morphology, and thermal stability. Crystals 3, 79–111 (2013)CrossRefGoogle Scholar
  172. 172.
    A.R. Cadore, E. Mania, E.A. de Morais, et al., Metal-graphene heterojunction modulation via H2 interaction. Appl. Phys. Lett. 109, 033109 (2016)CrossRefGoogle Scholar
  173. 173.
    M. Manolata Devi, S.R. Sahu, P. Mukherjee, P. Sen, K. Biswas, Graphene–metal nanoparticle hybrids: electronic interaction between graphene and nanoparticles. Trans. Indian Inst. Metals 69(4), 839–844 (2016)CrossRefGoogle Scholar
  174. 174.
    J. Lee, K.S. Novoselov, H.S. Shin, Interaction between metal and graphene: dependence on the layer number of graphene. ACS Nano. 5(1), 608–612 (2011)CrossRefGoogle Scholar
  175. 175.
    Y. Okamoto, Density-functional calculations of icosahedral M13 (M=Pt and Au) clusters on graphene sheets and flakes. Chem. Phys. Lett. 420(4), 382–386 (2006)CrossRefGoogle Scholar
  176. 176.
    M. Machida, T. Mochimaru, H. Tatsumoto, Lead(II) adsorption onto the graphene layer of carbonaceous materials in aqueous solution. Carbon 44(13), 2681–2688 (2006)CrossRefGoogle Scholar
  177. 177.
    S. Masatsugu, I.S. Suzuki, W. Jürgen, Superconductivity and magnetic short-range order in the system with a Pd sheet sandwiched between graphene sheets. J. Phys.: Condens. Matter 16(6), 903–918 (2004)Google Scholar
  178. 178.
    P.R. Unwin, A.G. Güell, G. Zhang, Nanoscale electrochemistry of sp(2) carbon materials: from graphite and graphene to carbon nanotubes. Acc. Chem. Res. 49(9), 2041–2048 (2016)CrossRefGoogle Scholar
  179. 179.
    J.-g. Zhao, B.-y. Xing, H. Yang, et al., Growth of carbon nanotubes on graphene by chemical vapor deposition. New Carbon Mater. 31(1), 31–36 (2016)CrossRefGoogle Scholar
  180. 180.
    D. Yu, F. Liu, Synthesis of carbon nanotubes by rolling up patterned graphene nanoribbons using selective atomic adsorption. Nano Lett. 7(10), 3046–3050 (2007)CrossRefGoogle Scholar
  181. 181.
    A.J. Du, S.C. Smith, G.Q. Lu, Formation of single-walled carbon nanotube via the interaction of graphene nanoribbons: ab initio density functional calculations. Nano Lett. 7(11), 3349–3354 (2007)CrossRefGoogle Scholar
  182. 182.
    M. Nagatsu, T. Yoshida, M. Mesko, A. Ogino, T. Matsuda, T. Tanaka, H. Tatsuoka, K. Murakami, Narrow multi-walled carbon nanotubes produced by chemical vapor deposition using graphene layer encapsulated catalytic metal particles. Carbon 44(15), 3336–3341 (2006)CrossRefGoogle Scholar
  183. 183.
    S. Enouz, O. Stéphan, J.-L. Cochon, C. Colliex, A. Loiseau, C-BN patterned single-walled nanotubes synthesized by laser vaporization. Nano Lett. 7(7), 1856–1862 (2007)CrossRefGoogle Scholar
  184. 184.
    N.A. Koratkar, Graphene in Composite Materials: Synthesis, Characterization and Applications (DEStech Publications, Inc., Lancaster, 2013), p. 198Google Scholar
  185. 185.
    S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.B.T. Nguyen, R.S. Ruoff, Graphene-based composite materials. Nature 442, 282–286 (2006)CrossRefGoogle Scholar
  186. 186.
    X. Gong, G. Liu, Y. Li, et al., Functionalized-graphene composites: fabrication and applications in sustainable energy and environment. Chem. Mater. 28(22), 8082–8118 (2016)CrossRefGoogle Scholar
  187. 187.
    H. Zhang, Y. Yuan, Y. Sun, et al., An ionic liquid-magnetic graphene composite for magnet dispersive solid-phase extraction of triazine herbicides in surface water followed by high performance liquid chromatography. Analyst 143, 175–181 (2018)CrossRefGoogle Scholar
  188. 188.
    B.C. Marin, J. Liu, E. Aklile, et al., SERS-enhanced piezoplasmonic graphene composite for biological and structural strain mapping. Nanoscale 9, 1292–1298 (2017)CrossRefGoogle Scholar
  189. 189.
    S. Watcharotone, D.A. Dikin, S. Stankovich, R. Piner, I. Jung, G.H.B. Dommett, G. Evmenenko, S.-E. Wu, S.-F. Chen, C.-P. Liu, S.T. Nguyen, R.S. Ruoff, Graphene-silica composite thin films as transparent conductors. Nano Lett. 7(7), 1888–1892 (2007)CrossRefGoogle Scholar
  190. 190.
    C. Berger, Z. Song, T. Li, X. Li, A.Y. Ogbazghi, R. Feng, Z. Dai, A.N. Marchenkov, E.H. Conrad, P.N. First, W.A. de Heer, Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 108(52), 19912–19916 (2004)CrossRefGoogle Scholar
  191. 191.
    K. Novoselov, Graphene: mind the gap. Nat. Mater. 6(10), 720–721 (2007)CrossRefGoogle Scholar
  192. 192.
    D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H.B. Dommett, G. Evmenenko, S.B.T. Nguyen, R.S. Ruoff, Preparation and characterization of graphene oxide paper. Nature 448(7152), 457–460 (2007)CrossRefGoogle Scholar
  193. 193.
    Y. Huang, M. Zhu, W. Meng, et al., Robust reduced graphene oxide paper fabricated with a household non-stick frying pan: a large-area freestanding flexible substrate for supercapacitors. RSC Adv. 5, 33981–33989 (2015)CrossRefGoogle Scholar
  194. 194.
    J. Gao, C. Liu, L. Miao, X. Wang, Y. Chen, Free-standing reduced graphene oxide paper with high electrical conductivity. J. Electron. Mater. 45(3), 1290–1295 (2016)CrossRefGoogle Scholar
  195. 195.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)CrossRefGoogle Scholar
  196. 196.
    Building blocks for integrated graphene circuits. Nano Lett. 7(11), 3253–3259 (2007)CrossRefGoogle Scholar
  197. 197.
    H. Raza (ed.), Graphene Nanoelectronics: Metrology, Synthesis, Properties and Applications (Springer, Berlin, 2012), p. 586Google Scholar
  198. 198.
    X. Liang, Z. Fu, S.Y. Chou, D.A. Areshkin, C.T. White, Graphene transistors fabricated via transfer-printing in device active-areas on large wafer. Nano Lett. 7(12), 3840–3844 (2007)CrossRefGoogle Scholar
  199. 199.
    Y.G. Semenov, K.W. Kim, J.M. Zavada, Spin field effect transistor with a graphene channel. Appl. Phys. Lett. 91, 153105 (2007)CrossRefGoogle Scholar
  200. 200.
    Z. Chen, Y.-M. Lin, M.J. Rooks, P. Avouris, Graphene nano-ribbon electronics. Physica E 40(2), 228–232 (2007)CrossRefGoogle Scholar
  201. 201.
    R.C. Ordonez, C.K. Hayashi, C.M. Torres, et al., Rapid fabrication of graphene field-effect transistors with liquid-metal interconnects and electrolytic gate dielectric made of honey. Sci. Rep. 7, 10171 (2017)CrossRefGoogle Scholar
  202. 202.
    P. Aydogan, O. Balci, C. Kocabas, S. Suzer, et al., Monitoring the operation of a graphene transistor in an integrated circuit by XPS. Org. Electron. 37, 178–182 (2016)CrossRefGoogle Scholar
  203. 203.
    Q. Yan, B. Huang, J. Yu, F. Zheng, J. Zang, J. Wu, B.-L. Gu, F. Liu, W. Duan, Intrinsic current-voltage characteristics of graphene nanoribbon transistors and effect of edge doping. Nano Lett. 7(6), 1469–1473 (2007)CrossRefGoogle Scholar
  204. 204.
    T. Jayasekera, J.W. Mintmire, Transport in multiterminal graphene nanodevices. Nanotechnology 18(42), 424033 (2007)CrossRefGoogle Scholar
  205. 205.
    N. Staley, H. Wang, C. Puls, J. Forster, T.N. Jackson, K. McCarthy, B. Clouser, Y. Liu, Lithography-free fabrication of graphene devices. Appl. Phys. Lett. 90, 143518 (2007)CrossRefGoogle Scholar
  206. 206.
    S.J. Heerema, C. Dekker, Graphene nanodevices for DNA sequencing. Nat. Nanotechnol. 11, 127–136 (2016)CrossRefGoogle Scholar
  207. 207.
    M. Balcioglu, B. Zafer Buyukbekar, M. Selman Yavuz, M.V. Yigit, Smart-polymer-functionalized graphene nanodevices for thermo-switch-controlled biodetection. ACS Biomater Sci. Eng. 1(1), 27–36 (2015)CrossRefGoogle Scholar
  208. 208.
    D. Gunlycke, D.A. Areshkin, J. Li, J.W. Mintmire, C.T. White, Graphene nanostrip digital memory device. Nano Lett. 7(12), 3608–3611 (2007)CrossRefGoogle Scholar
  209. 209.
    S. Roddaro, P. Pingue, V. Piazza, V. Pellegrini, F. Beltram, The optical visibility of graphene: interference colors of ultrathin graphite on SiO2. Nano Lett. 7(9), 2707–2710 (2007)CrossRefGoogle Scholar
  210. 210.
    P. Blake, E.W. Hill, A.H. Castro Neto, K.S. Novoselov, D. Jiang, R. Yang, T.J. Booth, A.K. Geim, Making graphene visible. Appl. Phys. Lett. 91, 063124 (2007)CrossRefGoogle Scholar
  211. 211.
    X. Wang, L. Zhi, K. Mullen, Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8(1), 323–327 (2008)CrossRefGoogle Scholar
  212. 212.
    M. Fahad Bhopal, D. Won Lee, A. ur Rehman, S. Hong Lee, Past and future of graphene/silicon heterojunction solar cells: a review. J. Mater. Chem. C 5, 10701–10714 (2017)CrossRefGoogle Scholar
  213. 213.
    J. Yoon, H. Sung, G. Lee, W. Cho, et al., Superflexible, high-efficiency perovskite solar cells utilizing graphene electrodes: towards future foldable power sources. Energy Environ. Sci. 10, 337–345 (2017)CrossRefGoogle Scholar
  214. 214.
    N. Park, S. Hong, G. Kim, S.-H. Jhi, Computational study of hydrogen storage characteristics of covalent-bonded graphenes. J. Am. Chem. Soc. 129(29), 8999–9003 (2007)CrossRefGoogle Scholar
  215. 215.
    C. Zhou, J.A. Szpunar, X. Cui, Synthesis of Ni/Graphene nanocomposite for hydrogen storage. ACS Appl. Mater. Interfaces 8(24), 15232–15241 (2016)CrossRefGoogle Scholar
  216. 216.
    H. Ghorbani Shiraz, O. Tavakoli, Investigation of graphene-based systems for hydrogen storage. Renew. Sust. Energ. Rev. 74, 104–109 (2017)CrossRefGoogle Scholar
  217. 217.
    S. Patchkovskii, J.S. Tse, S.N. Yurchenko, L. Zhechkov, T. Heine, G. Seifert, Graphene nanostructures as tunable storage media for molecular hydrogen. Proc. Natl. Acad. Sci. U. S. A. 102(30), 10439–10444 (2005)CrossRefGoogle Scholar
  218. 218.
    F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6, 652–655 (2007)CrossRefGoogle Scholar
  219. 219.
    C.I.L. Justino, A.R. Gomes, A.C. Freitas, Graphene based sensors and biosensors. TrAC Trends Anal. Chem. 91, 53–66 (2017)CrossRefGoogle Scholar
  220. 220.
    S.S. Varghese, S. Lonkar, K.K. Singh, et al., Recent advances in graphene based gas sensors. Sensors Actuators B Chem. 218, 160–183 (2015)CrossRefGoogle Scholar
  221. 221.
    H.S. Kang, Theoretical study of binding of metal-doped graphene sheet and carbon nanotubes with dioxin. J. Am. Chem. Soc. 127(27), 9839–9843 (2005)CrossRefGoogle Scholar
  222. 222.
    T.O. Wehling, K.S. Novoselov, S.V. Morozov, E.E. Vdovin, M.I. Katsnelson, A.K. Geim, A.I. Lichtenstein, Molecular doping of graphene. Nano Lett. 8(1), 173–177 (2008)CrossRefGoogle Scholar
  223. 223.
    M.J.F. Calvete, Future Trends for Top Materials (Bentham Science Publishers, Sharjah, 2017), p. 573Google Scholar
  224. 224.
    P.W. Fowler, D.E. Manolopoulos, An Atlas of Fullerenes (Dover Publications, Mineola, 2007), p. 416Google Scholar
  225. 225.
    F.J.M. Rietmeijer, Natural Fullerenes and Related Structures of Elemental Carbon (Springer, Dordrecht, 2006), p. 295Google Scholar
  226. 226.
    E. Sheka, Fullerenes: Nanochemistry, Nanomagnetism, Nanomedicine, Nanophotonic (CRC Press, 2016), Boca Raton, FL, USA, p. 328Google Scholar
  227. 227.
    M. Marcaccio, F. Paolucci, Making and Exploiting Fullerenes, Graphene, and Carbon Nanotubes (Springer, 2016), New York, p. 270Google Scholar
  228. 228.
    J.-F. Nierengarten, Fullerenes and Other Carbon-Rich Nanostructures (Structure and Bonding) (Springer, Berlin, 2016), p. 259Google Scholar
  229. 229.
    H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.F. Smalley, C60-buckminsterfullerene. Nature 318(6042), 162–163 (1985)CrossRefGoogle Scholar
  230. 230.
    A. Astefanei, O. Núñez, M.T. Galceran, Characterisation and determination of fullerenes: a critical review. Anal. Chim. Acta 882, 1–21 (2015)CrossRefGoogle Scholar
  231. 231.
    R. Qiao, A.P. Roberts, A.S. Mount, S.J. Klaine, P.C. Ke, Translocation of C60 and its derivatives across a lipid bilayer. Nano Lett. 7(3), 614–619 (2007)CrossRefGoogle Scholar
  232. 232.
    Fullerite Mineral Data. Accessed on 28 June 2018
  233. 233.
  234. 234.
    T.G. Schmalz, W.A. Seitz, D.J. Klein, G.E.J. Hite, Am. Chem. Soc. 110, 1113–1127 (1988)CrossRefGoogle Scholar
  235. 235.
    T.C. Dinadayalane, G. Narahari Sastry, Isolated pentagon rule in buckybowls: a computational study on thermodynamic stabilities and bowl-to-bowl inversion barriers. Tetrahedron. 59, 8347–8351 (2003)CrossRefGoogle Scholar
  236. 236.
    F. Jin, S. Yang, S.I. Troyanov, New isolated-pentagon-rule isomers of fullerene C98 captured as chloro derivatives. Inorg. Chem. 56(9), 4780–4783 (2017)CrossRefGoogle Scholar
  237. 237.
    A. Hirsch, Fullerenes and Related Structures (Springer, Berlin, 1999), p. 246CrossRefGoogle Scholar
  238. 238.
    A. Hirsch, M. Brettreich, F. Wudl, Fullerenes: chemistry and reactions (Wiley-VCH, Weinhem, 2005), p. 440Google Scholar
  239. 239.
    L.N. Sidorov, M.A. Yurovskaya, A.Y. Borschevskii, I.V. Trushkov, I.N. Ioffe, Fullerenes (Examen, Moscow, 2005), p. 688Google Scholar
  240. 240.
    F. Langa, J.-F. Nierengarten, Fullerenes: Principles and Applications (Royal Society of Chemistry, London, 2007), p. 300CrossRefGoogle Scholar
  241. 241.
    G. Abrasonis, M.S. Amer, R. Blanco, Z. Chen, in Fullerene Research Advances, ed. by C. N Kramer (Ed), (Nova Science Pub Inc, New York, 2007), p. 305Google Scholar
  242. 242.
    K. Prassides, Fullerene-Based Materials: Structures and Properties (Springer, Berlin, 2004), p. 294CrossRefGoogle Scholar
  243. 243.
    N.N. Valand, M.B. Patel, Fullerenes Chemistry & Its Applications (Scholars’ Press, 2015), Riga, Latvia, p. 76Google Scholar
  244. 244.
    K. Komatsu, Molecular surgical synthesis of H2@C60: recollections. Phil. Trans. R. Soc. A 371, 20110636 (2013)CrossRefGoogle Scholar
  245. 245.
    D.J. Durbin, N.L. Allan, C. Malardier-Jugroot, Molecular hydrogen storage in fullerenes – a dispersion-corrected density functional theory study. Int. J. Hydrog. Energy. 41(30), 13116–13130 (2016)CrossRefGoogle Scholar
  246. 246.
    O.V. Boltalina, T. Nakajima, New Fluorinated Carbons: Fundamentals and Applications: Progress in Fluorine Science Series (Elsevier, Amsterdam/Cambridge MA, 2016), p. 442Google Scholar
  247. 247.
    R.M. Girón, J. Marco-Martínez, S. Bellani, et al., Synthesis of modified fullerenes for oxygen reduction reactions. J. Mater. Chem. A 4, 14284–14290 (2016)CrossRefGoogle Scholar
  248. 248.
    A.A. Popov, Endohedral Fullerenes: Electron Transfer and Spin (Nanostructure Science and Technology) (Springer, Cham, 2017), p. 328CrossRefGoogle Scholar
  249. 249.
    Exohedral metallofullerenes, in Quantum-Chemical Studies on Porphyrins, Fullerenes and Carbon, ed. by O. Loboda, (Springer, Berlin, 2013), pp. 27–47Google Scholar
  250. 250.
    E.G. Atovmyan, A.A. Grishchuk, T.N. Fedotova, Polymerization of [60]fullerene activated with butyllithium. Russ. Chem. Bull. 60(7), 1505–1507 (2011)CrossRefGoogle Scholar
  251. 251.
    M.D. Tzirakis, M. Orfanopoulos, Radical reactions of fullerenes: from synthetic organic chemistry to materials science and biology. Chem. Rev. 113(7), 5262–5321 (2013)CrossRefGoogle Scholar
  252. 252.
    A.L. Balch, C.J. Chancellor, Fullerenes: metal complexes, in Encyclopedia of Inorganic and Bioinorganic Chemistry, (Wiley, Hoboken, 2011)Google Scholar
  253. 253.
    S. Fukuzumi, Nanocarbons as electron donors and acceptors in photoinduced electron-transfer reactions. ECS J. Solid State Sci. Tech. 6(6), M3055–M3061 (2017)CrossRefGoogle Scholar
  254. 254.
    M. Maggini, E. Menna, Addition of azomethyne ylides: fulleropyrrolidines, in Fullerenes: From Synthesis to Optoelectronic Properties. Series: Developments in Fullerene Science, Vol. 4, ed. by D. M. Guldi, N. Martin (Eds), (Springer, 2003), New York, p. 447Google Scholar
  255. 255.
    B.I. Kharisov, O.V. Kharissova, M. Jimenez Gomez, U. Ortiz Mendez, Recent advances in the synthesis, characterization, and applications of fulleropyrrolidines. Ind. Eng. Chem. Res. 48(2), 545–571 (2009)CrossRefGoogle Scholar
  256. 256.
    J.-L. Shi, X.-F. Zhang, H.-J. Wang, et al., A protocol for the preparation of 2,5-diaryl fulleropyrrolidines: thermal reaction of [60]fullerene with aromatic aldehydes and arylmethanamines. J. Org. Chem. 81(17), 7662–7674 (2016)CrossRefGoogle Scholar
  257. 257.
    J. Coro, M. Suárez, L.S.R. Silva, et al., Fullerene applications in fuel cells: a review. Int. J. Hydrog. Energy 41(40), 17944–17959 (2016)CrossRefGoogle Scholar
  258. 258.
    S. Margadonna, Fullerene-Related Materials (Springer, 2008), New York, p. 700Google Scholar
  259. 259.
    W. Yan, S.M. Seifermann, P. Pierratd, S. Bräse, Synthesis of highly functionalized C60 fullerene derivatives and their applications in material and life sciences. Org. Biomol. Chem. 13, 25–54 (2015)CrossRefGoogle Scholar
  260. 260.
    M.R. Cerón, V. Maffeis, S. Stevenson, L. Echegoyen, Endohedral fullerenes: synthesis, isolation, mono- and bis-functionalization. Inorg. Chim. Acta. 468, 16–27 (2017)CrossRefGoogle Scholar
  261. 261.
    G. Lalwani, B. Sitharaman, Multifunctional fullerene and metallofullerene based nanobiomaterials. NanoLIFE 3, 1342003 (2013)Google Scholar
  262. 262.
    M. Maruyama, S. Okada, Design of new carbon allotropes of fused small fullerenes. Phys. Status Solidi 10(11), 1620–1623 (2013)CrossRefGoogle Scholar
  263. 263.
    J.-J. Adjizian, A. Vlandas, J. Rio, J.-C. Charlier, C.P. Ewels, Ab initio infrared vibrational modes for neutral and charged small fullerenes (C20, C24, C26, C28, C30 and C60). Phil. Trans. R. Soc. A 374, 20150323 (2016)CrossRefGoogle Scholar
  264. 264.
    C.-Y. Luo, W.-Q. Huang, W. Hu, P. Peng, G.-F. Huang, Non-covalent functionalization of WS2 monolayer with small fullerenes: tuning electronic properties and photoactivity. Dalton Trans. 45, 13383–13391 (2016)CrossRefGoogle Scholar
  265. 265.
    R. Majidi, Electronic properties of graphyne nanotubes filled with small fullerenes: a density functional theory study. J. Comput. Electron. 15(4), 1263–1268 (2016)CrossRefGoogle Scholar
  266. 266.
    L.N. Sidorov, M.A. Yurovskaya, A.Y. Borshevskii, I.V. Trushkov, I.N. Ioffe, Fullerenes (Examen, Moscow, 2005), pp. 95–98Google Scholar
  267. 267.
    O. Ori, F. Cataldo, A. Graovac, Topological ranking of C28 fullerenes reactivity. Fullerenes, Nanotubes, Carbon Nanostruct. 17(3), 308–323 (2009)CrossRefGoogle Scholar
  268. 268.
    M.N. Magomedov, On the prospects of preparing fullerites from small and large fullerenes. Phys. Solid State 48(11), 2220–2225 (2006)CrossRefGoogle Scholar
  269. 269.
    B.L. Zhang, C.Z. Wang, K.M. Ho, C.H. Xu, C.T. Chan, The geometry of small fullerene cages: C20 to C70. J. Chem. Phys. 97(7), 5007–5011 (1992)CrossRefGoogle Scholar
  270. 270.
    L. Koponen, M.J. Puska, R.M. Nieminen, Photoabsorption spectra of small fullerenes and Si-heterofullerenes. J. Chem. Phys. 128(15), 154307/1–154307/7 (2008)CrossRefGoogle Scholar
  271. 271.
    G. Seifert, A.N. Enyashin, T. Heine, Hyperdiamond and hyperlonsdaleit: possible crystalline phases of fullerene C28. Phys. Rev. B: Condens. Matter Mater. Phys. 72(1), 012102/1–012102/4 (2005)CrossRefGoogle Scholar
  272. 272.
    M. Lin, Y.-N. Chiu, J. Xiao, Theoretical study for exohydrogenates of small fullerenes C28-40. J. Mol. Struct. THEOCHEM 489(2–3), 109–117 (1999)CrossRefGoogle Scholar
  273. 273.
    M.-F. Fan, Z. Lin, S. Yang, Closed-shell electronic requirements for small fullerene cage structures. J. Mol. Struct. THEOCHEM 337(3), 231–240 (1995)CrossRefGoogle Scholar
  274. 274.
    M. Randic, H.W. Kroto, D. Vukicevic, Numerical Kekulé structures of fullerenes and partitioning of π-electrons to pentagonal and hexagonal rings. J. Chem. Inf. Model. 47 897–904 (2007)Google Scholar
  275. 275.
    M. Ghorbani, A.R. Ashrafi, Cycle index of the symmetry group of fullerenes C24 and C150. Asian J. Chem. 19(2), 1109–1114 (2007)Google Scholar
  276. 276.
    A.P. Popov, I.V. Bazhin, Three-dimensional polymerized cubic phase of fullerenes C28, in Hydrogen Materials Science and Chemistry of Carbon Nanomaterials, ed by T. N. Veziroglu et al. (Eds), (Kluwer Academic Publishers, Dordrecht, 2004), pp. 329–332CrossRefGoogle Scholar
  277. 277.
    M. Maruyama, S. Okada, Elemental semiconductors of fused small fullerenes: electronic and geometric structures of C28 polymers. J. Phys. Soc. Jpn. 81, 114719 (2012). 4 ppCrossRefGoogle Scholar
  278. 278.
    A. Pahuja, S. Srivastava, Electronic transport properties of doped C28 fullerene. Phys. Res. Int. 2014, 872381 (2014). 7 ppCrossRefGoogle Scholar
  279. 279.
    H. Kroto, The isolated pentagon rule and C28. Accessed on 10 Jan 2018
  280. 280.
    R.Q. Zhang, Y.Q. Feng, S.T. Lee, C.L. Bai, Electrical transport and electronic delocalization of small fullerenes. J. Phys. Chem. B 108(43), 16636–16641 (2004)CrossRefGoogle Scholar
  281. 281.
    P.W Dunk, N.K. Kaiser, C.L. Hendrickson, A.G Marshall, H.W. Kroto, Stabilization of small carbon clusters. Abstracts of Papers, 238th ACS National Meeting, Washington, DC, United States, August 16–20, 2009, INOR-223Google Scholar
  282. 282.
    W.-H. Lin, R.K. Mishra, Y.-T. Lin, S.-L. Lee, Computational studies of the growth mechanism of small fullerenes: a ring-stacking model. J. Chin. Chem. Soc. 50(3B), 575–582 (2003)CrossRefGoogle Scholar
  283. 283.
    R.K. Mishra, Y.-T. Lin, S.-L. Lee, C28 (D2): fullerene growth mechanism. Int. J. Quantum Chem. 84, 642–648 (2001)CrossRefGoogle Scholar
  284. 284.
    W.-H. Lin, C.-C. Tu, S.-L. Lee, Theoretical studies of growth mechanism of small fullerene Cage C24 (D6d)+. Int. J. Quantum Chem. 103(4), 355–368 (2005)CrossRefGoogle Scholar
  285. 285.
    J.L. Martins, F.A. Reuse, Growth and formation of fullerene clusters. Condens Matter Theor 13, 355–362 (1998)Google Scholar
  286. 286.
    H. Kietzmann, R. Rochow, G. Ganteför, W. Eberhardt, K. Vietze, G. Seifert, P.W. Fowler, Electronic structure of small fullerenes: evidence for the high stability of C32. Phys. Rev. Lett. 81(24), 5378–5381 (1998)CrossRefGoogle Scholar
  287. 287.
    A.D. Darwish, A.G. Avent, P.R. Birkett, H.W. Kroto, R. Taylor, D.R.M. Walton, Some 4-fluorophenyl derivatives of [60]fullerene; spontaneous oxidation and oxide-induced fragmentation to C58. J. Chem. Soc. Perkin Trans. 2(7), 1038–1044 (2001)CrossRefGoogle Scholar
  288. 288.
    T. Fan, S. Yao, C. Zhou, B. Han, J. Wu, Adsorption of a small fullerene, C28, on the Si(001)-c(2X1) surface: a density functional theory study. Wuhan Daxue Xuebao, Lixueban 53(6), 655–660 (2007)Google Scholar
  289. 289.
    S. Yao, C. Zhou, L. Ning, J. Wu, Z. Pi, H. Cheng, Y. Jiang, Chemisorption of C28 fullerene on c(4x4) reconstructed GaAs(001) surface: a density functional theory study. Phys. Rev. B: Condens. Matter Mater. Phys. 71(19), 195316/1–195316/7 (2005)CrossRefGoogle Scholar
  290. 290.
    G. Galli, A. Canning, J. Kim, Assembling small fullerenes: a molecular dynamics study. Mater. Res. Soc. Symp. Proc. 498(Covalently Bonded Disordered Thin-Film Materials), 19–30 (1998)Google Scholar
  291. 291.
    P. Melinon, V. Paillard, V. Dupuis, J.P. Perez, A. Perez, G. Panczer, Synthesis of diamond nanocrystallites using the low-energy cluster beam deposition; an indirect proof of small fullerene existence. Carbon 32(5), 1011–1013 (1994)CrossRefGoogle Scholar
  292. 292.
    K.S. Troche, V.R. Coluci, R. Rurali, D.S. Galvao, Structural and electronic properties of zigzag carbon nanotubes filled with small fullerenes. J. Phys. Condens. Matter 19(23), 236222/1–236222/9 (2007)CrossRefGoogle Scholar
  293. 293.
    K.S. Troche, V.R. Coluci, R. Rurali, D.S. Galvao, Doping of zigzag carbon nanotubes through the encapsulation of small fullerenes. Los Alamos Nat. Lab. Prepr. Arch. Condens. Matter, 1–17 (2006).
  294. 294.
    A. Kharlamov, G. Kharlamova, M. Bondarenko, V. Fomenko, Joint synthesis of small carbon molecules (C3-C11), quasi-fullerenes (C40, C48, C52) and their hydrides. Chem. Eng. Sci. 1(3), 32–40 (2013)CrossRefGoogle Scholar
  295. 295.
    F. Ben Romdhane, J.A. Rodríguez-Manzo, A. Andrieux-Ledier, F. Fossard, A. Hallal, L. Magaud, J. Coraux, A. Loiseau, F. Banhart, The formation of the smallest fullerene-like carbon cages on metal surfaces. Nanoscale 8(5), 2561–2567 (2016)CrossRefGoogle Scholar
  296. 296.
    D.F.T. Tuan, R.M. Pitzer, Electronic structure of Hf@C28 and its ions. 1. SCF calculations. J. Phys. Chem 99, 9762–9767 (1995)CrossRefGoogle Scholar
  297. 297.
    D.F.T. Tuan, R.M. Pitzer, Electronic structures of C28H4 and Hf@C28H4 and their ions. SCF calculations. J. Phys. Chem. 100, 6277–6283 (1996)CrossRefGoogle Scholar
  298. 298.
    A.N. Enyashin, V.V. Ivanovskaya, Y.N. Makurin, A.L. Ivanovskii, Modeling of the structure and electronic structure of condensed phases of small fullerenes C28 and Zn@C28. Phys. Solid State (Translation of Fizika Tverdogo Tela (Sankt-Peterburg)) 46(8), 1569–1573 (2004)Google Scholar
  299. 299.
    T. Guo, M.D. Diener, Y. Chai, M.J. Alford, R.E. Haufler, S.M. McClure, T. Ohno, J.H. Weaver, G.E. Scuseria, R.E. Smalley, Uranium stabilization of C28: a tetravalent fullerene. Science 257(5077), 1661–1664 (1992)CrossRefGoogle Scholar
  300. 300.
    M.V. Ryzhkov, A.L. Ivanovskii, B. Delley, Electronic structure of endohedral fullerenes An@C28 (An=Th – Md). Comput. Theor. Chem. 985, 46–52 (2012)CrossRefGoogle Scholar
  301. 301.
    M.R. Pederson, N. Laouini, Covalent container compound: empty, endohedral, and exohedral C28 fullerene complexes. Phys. Rev. B: Condens. Matter Mater. Phys. 48(4), 2733–2737 (1993)CrossRefGoogle Scholar
  302. 302.
    Y.N. Makurin, A.A. Sofronov, A.L. Ivanovskii, Electronic structure and conditions for chemical stabilization of fullerene C28. Exohedral complexes C28M4 (M = H, Cl, Br). Russ. J. Coord. Chem. 26(7), 464–469 (2000)Google Scholar
  303. 303.
    P.W. Fowler, T. Heine, A. Troisi, Valencies of a small fullerene: structures and energetics of C24H2m. Chem. Phys. Lett. 312(2–4), 77–84 (1999)CrossRefGoogle Scholar
  304. 304.
    V.V. Ivanovskaya, A.N. Enyashin, A.A. Sofronov, Y.N. Makurin, A.L. Ivanovskii, Quantum-chemical simulation of new hybrid nanostructures: small fullerenes C20 and C28 in single-walled boron-nitrogen nanotubes. Russ. J. Gen. Chem. 74(5), 713–720 (2004)CrossRefGoogle Scholar
  305. 305.
    K. Jackson, E. Kaxiras, M.R. Pederson, Bonding of endohedral atoms in small carbon fullerenes. J. Phys. Chem. 98(32), 7805–7810 (1994)CrossRefGoogle Scholar
  306. 306.
    M. Monthioux, V.L. Kuznetsov, Who should be given the credit for the discovery of carbon nanotubes? Carbon 44, 1621–1625 (2006)CrossRefGoogle Scholar
  307. 307.
    L.V. Radushkevich, V.M. Lukianovich, About carbon structure, formed by thermal decomposition of carbon monoxide at iron contact. Zhurn. Fiz. Khim. XXVI(1), 88–95 (1952). (dead link)Google Scholar
  308. 308.
    A. Oberlin, M. Endo, T. Koyama, Filamentous growth of carbon through benzene decomposition. J. Cryst. Growth 32(3), 335–349 (1976)CrossRefGoogle Scholar
  309. 309.
    M. Dresselhaus, Structure, Properties and Applications of Carbon Nanotubes. Nanostructures, Seminar Series at MIT, 2003.
  310. 310.
    Izv. Akad, Nauk SSSR, Metals. 1982(3), 12–17; cited in
  311. 311.
    S. Iijima, Helical microtubes of graphitic carbon. Nature (London) 354, 56–58 (1991)CrossRefGoogle Scholar
  312. 312.
    T. Rueckes, K. Kim, E. Joselevich, G.Y. Tseng, C.L. Cheung, C.M. Lieber, Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 289, 94–97 (2000)CrossRefGoogle Scholar
  313. 313.
    S. Saito, Carbon nanotubes for next-generation electronics devices. Science 278, 77–78 (1997)CrossRefGoogle Scholar
  314. 314.
    W. Yang, P. Thordarson, J.J. Gooding, S.P. Ringer, F. Braet, Carbon nanotubes for biological and biomedical applications. Nanotechnology 18(41), 412001 (2007)CrossRefGoogle Scholar
  315. 315.
    H.F. Wei, G.H. Hsiue, C.Y. Liu, Surface modification of multi-walled carbon nanotubes by a Sol–Gel reaction to increase their compatibility with PMMA resin. Compos. Sci. Technol. 67(6), 1018–1026 (2007)CrossRefGoogle Scholar
  316. 316.
    G.A. Rivas, M.D. Rubianes, M.C. Rodriguez, N.F. Ferreyra, G.L. Luque, M.L. Pedano, S.A. Miscoria, C. Parrado, Carbon nanotubes for electrochemical biosensing. Talanta 74(3), 291–307 (2007)CrossRefGoogle Scholar
  317. 317.
    M.Q. Tran, C. Tridech, A. Alfrey, A. Bismarck, M.S.P. Shaffer, Thermal oxidative cutting of multi-walled carbon nanotubes. Carbon 45(12), 2341–2350 (2007)CrossRefGoogle Scholar
  318. 318.
    S. Daniel, T.P. Rao, K.S. Rao, S.U. Rani, G.R.K. Naidu, H.Y. Lee, T.A. Kawai, Review of DNA functionalized/grafted carbon nanotubes and their characterization. Sensors Actuators: B. Chem. 122(2), 672–682 (2007)CrossRefGoogle Scholar
  319. 319.
    A.M. Shanmugharaj, J.H. Bae, K.Y. Lee, W.H. Noh, S.H. Lee, S.H. Ryu, Physical and chemical characteristics of multiwalled carbon nanotubes functionalized with aminosilane and its influence on the properties of natural rubber composites. Compos. Sci. Technol. 67(9), 1813–1822 (2007)CrossRefGoogle Scholar
  320. 320.
    K. Fujisawa, H. Jou Kim, S. Hyeon Go, et al., A review of double-walled and triple-walled carbon nanotube synthesis and applications. Appl. Sci. 6, 109 (2016)CrossRefGoogle Scholar
  321. 321.
    O.V. Kharissova, B.I. Kharisov, Variations of the interlayer spacing in carbon nanotubes. RSC Adv. 4, 30807–30815 (2014)CrossRefGoogle Scholar
  322. 322.
    R. Zhang, Y. Zhang, Q. Zhang, H. Xie, W. Qian, F. Wei, Growth of half-meter long carbon nanotubes based on Schulz–Flory distribution. ACS Nano 7(7), 6156–6161 (2013)CrossRefGoogle Scholar
  323. 323.
    R. Jasti, J. Bhattacharjee, J.B. Neaton, C.R. Bertozzi, Synthesis, characterization, and theory of [9]-, [12]-, and [18]cycloparaphenylene: carbon nanohoop structures. J. Am. Chem. Soc. 130, 17646–17647 (2008)CrossRefGoogle Scholar
  324. 324.
    X. Zhao, Y. Liu, S. Inoue, T. Suzuki, R. Jones, Y. Ando, Smallest carbon nanotube is 3 Å in diameter. Phys. Rev. Lett. 92(12), 125502 (2004)CrossRefGoogle Scholar
  325. 325.
    T. Hayashi, Y.A. Kim, T. Matoba, M. Esaka, et al., Smallest freestanding single-walled carbon nanotube. Nano Lett. 3(7), 887–889 (2003)CrossRefGoogle Scholar
  326. 326.
    H. Sugime, S. Esconjauregui, J. Yang, L. d’Arsié, R.A. Oliver, S. Bhardwaj, C. Cepek, J. Robertson, Low temperature growth of ultra-high mass density carbon nanotube forests on conductive supports. Appl. Phys. Lett. 103(7), 073116 (2013)CrossRefGoogle Scholar
  327. 327.
    M.-F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, R.S. Ruoff, Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287(5453), 637–640 (2000)CrossRefGoogle Scholar
  328. 328.
    T. Kodama, M. Ohnishi, W. Park, et al., Modulation of thermal and thermoelectric transport in individual carbon nanotubes by fullerene encapsulation. Nat. Mater. 16, 892–897 (2017)CrossRefGoogle Scholar
  329. 329.
    H. Chu, L. Wei, R. Cui, J. Wang, Y. Li, Carbon nanotubes combined with inorganic nanomaterials: preparations and applications. Coord. Chem. Rev. 254, 1117–1134 (2010)CrossRefGoogle Scholar
  330. 330.
    H. Reza Barzegar, E. Gracia-Espino, A. Yan, et al., C60/Collapsed carbon nanotube hybrids: a variant of peapods. Nano Lett. 15(2), 829–834 (2015)CrossRefGoogle Scholar
  331. 331.
    B.W. Smith, D.E. Luzzi, Formation mechanism of fullerene peapods and coaxial tubes: a path to large scale synthesis. Chem. Phys. Lett. 321(1–2), 169–174 (2000)CrossRefGoogle Scholar
  332. 332.
    Strategies for the hybridization of CNTs with graphene, in Graphene-Carbon Nanotube Hybrids for Energy and Environmental Applications, ed. by W. Fan et al (Springer, Briefs in Green Chemistry for Sustainability, Singapore, 2017), pp. 21–51Google Scholar
  333. 333.
    C.B. Parker, A.S. Raut, B. Brown, B.R. Stoner, J.T. Glass, Three-dimensional arrays of graphenated carbon nanotubes. J. Mater. Res. 27(7), 1046–1053 (2012)CrossRefGoogle Scholar
  334. 334.
    Q. Liu, W. Ren, Z.-G. Chen, et al., Semiconducting properties of cup-stacked carbon nanotubes. Carbon 47(3), 731–736 (2009)CrossRefGoogle Scholar
  335. 335.
    Q. Liu, W. Ren, Z.-G. Chen, L. Yin, F. Li, H. Cong, H.-M. Cheng, Semiconducting properties of cup-stacked carbon nanotubes. Carbon 47(3), 731–736 (2009)CrossRefGoogle Scholar
  336. 336.
    O.V. Kharissova, B.I. Kharisov, Solubilization and Dispersion of Carbon Nanotubes (Springer-Nature, Cham, 2017), p. 250CrossRefGoogle Scholar
  337. 337.
    A.V. Krasheninnikov, Irradiation-induced phenomena in carbon nanotubes, in Chemistry of Carbon Nanotubes,ed. by V. A. Basiuk, E. V. Basiuk (Eds), (American Scientific Publishers, Stevenson Ranch, 2007), pp. 1–58Google Scholar
  338. 338.
    B.I. Kharisov, O.V. Kharissova, U.O. Mendez, Radiation Synthesis of Materials and Compounds (CRC Press, Boca Raton, 2013), p. 586CrossRefGoogle Scholar
  339. 339.
    N. Hamada, S. Sawada, A. Oshiyama, New one-dimensional conductors. - graphitic microtubules. Phys. Rev. Lett. 68(10), 1579–1581 (1992)CrossRefGoogle Scholar
  340. 340.
    P.J.F. Harris, Carbon Nanotubes and Related Structures (Cambridge University Press, Cambridge, 2001)Google Scholar
  341. 341.
    R. Saito, G. Dresslehaus, M. S. Dresselhaus (eds.), Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998)Google Scholar
  342. 342.
    S. Iijima, Carbon nanotubes: past, present, and future. Phys. B Condens. Matter 323(1–4), 1–5 (2002)CrossRefGoogle Scholar
  343. 343.
    H. Dai, Carbon nanotubes: opportunities and challenges. Surf. Sci. 500, 218–241 (2012)CrossRefGoogle Scholar
  344. 344.
    J.W.G. Wilder, L.C. Venema, A.G. Rinzler, R.E. Smalley, C. Dekker, Electronic structure of atomically resolved carbon nanotubes. Nature 391(6662), 59–62 (1998)CrossRefGoogle Scholar
  345. 345.
  346. 346.
    A. Eatemadi, H. Daraee, H. Karimkhanloo, et al., Carbon nanotubes: properties, synthesis, purification, and medical applications. Nanoscale Res. Lett. 9(1), 393 (2014)CrossRefGoogle Scholar
  347. 347.
    C. Journet, W.K. Maser, P. Bernier, A. Loiseau, M.L. de la Chapelle, S. Lefrant, R. Lee, J.E. Fischer, Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388, 756–758 (1997)CrossRefGoogle Scholar
  348. 348.
    A.G. Rinzler, J. Liu, H. Dai, P. Nicolaev, C.B. Huffman, F.J. Rodríguez-Macias, P.J. Boul, A.H. Lu, D. Heyman, D.T. Colbert, R.S. Lee, J.E. Fischer, A.M. Rao, P.C. Eclund, R.E. Smalley, Large scale purification of single-wall carbon nanotubes: process, product, and characterization. Appl. Phys. A Mater. Sci. Process. 67, 29–37 (1998)CrossRefGoogle Scholar
  349. 349.
    O.V. Kharissova, M. Garza Castañón, J.L. Hernández Pinero, U. Ortiz Méndez, B.I. Kharisov, Fast production method of Fe-filled carbon nanotubes. Mech. Adv. Mater. Struct. 16(1), 63–68 (2009)CrossRefGoogle Scholar
  350. 350.
    P. Nicolaev, M.J. Bronikowski, R.K. Bradley, F. Fohmund, D.T. Colbert, K.A. Smith, R.E. Smalley, Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem. Phys. Lett. 313, 91–97 (1999)CrossRefGoogle Scholar
  351. 351.
    W.Z. Li, S.S. Xie, L.X. Qian, B.H. Chang, B.S. Zou, W.Y. Zhou, R.A. Zhao, G. Wang, Large-scale synthesis of aligned carbon nanotubes. Science 274, 1701–1703 (1996)CrossRefGoogle Scholar
  352. 352.
    K. Yamagiwal, J. Kuwano, Synthesis of highly aligned carbon nanotubes by one-step liquid-phase process: effects of carbon sources on morphology of carbon nanotubes. Jpn. J. Appl. Phys. 56, 06GE05 (2017)CrossRefGoogle Scholar
  353. 353.
    H.S. Cheng, M.R. Shen, C.L. Mak, P.K. Lim, Liquid phase electrochemical route to carbon nanotubes at room temperature. Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems, January 18-21, 2006, Zhuhai, ChinaGoogle Scholar
  354. 354.
    A. Shawky, S. Yasuda, K. Murakoshi, Room-temperature synthesis of single-wall carbon nanotubes by an electrochemical process. Carbon 50, 4184–4191 (2012)CrossRefGoogle Scholar
  355. 355.
    D. Qian, E.C. Dickey, R. Andrews, T. Rantell, Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl. Phys. Lett. 76, 2868–2870 (2000)CrossRefGoogle Scholar
  356. 356.
    P. Chen, X. Wu, J. Lin, K.L. Tan, High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures. Science 285, 91–93 (1999)CrossRefGoogle Scholar
  357. 357.
    P.J. Britto, K.S.V. Santhanam, A. Rubio, J.A. Alonso, P.M. Ajayan, Improved charge transfer at carbon nanotube electrodes. Adv. Mater. 11, 154–157 (1999)CrossRefGoogle Scholar
  358. 358.
    W. Han, P. Redlich, F. Ernst, M. Ruehle, Synthesizing boron nitride nanotubes filled with SiC nanowires by using carbon nanotubes as templates. Appl. Phys. Lett. 75(13), 1875–1877 (1999)CrossRefGoogle Scholar
  359. 359.
    Y. Fan, S.B. Singer, R. Bergstrom, B.C. Regan, Probing Planck’s Law with incandescent light emission from a single carbon nanotube. Phys. Rev. Lett. 102, 187402 (2009)CrossRefGoogle Scholar
  360. 360.
    I.V. Zaporotskova, N.P. Boroznina, Y.N. Parkhomenko, L.V. Kozhitov, Carbon nanotubes: sensor properties. A review. Mod. Electron. Mater. 2(4), 95–105 (2016)CrossRefGoogle Scholar
  361. 361.
    O.V. Kharissova, L.M. Torres Martínez, B.I. Kharisov, Recent trends of reinforcement of cement with carbon nanotubes and fibers, in Advances in Carbon Nanostructures, ed. by A. M. T. Silva, S. A. C. Carabineiro (Eds), (INTECH, London, UK, 2016)Google Scholar
  362. 362.
    X. Qi, J. Xu, Q. Hu, et al., Metal-free carbon nanotubes: synthesis, and enhanced intrinsic microwave absorption properties. Sci. Rep. 6, 28310 (2016)CrossRefGoogle Scholar
  363. 363.
    M.F.L. De Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart, Carbon nanotubes: present and future commercial applications. Science 339(6119), 535–539 (2013)CrossRefGoogle Scholar
  364. 364.
    M. Chen, X. Qin, X. Qin, X. Qin, G. Zeng, Biodegradation of carbon nanotubes, graphene, and their derivatives. Trends Biotech. 35(9), 836–846 (2017)CrossRefGoogle Scholar
  365. 365.
    E. Munoz-Sandoval, Trends in nanoscience, nanotechnology, and carbon nanotubes: a bibliometric approach. J. Nanopart. Res. 16, 2152 (2014)CrossRefGoogle Scholar
  366. 366.
  367. 367.
    L.V. Radushkevich, B.M. Luk’yanovich, About the structure of carbon formed by the thermal decomposition of carbon oxide on the iron contact. Zh. Fiz. Khim. 26, 88–95 (1952)Google Scholar
  368. 368.
    C.-S. Lee (ed.), Carbon Nanofibers: Synthesis, Applications and Performance, Series: Nanotechnology Science and Technology (Nova Sci. Publishers, New York, 2018)Google Scholar
  369. 369.
    Y.-S. Lee, J. Sun Im. Preparation of Functionalized Nanofibers and Their Applications. Nanofibers, ed. by A. Kumar, (INTECH, 2010), London, UK, pp. 122–138Google Scholar
  370. 370.
  371. 371.
    D. Vidick, M. Herlitschke, C. Poleunis, et al., Comparison of functionalized carbon nanofibers and multi-walled carbon nanotubes as supports for Fe–Co nanoparticles. J. Mater. Chem. A 1, 2050–2063 (2013)CrossRefGoogle Scholar
  372. 372.
    L. Fen, N. Xie, J. Zhong, Carbon nanofibers and their composites: a review of synthesizing, properties and applications. Materials 7, 3919–3945 (2014)CrossRefGoogle Scholar
  373. 373.
    J. Bovi de Oliveira, L. Müller Guerrini, S. Sizuka Oishi, L.R. de Oliveira Hein, et al., Carbon nanofibers obtained from electrospinning process. Mater. Res. Express 5, 025602 (2018)CrossRefGoogle Scholar
  374. 374.
    C. Liu, K. Lafdi, Fabrication and characterization of carbon nanofibers from polyacrylonitrile/pitch blends. J. Appl. Polym. Sci. 134, 45388 (2017)CrossRefGoogle Scholar
  375. 375.
    K.L. Klein, A.V. Melechko, T.E. McKnight, et al., Surface characterization and functionalization of carbon nanofibers. J. Appl. Phys. 103, 061301 (2008)CrossRefGoogle Scholar
  376. 376.
    O. Shafranska, A. Voronov, A. Kohut, X.-F. Wu, I.S. Akhatov, Polymer–metal complexes as a catalyst for the growth of carbon nanostructures. Carbon 47, 3137–3142 (2009)CrossRefGoogle Scholar
  377. 377.
    H. Wang, W. Wang, H. Wang, et al., High performance supercapacitor electrode materials from electrospun carbon nanofibers in situ activated by high decomposition temperature polymer. ACS Appl. Energy Mater. 1, 431–439 (2018)CrossRefGoogle Scholar
  378. 378.
    R. Hao, Y. Yang, H. Wang, et al., Direct chitin conversion to N-doped amorphous carbon nanofibers for high-performing full sodium-ion batteries. Nano Energy 45, 220–228 (2018)CrossRefGoogle Scholar
  379. 379.
    W. Zhang, Z.-Y. Wu, H.-L. Jiang, S.-H. Yu, Nanowire-directed templating synthesis of metal−organic framework nanofibers and their derived porous doped carbon nanofibers for enhanced electrocatalysis. J. Am. Chem. Soc. 136, 14385–14388 (2014)CrossRefGoogle Scholar
  380. 380.
    J. Shuia, C. Chen, L. Grabstanowicza, D. Zhaod, D.-J. Liu, Highly efficient nonprecious metal catalyst prepared with metal–organic framework in a continuous carbon nanofibrous network. PNAS 112(34), 10629–10634 (2015)CrossRefGoogle Scholar
  381. 381.
    C. Wang, C. Liu, J. Li, et al., Electrospun metal–organic framework derived hierarchical carbon nanofibers with high performance for supercapacitors. Chem. Commun. 53, 1751–1754 (2017)CrossRefGoogle Scholar
  382. 382.
    D.A. Bulushev, M. Zacharska, A.S. Lisitsyn, et al., Single atoms of Pt-group metals stabilized by N‑doped carbon nanofibers for efficient hydrogen production from formic acid. ACS Catal. 6, 3442–3451 (2016)CrossRefGoogle Scholar
  383. 383.
    N. Thi Xuyen, H. Kyung Jeong, G. Kim, et al., Hydrolysis-induced immobilization of Pt(acac)2 on polyimide-based carbon nanofiber mat and formation of Pt nanoparticles. J. Mater. Chem. 19, 1283–1288 (2009)CrossRefGoogle Scholar
  384. 384.
    N. Isoaho, S. Sainio, N. Wester, et al., Pt-grown carbon nanofibers for detection of hydrogen peroxide. RSC Adv. 8, 12742–12751 (2018)CrossRefGoogle Scholar
  385. 385.
    H. Lu, W. Fan, Y. Huang, T. Liu, Lotus root-like porous carbon nanofiber anchored with CoP nanoparticles as all-pH hydrogen evolution electrocatalysts. Nano Res. 11(3), 1274–1284 (2018)CrossRefGoogle Scholar
  386. 386.
    Z.-D. Yang, Z.-W. Chang, Q. Zhang, K. Huang, X.-B. Zhang, Decorating carbon nanofibers with Mo2C nanoparticles towards hierarchically porous and highly catalytic cathode for high-performance Li-O2 batteries. Sci. Bull. 63, 433–440 (2018)CrossRefGoogle Scholar
  387. 387.
    A. Jagadale, X. Zhou, D. Blaisdell, S. Yang, Carbon nanofibers (CNFs) supported cobalt- nickel sulfide (CoNi2S4) nanoparticles hybrid anode for high performance lithium ion capacitor. Sci. Rep. 8, 1602 (2018)CrossRefGoogle Scholar
  388. 388.
    Z. Said, A. Allagui, M. Ali Abdelkareem, H. Alawadhi, K. Elsaid, Acid-functionalized carbon nanofibers for high stability, thermoelectrical and electrochemical properties of nanofluids. J. Colloid Interface Sci. 520, 50–57 (2018)CrossRefGoogle Scholar
  389. 389.
    B. Zhou, W. Chen, Preparation and catalytic activity of carbon nanofibers anchored metallophthalocyanine in decomposing acid orange 7. Materials 7, 1370–1383 (2014)CrossRefGoogle Scholar
  390. 390.
    J. Cai, W. Li, P. Zhao, J. Yu, Z. Yang, Low-cost and high-performance electrospun carbon nanofiber film anodes. Int. J. Electrochem. Sci. 13, 2934–2944 (2018)CrossRefGoogle Scholar
  391. 391.
    M. Pingot, B. Szadkowski, M. Zaborski, Effect of carbon nanofibers on mechanical and electrical behaviors of acrylonitrile‐butadiene rubber composites. Polym. Adv. Technol. 29, 1661–1669 (2018)CrossRefGoogle Scholar
  392. 392.
    B. Kumar, M. Asadi, D. Pisasale, et al., Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction. Nat. Commun. 4, 2819 (2013)CrossRefGoogle Scholar
  393. 393.
    Nanocarbon studies in Russia: from fullerenes to nanotubes and nanodiamonds. A. Ya. Vul’ and V. I. Sokolov. Nanotechnol. Russ., 2009, 4, 7–8, 397–414Google Scholar
  394. 394.
    O.A. Shenderova, V.V. Zhirnov, D.W. Brenner, Carbon nanostructures. Crit. Rev. Solid State Mater. Sci. 27(3–4), 227–356 (2002)CrossRefGoogle Scholar
  395. 395.
    V.V. Danilenko, On the history of the discovery of nanodiamond synthesis. Phys. Solid State 46(4), 595–599 (2004)CrossRefGoogle Scholar
  396. 396.
    M. Castellino, Nanocrystalline Diamonds: Study and Characterization of Diamond Surface for Biosensoring Applications (LAP LAMBERT Academic Publishing, 2011), Riga, Latvia, p. 196Google Scholar
  397. 397.
    O.A. Shenderova, D.M. Gruen, Ultrananocrystalline Diamond: Synthesis, Properties and Applications (Micro and Nano Technologies), 2nd edn. (William Andrew, San Diego, 2012), p. 584Google Scholar
  398. 398.
    O.A. Williams, M. Nesladek, M. Daenen, S. Michaelson, A. Hoffman, E. Osawa, K. Haenen, R.B. Jackman, Growth, electronic properties and applications of nanodiamond. Diam. Relat. Mater. 17(7–10), 1080–1088 (2008)CrossRefGoogle Scholar
  399. 399.
    G.R. Huss, Meteoritic nanodiamonds: messengers from the stars. Elements 1(2), 97–100 (2005)CrossRefGoogle Scholar
  400. 400.
    A.P. Jones, L.B. d’Hendecourt, Interstellar nanodiamonds. Astron. Soc. Pac. Conf. Ser. 309, 589–601 (2004)Google Scholar
  401. 401.
    V.N. Mochalin, O. Shenderova, D. Ho, Y. Gogotsi, The properties and applications of nanodiamonds. Nat. Nanotechnol. 7, 11–23 (2012)CrossRefGoogle Scholar
  402. 402.
    D. Ho, C.-H. K. Wang, E. K.-H. Chow (eds.), Nanodiamonds: the intersection of nanotechnology, drug development, and personalized medicine. Sci. Adv. 1, e1500439 (2015). 14 ppGoogle Scholar
  403. 403.
    M. Ullah, A. Kausar, M. Siddiq, M. Subhan, M. Abid Zia, Reinforcing effects of modified nanodiamonds on the physical properties of polymer-based nanocomposites: a review. Polym.-Plast. Technol. Eng. 54(8), 861–879 (2015)CrossRefGoogle Scholar
  404. 404.
    A. Shakun, J. Vuorinen, M. Hoikkanen, M. Poikelispää, A. Das, Hard nanodiamonds in soft rubbers: past, present and future – a review. Compos. A: Appl. Sci. Manuf. 64, 49–69 (2014)CrossRefGoogle Scholar
  405. 405.
    M. Valinhos Barcelos, G. Rodrigues de Almeida Neto, F. Moreira Almeida, R. Jesus Sánchez Rodríguez, J.G. Cabrera Gomez, Thermo-mechanical properties of P(HB-HV) nanocomposites reinforced by nanodiamonds. Mat. Res. 20(2) (2017). Scholar
  406. 406.
    A. Krueger, D. Lang, Functionality is key: recent progress in the surface modification of nanodiamond. Adv. Funct. Mater. 22(5), 890–906 (2012)CrossRefGoogle Scholar
  407. 407.
    R. Basu, N. Skaggs, S. Shalov, P. Brereton, Evidence of nanodiamond-self-assembly in a liquid crystal, and the consequent impacts on the liquid crystal properties. AIP Adv. 7, 075008 (2017)CrossRefGoogle Scholar
  408. 408.
    S.Y. Ong, M. Chipaux, A. Nagl, R. Schirhagl, Shape and crystallographic orientation of nanodiamonds for quantum sensing. Phys. Chem. Chem. Phys. 19, 10748–10752 (2017)CrossRefGoogle Scholar
  409. 409.
    A.P. Hopper, J.M. Dugan, A.A. Gill, O.J.L. Fox, P.W. May, J.W. Haycock, F. Claeyssens, Amine functionalized nanodiamond promotes cellular adhesion, proliferation and neurite outgrowth. Biomed. Mater. 9, 045009 (2014). (11 pp)CrossRefGoogle Scholar
  410. 410.
    K. Turcheniuk, V.N. Mochalin, Biomedical applications of nanodiamond. Nanotechnology 28(25) (2017). Scholar
  411. 411.
    D.E.J. Waddington, M. Sarracanie, H. Zhang, et al., Nanodiamond-enhanced MRI via in situ hyperpolarization. Nat. Comm. 8, 15118 (2017)CrossRefGoogle Scholar
  412. 412.
    R.J. Edgington, A. Thalhammer, J.O. Welch, A. Bongrain, P. Bergonzo, E. Scorsone, R.B. Jackman, R. Schoepfer, Patterned neuronal networks using nanodiamonds and the effect of varying nanodiamond properties on neuronal adhesion and outgrowth. J. Neural Eng. 10, 056022 (2013). (9 pp)CrossRefGoogle Scholar
  413. 413.
    G. Rodrigues de Almeida Neto, M. Valinhos Barcelos, R.J. Sánchez Rodríguez, J.G. Cabrera Gomez, Influence of encapsulated nanodiamond dispersion on P(3HB) biocomposites properties. Mater. Res. 20(3), 768–774 (2017)CrossRefGoogle Scholar
  414. 414.
    A. Pentecost, C.E. Witherel, Y. Gogotsi, K. Spiller, Anti-inflammatory effects of octadecylamine-functionalized nanodiamond on primary human macrophages. Biomater. Sci. 5, 2131–2143 (2017)CrossRefGoogle Scholar
  415. 415.
    J. Giammarco, V.N. Mochalin, J. Haeckel, Y. Gogotsi, The adsorption of tetracycline and vancomycin onto nanodiamond with controlled release. J. Colloid Interface Sci. 468, 253–261 (2016)CrossRefGoogle Scholar
  416. 416.
    A. Knapinska, D. Tokmina-Roszyk, S. Amar, M. Tokmina-Roszyk, V.N. Mochalin, Y. Gogotsi, P. Cosme, A.C. Terentis, G.B. Fields, Solid-phase synthesis, characterization, and cellular activities of collagen-model nanodiamond-peptide conjugates. Biopolymers 104(3), 186–195 (2015)CrossRefGoogle Scholar
  417. 417.
    L. Zhao, Y. Nakae, H. Qin, T. Ito, T. Kimura, H. Kojima, L. Chan, N. Komatsu, Polyglycerol-functionalized nanodiamond as a platform for gene delivery: derivatization, characterization, and hybridization with DNA. Beilstein J. Org. Chem. 10, 707–713 (2014)CrossRefGoogle Scholar
  418. 418.
    E. Rej, T. Gaebel, T. Boele, D.E.J. Waddington, D.J. Reilly, Hyperpolarized nanodiamond with long spin-relaxation times. Nat. Commun. 6, 8459 (2015)CrossRefGoogle Scholar
  419. 419.
    E. Perevedentseva, Y.-C. Lin, M. Jani, C.-L. Cheng, Biomedical applications of nanodiamonds in imaging and therapy. Nanomedicine 8(12) (2013). Scholar
  420. 420.
    M. Montalti, A. Cantelli, G. Battistelli, Nanodiamonds and silicon quantum dots: ultrastable and biocompatible luminescent nanoprobes for long-term bioimaging. Chem. Soc. Rev. 44, 4853–4921 (2015)CrossRefGoogle Scholar
  421. 421.
    C. Gupta, D. Prakash, S. Gupta, Cancer treatment with nano-diamonds. Front. Biosci. Schol. 9, 62–70 (2017)CrossRefGoogle Scholar
  422. 422.
    T.-K. Ryu, G.-J. Lee, C.-K. Rhee, S.-W. Choi, Cellular uptake behavior of doxorubicin-conjugated nanodiamond clusters for efficient cancer therapy. Macromol. Biosci. 15(10), 1469–1475 (2015)CrossRefGoogle Scholar
  423. 423.
    A. Kausar, Nanodiamond: a multitalented material for cutting edge solar cell application. Mater. Res. Innov., 1–13 (2016). Scholar
  424. 424.
    G. Galli, Chapter 2. structure, stability and electronic properties of nanodiamonds, in Computer-Based Modeling of Novel Carbon Systems and Their Properties, Carbon Materials: Chemistry and Physics 3, ed. by L. Colombo, A. Fasolino (Eds), (Springer, Dordrecht, 2010)CrossRefGoogle Scholar
  425. 425.
    Z.H. Khan, M. Husain, Nanodiamond: synthesis, transport property, field emission and applications. Mater. Sci. Res. India 3(1a), 1–22 (2006)CrossRefGoogle Scholar
  426. 426.
    A. Tanaka, Tribology of carbon composites. Toraiborojisuto 54(1), 16–21 (2009)Google Scholar
  427. 427.
    X. Hu, M. Li, Z. Sun, Q. Wang, D. Fan, L. Chen, Research status and prospection of synthetic nanodiamonds. Guanli Gongchengban 31(2), 301–304 (2009). 317Google Scholar
  428. 428.
    E. Osawa, Nano carbon materials. Fullerenes and diamond. Seramikkusu 39(11), 892–909 (2004)Google Scholar
  429. 429.
    M.A. Quiroz Alfaro, U.A. Martinez Huitle, C.A. Martinez Huitle, Nanodiamantes. Ingenierias IX(33), 37–43 (2006)Google Scholar
  430. 430.
    R.A. Freitas Jr, A simple tool for positional diamond mechanosynthesis, and its method of manufacture. 2003-2004
  431. 431.
    R.A. Freitas Jr, How to make a nanodiamond. 2006
  432. 432.
    S. Kazi, A review article on nanodiamonds discussing their properties and applications. Int. J. Pharm. Sci. Invent. 3(7), 40–45 (2014)Google Scholar
  433. 433.
    W.W.-W. Hsiao, Y. Yung Hui, P.-C. Tsai, H.-C. Chang, Fluorescent nanodiamond: a versatile tool for long-term cell tracking, super-resolution imaging, and nanoscale temperature sensing. Acc. Chem. Res. 49(3), 400–407 (2016)CrossRefGoogle Scholar
  434. 434.
    H.M. Chaudhary, A.S. Duttagupta, K.R. Jadhav, S.V. Chilajwar, V.J. Kadam, Nanodiamonds as a new horizon for pharmaceutical and biomedical applications. Curr. Drug Deliv. 12(3), 271–281 (2015)CrossRefGoogle Scholar
  435. 435.
    D. Ho, Nanodiamonds: Applications in Biology and Nanoscale Medicine (Springer, NewYork, 2009), p. 380Google Scholar
  436. 436.
    O.A. Shenderova, D.M. Haber, Ultrananocrystalline Diamond: Synthesis, Properties, and Applications (William Andrew, San Diego, 2007), p. 620Google Scholar
  437. 437.
    H.-C. Chang, W.W.-W. Hsiao, M.-C. Su, Fluorescent Nanodiamonds, 1st edn. (Springer, New York, 2018)CrossRefGoogle Scholar
  438. 438.
    J.-C. Arnault, Nanodiamonds: Advanced Material Analysis, Properties and Applications (Micro and Nano Technologies) (Elsevier Science, Saint Louis, 2017), p. 504Google Scholar
  439. 439.
    D. Ho, Nanodiamonds: Applications in Biology and Nanoscale Medicine (Springer, New York, 2014), p. 286Google Scholar
  440. 440.
    O.A. Williams, Nanodiamond: RSC (Nanoscience & Nanotechnology Series) (Royal Society of Chemistry, Cambridge, 2014), p. 530CrossRefGoogle Scholar
  441. 441.
    A. Vul’, O. Shenderova, Detonation Nanodiamonds: Science and Applications, 1st edn. (Pan Stanford, Singapore, 2014), p. 346Google Scholar
  442. 442.
    C.-C. Teng, Nanodiamond Related Materials: Synthesis and Characterization (LAP LAMBERT Academic Publishing, Riga, Latvia, 2010), p. 100Google Scholar
  443. 443.
    V. Ligatchev, Nano- and Micro-Crystalline Diamond Films and Powders, UK ed. (Nova Science Pub Inc, New York, 2009), p. 92Google Scholar
  444. 444.
    S.C. Tjong, Properties of chemical vapor deposited nanocrystalline diamond and nanodiamond/amorphous carbon composite films, in Nanocomposite Thin Films and Coatings, (Imperial College Press, London, 2007), pp. 167–206CrossRefGoogle Scholar
  445. 445.
    N. Yang, H. Uetsuka, O.A. Williams, E. Osawa, N. Tokuda, C.E. Nebel, Vertically aligned diamond nanowires: fabrication, characterization, and application for DNA sensing. Phys. Status Solidi A 206(9), 2048–2056 (2009)CrossRefGoogle Scholar
  446. 446.
    X.-L. Kong, Nanodiamonds used as a platform for studying noncovalent interaction by MALDI-MS. Chinese J. Chem. 26(10), 1811–1815 (2008)CrossRefGoogle Scholar
  447. 447.
    C.J. Tang, A.J. Neves, J. Gracio, A.J.S. Fernandes, M.C. Carmo, A new chemical path for fabrication of nanocrystalline diamond films. J. Cryst. Growth 310(2), 261–265 (2008)CrossRefGoogle Scholar
  448. 448.
    M. Watanabe, H. Yusa, Introduction of advanced materials laboratory and some topics - from repletion of basic research to development of practical materials. Mater. Integration 15(9), 8–13 (2002)Google Scholar
  449. 449.
    Q. Yang, S. Yang, C. Xiao, A. Hirose, Transformation of carbon nanotubes to diamond in microwave hydrogen plasma. Mater. Lett. 61(11–12), 2208–2211 (2007)CrossRefGoogle Scholar
  450. 450.
    Y. Kimura, C. Kaito, Production of nanodiamond from carbon film containing silicon. J. Cryst. Growth 255(3–4), 282–285 (2003)CrossRefGoogle Scholar
  451. 451.
    J.A. West, J. Kennett, Nanodiamonds and diamond-like particles from carbonaceous material. PCT Int. Appl., 2009, 25 pp. WO 2009094481 A2 20090730 Application: WO 2009-US31731 20090122. Priority: US 2008–62350 20080125. CAN 151:227622 AN 2009:917817Google Scholar
  452. 452.
    V.Y. Dolmatov, M.V. Veretennikova, V.A. Marchukov, V.G. Sushchev, Currently available methods of industrial nanodiamond synthesis. Phys. Solid State 46(4), 611–615 (2004)CrossRefGoogle Scholar
  453. 453.
    D.M. Gruen, Ultrananocrystalline diamond films from fullerene precursors. In: Ōsawa E. (eds) Perspectives of Fullerene Nanotechnology. Springer, Dordrecht, 217–222 (2002)Google Scholar
  454. 454.
    S. Korablov, K. Yokosawa, D. Korablov, K. Tohji, N. Yamasaki, Hydrothermal formation of diamond from chlorinated organic compounds. Mater. Lett. 60(25–26), 3041–3044 (2006)CrossRefGoogle Scholar
  455. 455.
    Q. Chen, Z. Lou, Q. Wang, C. Chen, Recent progress in diamond synthesis. Wuli 34(3), 199–204 (2005)Google Scholar
  456. 456.
    K.G. Nickel, T. Kraft, Y.G. Gogotsi, Hydrothermal synthesis of diamond. Handb. Ceram. Hard Mater. 1, 374–389 (2000)CrossRefGoogle Scholar
  457. 457.
    B. Basavalingu, K. Byrappa, P. Madhusudan, Hydrothermal synthesis of nano-sized crystals of diamond under sub-natural conditions. J. Geol. Soc. India 69(3), 665–670 (2007)Google Scholar
  458. 458.
    B. Basavalingu, K. Byrappa, M. Yoshimura, P. Madhusudan, A.S. Dayananda, Hydrothermal synthesis and characterization of micro to nano sized carbon particles. J. Mater. Sci. 41(5), 1465–1469 (2006)CrossRefGoogle Scholar
  459. 459.
    N. Yamasaki, K. Yokosawa, S. Korablov, K. Tohjt, Synthesis of diamond particles under alkaline hydrothermal conditions. Diffus. Defect Data--Solid State Data, Pt B: Solid State Phenom. 114(High Pressure Technology of Nanomaterials), 271–276 (2006)CrossRefGoogle Scholar
  460. 460.
    S. Korablov, K. Yokosawa, D. Korablov, K. Tohji, N. Yamasaki, Hydrothermal formation of diamond from chlorinated organic compounds. Mater. Lett. 60(25–26), 3041–3044 (2006)CrossRefGoogle Scholar
  461. 461.
    J. Lu, J. Zang, Y. Wang, Y. Xu, X. Xu, Preparation and characterization of Zirconia-coated nanodiamonds as a Pt catalyst support for methanol electro-oxidation. Nanomater. (Basel). 6(12), 234 (2016)CrossRefGoogle Scholar
  462. 462.
    Z.-X. Wang, Q.-Y. Pan, J.-G. Hu, Z.-Z. Yong, Y.-Q. Hu, Z.-Y. Zhu, Synthesis of diamond nanocrystals by double ions (40Ar+,C2H6+) bombardment. Wuli Xuebao 56(8), 4829–4833 (2007)Google Scholar
  463. 463.
    I. Gouzman, O. Fuchs, Y. Lifshitz, S. Michaelson, A. Hoffman, Nanodiamond growth on diamond by energetic plasma bombardment. Diam. Relat. Mater. 16(4–7), 762–766 (2007)CrossRefGoogle Scholar
  464. 464.
    Y. Yao, M.Y. Liao, Z.G. Wang, Y. Lifshitz, S.T. Lee, Nucleation of diamond by pure carbon ion bombardment - a transmission electron microscopy study. Appl. Phys. Lett. 87(6), 063103/1–063103/3 (2005)CrossRefGoogle Scholar
  465. 465.
    Y. Yao, M.Y. Liao, T. Kohler, T. Frauenheim, R.Q. Zhang, Z.G. Wang, Y. Lifshitz, S.T. Lee, Diamond nucleation by energetic pure carbon bombardment. Phys. Rev. B: Condens. Matter Mater. Phys. 72(3), 035402/1–035402/5 (2005)CrossRefGoogle Scholar
  466. 466.
    D. Amans, A.-C. Chenus, G. Ledoux, C. Dujardin, C. Reynaud, O. Sublemontier, K. Masenelli-Varlot, O. Guillois, Nanodiamond synthesis by pulsed laser ablation in liquids. Diam. Relat. Mater. 18(2–3), 177–180 (2009)CrossRefGoogle Scholar
  467. 467.
    J. Sun, Q. Zhai, X. Yang, Y. Lei, X. Du, J. Yang, Synthesis of diamond nanopowders from carbon powders by laser bombarding. 2005, 6 pp. CN 1663909 A 20050907 Patent written in Chinese. Application: CN 2004–10093973 20041220. Priority: CAN 144:152787 AN 2005:1332207Google Scholar
  468. 468.
    J. Sun, Q. Zhai, H. Du, L. Jiang, Y. Lei, X. Yang, X. Du, Effects of carbon material structures on the nanodiamond synthesis by laser irradiation. Nami Jishu Yu Jingmi Gongcheng 4(3), 217–220 (2006)Google Scholar
  469. 469.
    C.X. Wang, P. Liu, H. Cui, G.W. Yang, Nucleation and growth kinetics of nanocrystals formed upon pulsed-laser ablation in liquid. Appl. Phys. Lett. 87(20), 201913/1–201913/3 (2005)Google Scholar
  470. 470.
    P. Liu, C. Wang, J. Chen, N. Xu, G. Yang, N. Ke, J. Xu, Localized nanodiamond crystallization and field emission performance improvement of amorphous carbon upon laser irradiation in liquid. J. Phys. Chem. C 113(28), 12154–12161 (2009)CrossRefGoogle Scholar
  471. 471.
    Y.F. Lu, S.M. Huang, Z. Sun, Raman spectroscopy of phenylcarbyne polymer films under pulsed green laser irradiation. J. Appl. Phys. 87(2), 945–951 (2000)CrossRefGoogle Scholar
  472. 472.
    V.K. Goncharov, D.R. Ismailov, O.R. Lyudchik, S.A. Petrov, M.V. Puzyrev, Determination of the optical bandgap for diamond-like carbon films obtained by laser plasma deposition. J. Appl. Spectrosc. 74(5), 704–709 (2007)CrossRefGoogle Scholar
  473. 473.
    V.N. Varyukhin, R.V. Shalaev, A.M. Prudnikov, Properties of diamond films obtained in a glow discharge under laser irradiation. Funct. Mater. 9(1), 111–114 (2002)Google Scholar
  474. 474.
    O.V. Kharissova, M. Osorio, M. Garza, B.I. Kharisov, Study of bismuth nanoparticles and nanotubes obtained by microwave heating. Synth. React. Inorg., Met.-Org., Nano-Met. Chem. 38(7), 567–572 (2008)CrossRefGoogle Scholar
  475. 475.
    O.V. Kharissova, M.G. Castanon, J.L. Hernandez Pinero, U.O. Mendez, B.I. Kharisov, Fast production method of Fe-filled carbon nanotubes. Mech. Adv. Mater. Struct. 16(1), 63–68 (2009)CrossRefGoogle Scholar
  476. 476.
    M.G. Rodriguez, O.V. Kharissova, U. Ortiz-Mendez, Formation of boron carbide nanofibers and nanobelts from heated by microwave. Rev. Adv. Mat. Sci. 7(1), 55–60 (2004)Google Scholar
  477. 477.
    D. Lewis III, M.A. Imam, A.W. Fliflet, R.W. Bruce, L.K. Kurihara, A.K. Kinkead, M. Lombardi, S.H. Gold, Recent advances in microwave and millimeter-wave processing of materials. Mater. Sci. Forum 539-543(Pt. 4, THERMEC 2006), 3249–3254 (2007)CrossRefGoogle Scholar
  478. 478.
    X.-T. Yan, X. Yongdong, Chemical Vapour Deposition: An Integrated Engineering Design for Advanced Materials (Engineering Materials and Processes) (Springer, London, 2009), p. 327Google Scholar
  479. 479.
    H.O. Pierson, Handbook of chemical vapor deposition, in Second Edition: Principles, Technology and Applications (Materials Science and Process Technology Series), 2nd edn., (William Andrew, Norwich, 2000), p. 506Google Scholar
  480. 480.
    P George, Chemical Vapor Deposition. VDM Verlag Dr. Mueller E.K. (2008), p .112Google Scholar
  481. 481.
    F.J. Gordillo-Vazquez, C. Gomez-Aleixandre, J.M. Albella, Plasma chemistry in the CVD synthesis of nanodiamond films. Proc. – Electrochem. Soc. 2005-09(EUROCVD-15), 415–426 (2005)Google Scholar
  482. 482.
    C.-R. Lin, D.-H. Wei, M.-K. BenDao, et al., Effects of surface modification of nanodiamond particles for nucleation enhancement during its film growth by microwave plasma jet chemical vapour deposition technique. Adv. Mater. Sci. Eng. 2014, 937159 (2014). 5 ppGoogle Scholar
  483. 483.
    V.S. Purohit, D. Jain, V.G. Sathe, V. Ganesan, S.V. Bhoraskar, Synthesis of nanocrystalline diamonds by microwave plasma. J. Phys. D: Appl. Phys. 40(6), 1794–1800 (2007)CrossRefGoogle Scholar
  484. 484.
    M. Miyake, A. Ogino, M. Nagatsu, Characteristics of nano-crystalline diamond films prepared in Ar/H2/CH4 microwave plasma. Thin Solid Films 515(9), 4258–4261 (2007)CrossRefGoogle Scholar
  485. 485.
    S. Chowdhury, J. Borham, S.A. Catledge, A.W. Eberhardt, P.S. Johnson, Y.K. Vohra, Synthesis and mechanical wear studies of ultra smooth nanostructured diamond (USND) coatings deposited by microwave plasma chemical vapor deposition with He/H2/CH4/N2 mixtures. Diam. Relat. Mater. 17(4–5), 419–427 (2008)CrossRefGoogle Scholar
  486. 486.
    J.E. Butler, A.V. Sumant, The CVD of nanodiamond materials. Chem. Vap. Depos. 14(7–8), 145–160 (2008)CrossRefGoogle Scholar
  487. 487.
    W. Chen, X. Lu, Q. Yang, C. Xiao, R. Sammynaiken, J. Maley, A. Hirose, Effects of gas flow rate on diamond deposition in a microwave plasma reactor. Thin Solid Films 515(4), 1970–1975 (2006)CrossRefGoogle Scholar
  488. 488.
    A. Nanba, T. Imai, Y. Nishibayashi, Y. Yamamoto, K. Meguro, Microwave plasma CVD apparatus. JP 2005–218732 20050728. Priority: CAN 146:194557 AN 2007:143909Google Scholar
  489. 489.
    O. Ariyada, S. Sato, H. Suzuki, Microwave chemical vapor deposition apparatus for preparation of diamond, 2006, 12 pp. JP 2006083405 A 20060330 Patent written in Japanese. Application: JP 2004–266462 20040914. Priority: CAN 144:321896 AN 2006:292991Google Scholar
  490. 490.
    V. Pichot, M. Comet, E. Fousson, D. Spitzer, Detonation synthesis of nanodiamonds: their synthesis and use in pyrotechnics. Actual. Chim. 329, 8–13 (2009)Google Scholar
  491. 491.
    V.Y. Dolmatov, The structure of a cluster of a detonation-produced nanodiamond. Sverkhtverdye Materialy 1, 28–32 (2005)Google Scholar
  492. 492.
    V.Y. Dolmatov, Detonation-synthesis nanodiamonds: synthesis, structure, properties and applications. Russ. Chem. Rev. 76(4), 339–360 (2007)CrossRefGoogle Scholar
  493. 493.
    V.Y. Dolmatov, Modern commercial technology for production of detonation nano-diamonds and the area of their application Report 1. Sverkhtverdye Materialy (3), 10–21 (2006)Google Scholar
  494. 494.
    V.Y. Dolmatov, Modern industrial methods for manufacture of detonation derived nanodiamonds and main areas of their use. Part 1. Sverkhtverdye Materialy (2), 18–29 (2006)Google Scholar
  495. 495.
    V.Y. Dolmatov, T. Fujimura, Physical and chemical problems of modification of detonation nanodiamond surface properties. NATO Sci. Ser., II: Math., Phys. Chem. 192(Synthesis, Properties and Applications of Ultrananocrystalline Diamond), 217–230 (2005)CrossRefGoogle Scholar
  496. 496.
    J.B. Donnet, E. Fousson, T.K. Wang, M. Samirant, C. Baras, M. Pontier Johnson, Dynamic synthesis of diamonds. Diam. Relat. Mater. 9(3–6), 887–892 (2000)CrossRefGoogle Scholar
  497. 497.
    E. Osawa, Recent progress and perspectives in single-digit nanodiamond. Diam. Relat. Mater. 16(12), 2018–2022 (2007)CrossRefGoogle Scholar
  498. 498.
    E. Osawa, Disintegration and purification of crude aggregates of detonation nanodiamond. A few remarks on nano methodology. NATO Sci. Ser., II: Math., Phys. Chem. 192(Synthesis, Properties and Applications of Ultrananocrystalline Diamond), 231–240 (2005)CrossRefGoogle Scholar
  499. 499.
    V.M. Titov, B.P. Tolochko, K.A. Ten, L.A. Lukyanchikov, P.I. Zubkov, The formation kinetics of detonation nanodiamonds. NATO Sci. Ser., II: Math., Phys. Chem. 192(Synthesis, Properties and Applications of Ultrananocrystalline Diamond), 169–180 (2005)CrossRefGoogle Scholar
  500. 500.
    A.P. Puzyr, V.S. Bondar, Production of nanodiamonds with an increased colloidal stability by using an explosion synthesis. 2005, RU 2252192 C2 20050520 Patent written in Russian. Application: RU 2003–119416 20030626. Priority: CAN 142:448964 AN 2005:428972Google Scholar
  501. 501.
    L. Fang, H. Ohfuji, T. Irifune, A novel technique for the synthesis of nanodiamond powder. J. Nanomater. 2013, 201845 (2013). 4 pp.Google Scholar
  502. 502.
    E. Nakanishi, K. Matsui, C. Yamaguchi, H. Nishino, C. Kurusu, Manufacture of functional carbon materials, 2000, 5 pp. JP 2000109310 A 20000418 Patent written in Japanese. Application: JP 99-218782 19990802. Priority: JP 98-219197 19980803. CAN 132:253156 AN 2000:247376Google Scholar
  503. 503.
    A.K. Khachatryan, S.G. Aloyan, P.W. May, R. Sargsyan, V.A. Khachatryan, V.S. Baghdasaryan, Graphite-to-diamond transformation induced by ultrasound cavitation. Diam. Relat. Mater. 17(6), 931–936 (2008)CrossRefGoogle Scholar
  504. 504.
    S.K. Gordeev, S.B. Korchagina, Method for preparation of nanodiamond powders for producing stable suspensions. 2007, 3 pp. RU 2302994 C2 20070720 Patent written in Russian. Application: RU 2004–121069 20040701. Priority: CAN 147:191800 AN 2007:789603Google Scholar
  505. 505.
    L.-J. Chen, N.-H. Tai, C.-Y. Lee, I.-N. Lin, Effects of pretreatment processes on improving the formation of ultrananocrystalline diamond. J. Appl. Phys. 101(6), 064308/1–064308/6 (2007)Google Scholar
  506. 506.
    K. Hanada, K. Matsuzaki, T. Sano, Nanocrystalline diamond films fabricated by sol-gel technique. Surf. Sci. 601(18), 4502–4505 (2007)CrossRefGoogle Scholar
  507. 507.
    S. Iijima, Process and apparatus for manufacture of diamond powder in nanometer range by size reduction. 1992, 4 pp. JP 04132606 A 19920506 Heisei. Patent written in Japanese. Application: JP 90–254415 19900925. Priority: CAN 117:153818 AN 1992:553818Google Scholar
  508. 508.
    J. Adler, Y. Gershon, T. Mutat, A. Sorkin, E. Warszawski, R. Kalish, Y. Yaish, Visualizing nanodiamond and nanotubes with AViz. Springer Proc. Phys. 123(Computer Simulation Studies in Condensed-Matter Physics XIX), 56–60 (2009)CrossRefGoogle Scholar
  509. 509.
    J. Adler, P. Pine, Visualization techniques for modelling carbon allotropes. Comput. Phys. Commun. 180(4), 580–582 (2009)CrossRefGoogle Scholar
  510. 510.
    M. El Bojaddaini, H. Chatei, M. El Hammouti, H. Robert, J. Bougdira, Modeling of a pulsed microwave plasma discharge in view of diamond film synthesis. Los. Alamos Natl. Lab., Prepr. Arch., Phys. 156 (2007). arXiv:0711.0845v1 [physics.soc-ph]Google Scholar
  511. 511.
    A.A. Fokin, P.R. Schreiner, Band gap tuning in nanodiamonds: first principle computational studies. Mol. Phys. 107(8–12), 823–830 (2009)CrossRefGoogle Scholar
  512. 512.
    A.S. Barnard, S.P. Russo, I.K. Snook, Modeling of stability and phase transformations in zero- and one-dimensional nanocarbon systems, in Handbook of Theoretical and Computational Nanotechnology, ed. by M. Rieth, W. Schommers (Eds), American Scientific Publishers, Valencia, California, vol. 9, (2006), pp. 573–622Google Scholar
  513. 513.
    A.S. Barnard, S.P. Russo, I.K. Snook, Simulation and bonding of dopants in nanocrystalline diamond. J. Nanosci. Nanotech. 5(9), 1395–1407 (2005)CrossRefGoogle Scholar
  514. 514.
    C.X. Wang, Y.H. Yang, N.S. Xu, G.W. Yang, Thermodynamics of diamond nucleation on the nanoscale. J. Am. Chem. Soc. 126(36), 11303–11306 (2004)CrossRefGoogle Scholar
  515. 515.
    A.S. Barnard, S.P. Russo, I.K. Snook, Modeling of stability and phase transformations in quasi-zero dimensional nanocarbon systems. J. Comput. Theor. Nanosci. 2(2), 180–201 (2005)CrossRefGoogle Scholar
  516. 516.
    L. La Torre Riveros, D.A. Tryk, C.R. Cabrera, Chemical purification and characterization of diamond nanoparticles for electrophoretically coated electrodes. Rev. Adv. Mater. Sci. 10(3), 256–260 (2005)Google Scholar
  517. 517.
    N.V. Novikov, G.P. Bogatyreva, G.F. Nevstruev, G.D. Il'nitskaya, M.N. Voloshin, Magnetic methods of purification control of nanodiamond powders. Phys. Solid State (Translation of Fizika Tverdogo Tela (Sankt-Peterburg)) 46(4), 672–674 (2004)Google Scholar
  518. 518.
    K. Lin, S. Hou, B. Ma, Effect of ultrasonic-dispersion for diamond powder purification. Jingangshi Yu Moliao Moju Gongcheng 6, 9–12 (2007)Google Scholar
  519. 519.
    S. Liu, J. Liu, P. Li, Y. Li, Y. Shen, Process for purification of diamond by electrolysis. 2007, 7 pp. CN 101049929 A 20071010 Patent written in Chinese. Application: CN 2007–10054424 20070518Google Scholar
  520. 520.
    A.G. Ovcharenko, A.V. Ignatchenko, R.R. Sataev, P.M. Brylyakov, Purification of ultradispersed diamond by removal of soluble and adsorbed impurities using electric field. 1996, SU 1815933 A1 19960620 Patent written in Russian. Application: SU 90–4855039 19900727. Priority: CAN 125:333282 AN 1996:729518Google Scholar
  521. 521.
    S.I. Dolgaev, N.A. Kirichenko, L.A. Kulevskii, E.N. Lubnin, A.V. Simakin, G.A. Shafeev, Laser purification of ultradispersed diamond in aqueous solution. Quantum Electron 34(9), 860–864 (2004)CrossRefGoogle Scholar
  522. 522.
    Yu.A. Doynikov, A.F. Makhrachev, K.K. Kurbatov, I.V. Makarskii, E.I. Adodin, S.A. Yagupov, L.G. Tarasova, E.G. Kovalenko, Method for purification of diamonds. 2009, 7 pp. RU 2367601 C1 20090920 Patent written in Russian. Application: RU 2007–147784 20071225. Priority: CAN 151:384616 AN 2009:1153611Google Scholar
  523. 523.
    H. Zeng, X. An, Method for purifying diamond nanoparticle with Ce salt. 2004, 11 pp. CN 1480252 A 20040310 Patent written in Chinese. Application: CN 2003–139849 20030718. Priority: CAN 142:357372 AN 2005:20996Google Scholar
  524. 524.
    I.L. Petrov, Yu.A. Skryabin, O.A. Shenderova, Nanodiamond material, method and device for purifying and modifying a nanodiamond. 2008, 21 pp. Patent written in Russian. Application: WO 2008-RU313 20080520. Priority: RU 2007–118553 20070521Google Scholar
  525. 525.
    K. Lin, Y. Pan, S. Hou, H. Xiao, B. Ma, Discussion on purification techniques of synthetic diamond. Diamond and Abrasives Engineering (5), 77–78 (2005)Google Scholar
  526. 526.
    D.F. Johnson, J.M. Mullin, W.D. Mattson, High-velocity collisions of nanodiamond. J. Phys. Chem. C 121(2), 1140–1145 (2017)CrossRefGoogle Scholar
  527. 527.
    M. Dubois, K. Guerin, E. Petit, N. Batisse, A. Hamwi, N. Komatsu, J. Giraudet, P. Pirotte, F. Masin, Solid-state NMR study of nanodiamonds produced by the detonation technique. J. Phys. Chem. C 113(24), 10371–10378 (2009)CrossRefGoogle Scholar
  528. 528.
    A.I. Shames, A.M. Panich, W. Kempinski, M.V. Baidakova, V.Y. Osipov, T. Enoki, A.Y. Vul, Magnetic resonance study of nanodiamonds. NATO Sci. Ser., II: Math., Phys. Chem. 192(Synthesis, Properties and Applications of Ultrananocrystalline Diamond), 271–282 (2005)CrossRefGoogle Scholar
  529. 529.
    A.C. Ferrari, J. Robertson, Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Philos. Trans. R. Soc. London, Ser. A 362(1824), 2477–2512 (2004)CrossRefGoogle Scholar
  530. 530.
    D. Ballutaud, F. Jomard, M.-A. Pinault, G. Frangieh, N. Simon, sp2 carbon phases in nanocrystalline diamond. ECS Trans. 13(2, Dielectrics for Nanosystems 3: Materials Science, Processing, Reliability, and Manufacturing), 377–383 (2008)CrossRefGoogle Scholar
  531. 531.
    B. Lesiak, L. Kövér, J. Tóth, et al., C sp2/sp3 hybridisations in carbon nanomaterials – XPS and (X)AES study. Appl. Surf. Sci. 452, 223–231 (2018)CrossRefGoogle Scholar
  532. 532.
    A.V. Shushkanova, L. Dubrovinsky, N. Dubrovinskaya, Y.A. Litvin, V.S. Urusov, Synthesis and in-situ Raman spectroscopy of nanodiamonds. Dokl. Phys. 53(1), 1–4 (2008)CrossRefGoogle Scholar
  533. 533.
    T. Hamilton, R.G. Wilks, M.V. Yablonskikh, Q. Yang, M.N. Foursa, A. Hirose, V.N. Vasilets, A. Moewes, Determining the sp2/sp3 bonding concentrations of carbon films using X-ray absorption spectroscopy. Can. J. Phys. 86(12), 1401–1407 (2008)CrossRefGoogle Scholar
  534. 534.
    X. Xiao, B.W. Sheldon, Y. Qi, A.K. Kothari, Intrinsic stress evolution in nanocrystalline diamond thin films with deposition temperature. Appl. Phys. Lett. 92(13), 131908/1–131908/3 (2008)CrossRefGoogle Scholar
  535. 535.
    C.J. Tang, M.A. Neto, M.J. Soares, A.J.S. Fernandes, A.J. Neves, J. Gracio, A comparison study of hydrogen incorporation among nanocrystalline, microcrystalline and polycrystalline diamond films grown by chemical vapor deposition. Thin Solid Films 515(7–8), 3539–3546 (2007)CrossRefGoogle Scholar
  536. 536.
    M.Y. Koroleva, D.V. Berdnikova, B.V. Spitsyn, E.V. Yurtov, Sedimentation stability of aqueous dispersions of nanodiamond agglomerates. Theor. Found. Chem. Eng. 43(4), 478–481 (2009)CrossRefGoogle Scholar
  537. 537.
    E. Osawa, D. Ho, H. Huang, M.V. Korobov, N.N. Rozhkova, Consequences of strong and diverse electrostatic potential fields on the surface of detonation nanodiamond particles. Diam. Relat. Mater. 18(5–8), 904–909 (2009)CrossRefGoogle Scholar
  538. 538.
    J. Houska, N.R. Panyala, E.M. Pena-Mendez, J. Havel, Mass spectrometry of nanodiamonds. Rapid Commun. Mass Spectrom. 23(8), 1125–1131 (2009)CrossRefGoogle Scholar
  539. 539.
    N. Brown, O. Hod, Controlling the electronic properties of nanodiamonds via surface chemical functionalization: a DFT study. J. Phys. Chem. C 118(10), 5530–5537 (2014)CrossRefGoogle Scholar
  540. 540.
    J.-Y. Raty, G. Galli, Structural and electronic properties of isolated nanodiamonds: a theoretical perspective. NATO Sci. Ser., II: Math., Phys. Chem. 192(Synthesis, Properties and Applications of Ultrananocrystalline Diamond), 15–24 (2005)CrossRefGoogle Scholar
  541. 541.
    J. Preclikova, F. Trojanek, A. Kromka, B. Rezek, B. Dzurnak, P. Maly, Ultrafast photoluminescence of nanocrystalline diamond films. Phys. Status Solidi A: Appl. Mater. Sci. 205(9), 2154–2157 (2008)CrossRefGoogle Scholar
  542. 542.
    I.I. Kulakova, Surface chemistry of nanodiamonds. Phys. Solid State (Translation of Fizika Tverdogo Tela (Sankt-Peterburg)) 46(4), 636–643 (2004)Google Scholar
  543. 543.
    J.C. Madaleno, M.K. Singh, E. Titus, G. Cabral, J. Gracio, L. Pereira, Electron field emission from patterned nanocrystalline diamond coated a-SiO2 micrometer-tip arrays. Appl. Phys. Lett. 92(2), 023113/1–023113/3 (2008)CrossRefGoogle Scholar
  544. 544.
    N. Aggadi, C. Arnas, F. Benedic, C. Dominique, X. Duten, F. Silva, K. Hassouni, D.M. Gruen, Structural and chemical characterization of soot particles formed in Ar/H2/CH4 microwave discharges during nanocrystalline diamond film synthesis. Diam. Relat. Mater. 15(4–8), 908–912 (2006)CrossRefGoogle Scholar
  545. 545.
    C. Popov, M. Novotny, M. Jelinek, S. Boycheva, V. Vorlicek, M. Trchova, W. Kulisch, Chemical bonding study of nanocrystalline diamond films prepared by plasma techniques. Thin Solid Films 506–507, 297–302 (2006)CrossRefGoogle Scholar
  546. 546.
    D. Slocombe, A. Porch, E. Bustarret, O.A. Williams, Microwave properties of nanodiamond particles. Appl. Phys. Lett. 102, 244102 (2013)CrossRefGoogle Scholar
  547. 547.
    A.S. Barnard, Stability of nanodiamond, in Ultrananocrystalline Diamond, (2006), Elsevier Science, New York, pp. 117–154CrossRefGoogle Scholar
  548. 548.
    S.K. Gordeev, S.B. Korchagina, On the stability of small sized nanodiamonds. J. Superhard Mater. 29(2), 124–125 (2007)CrossRefGoogle Scholar
  549. 549.
    Y.V. Butenko, P.R. Coxon, M. Yeganeh, A.C. Brieva, K. Liddell, V.R. Dhanak, L. Siller, Stability of hydrogenated nanodiamonds under extreme ultraviolet irradiation. Diam. Relat. Mater. 17(6), 962–966 (2008)CrossRefGoogle Scholar
  550. 550.
    G.-z. Wang, Review on correlation of diamond performance and nitrogen. Chaoying Cailiao Gongcheng 18(2), 33–36 (2006)Google Scholar
  551. 551.
    S. Turner, O.I. Lebedev, O. Shenderova, I.I. Vlasov, J. Verbeeck, G. Van Tendeloo, Determination of size, morphology, and nitrogen impurity location in treated detonation nanodiamond by transmission electron microscopy. Adv. Funct. Mater. 19(13), 2116–2124 (2009)CrossRefGoogle Scholar
  552. 552.
    I.I. Kulakova, Chemical properties of nanodiamond. NATO Sci. Ser., II: Math., Phys. Chem. 200(Innovative Superhard Materials and Sustainable Coatings for Advanced Manufacturing), 365–379 (2005)Google Scholar
  553. 553.
    W. Jiang, W.-y. Lu, B.-w. Yang, Y. Yao, S.-x. Zhang, Z.-l. Kou, Method for analyzing impurity elements in diamond by detecting combustion residues of diamond with EDS and SEM. Chaoying Cailiao Gongcheng 18(3), 6–11 (2006)Google Scholar
  554. 554.
    G.P. Bogatyreva, V.M. Maevskii, G.D. Il'nitskaya, G.F. Nevstruev, V.N. Tkach, I.N. Zaitseva, Impurities and inclusions in synthetic diamond powders of the AC4 and AC6 grades. Sverkhtverdye Materialy 4, 62–69 (2006)Google Scholar
  555. 555.
    L.V.C. Assali, W.V.M. Machado, R. Larico, J.F. Justo, Cobalt in diamond: an ab initio investigation. Diam. Relat. Mater. 16(4–7), 819–822 (2007)CrossRefGoogle Scholar
  556. 556.
    H.-F. Cheng, Y.-C. Lee, S.-J. Lin, Y.-P. Chou, T.T. Chen, I.-N. Lin, Current image tunneling spectroscopy of boron-doped nanodiamonds. J. Appl. Phys. 97(4), 044312/1–044312/5 (2005)CrossRefGoogle Scholar
  557. 557.
    C.X. Yan, Y. Dai, B.B. Huang, R. Long, M. Guo, Shallow donors in diamond: Be and Mg. Comput. Mater. Sci. 44(4), 1286–1290 (2009)CrossRefGoogle Scholar
  558. 558.
    H. Sakai, H. Kudou, M. Takahashi, M. Arifuku, Method for producing dispersion of nanodiamond in organic solvent. WO 2008-JP3215 20081106. Priority: JP 2007–290340 20071108. CAN 150:518067 AN 2009:587231Google Scholar
  559. 559.
    U. Maitra, A. Gomathi, C.N.R. Rao, Covalent and noncovalent functionalization and solubilisation of nanodiamond. J. Exp. Nanosci. 3(4), 271–278 (2008)CrossRefGoogle Scholar
  560. 560.
    D. Das, R.N. Singh, A review of nucleation, growth and low temperature synthesis of diamond thin films. Int. Mater. Rev. 52(1), 29–64 (2007)CrossRefGoogle Scholar
  561. 561.
    B. Chernomordik, S. Dumpala, Z.Q. Chen, M.K. Sunkara, Nanodiamond tipped and coated conical carbon tubular structures. Chem. Vap. Depos. 14(7–8), 256–262 (2008)CrossRefGoogle Scholar
  562. 562.
    S.J. Askari, G.C. Chen, F. Akhtar, F.X. Lu, Adherent and low friction nano-crystalline diamond film grown on titanium using microwave CVD plasma. Diam. Relat. Mater. 17(3), 294–299 (2008)CrossRefGoogle Scholar
  563. 563.
    S.J. Askari, G.C. Chen, F.X. Lu, Growth of polycrystalline and nanocrystalline diamond films on pure titanium by microwave plasma assisted CVD process. Mat. Res. Bull. 43(5), 1086–1092 (2008)CrossRefGoogle Scholar
  564. 564.
    W. Kulisch, C. Popov, V. Vorlicek, P.N. Gibson, G. Favaro, Nanocrystalline diamond growth on different substrates. Thin Solid Films 515(3), 1005–1010 (2006)CrossRefGoogle Scholar
  565. 565.
    K. Teii, T. Ikeda, Effect of enhanced C2 growth chemistry on nanodiamond film deposition. Appl. Phys. Lett. 90(11), 111504/1–111504/3 (2007)CrossRefGoogle Scholar
  566. 566.
    F.J. Gordillo-Vazquez, J.M. Albella, Distinct nonequilibrium plasma chemistry of C2 affecting the synthesis of nanodiamond thin films from C2H2 (1%)/H2/Ar-rich plasmas. J Appl. Phys. 94(9), 6085–6090 (2003)CrossRefGoogle Scholar
  567. 567.
    X.-H. Li, W.-T. Guo, X.-K. Chen, W. Gan, J.-P. Yang, R. Wang, S.-Z. Cao, Y. Rong, Effect of pressure on growth rate and quality of diamond films prepared by microwave plasma chemical vapor deposition. Wuli Xuebao 56(12), 7183–7187 (2007)Google Scholar
  568. 568.
    L. Wang, J. Lu, Q. Su, N. Wu, J. Liu, W. Shi, Y. Xia, [100]-textured growth of polycrystalline diamond films on alumina substrates by microwave plasma chemical vapor deposition. Mater Lett. 60(19), 2390–2394 (2006)CrossRefGoogle Scholar
  569. 569.
    C.S. Abreu, M.S. Amaral, F.J. Oliveira, A. Tallaire, F. Benedic, O. Syll, G. Cicala, J.R. Gomes, R.F. Silva, Tribological testing of self-mated nanocrystalline diamond coatings on Si3N4 ceramics. Surf. Coat. Technol. 200(22–23), 6235–6239 (2006)CrossRefGoogle Scholar
  570. 570.
    T. Enoki, K. Takai, V. Osipov, M. Baidakova, A. Vul, Nanographene and nanodiamond; new members in the nanocarbon family. Chem. Asian J. 4(6), 796–804 (2009)CrossRefGoogle Scholar
  571. 571.
    V.P. Grichko, O.A. Shenderova, Nanodiamond: designing the bio-platform, in Ultrananocrystalline Diamond, ed. by O.A. Shenderova, D.M. Gruen. (2006), Elsevier Science, New York, pp. 529–557CrossRefGoogle Scholar
  572. 572.
    K.V. Purtov, L.P. Burakova, A.P. Puzyr, V.S. Bondar, The interaction of linear and ring forms of DNA molecules with nanodiamonds synthesized by detonation. Nanotechnology 19(32), 325101/1–325101/3 (2008)CrossRefGoogle Scholar
  573. 573.
    N. Komatsu, Size separation and surface functionalization of nanodiamond particles aiming at their biomedical applications. Hyomen Kagaku 30(5), 273–278 (2009)CrossRefGoogle Scholar
  574. 574.
    C. Presti, J.G. Alauzun, D. Laurencin, P. Hubert Mutin, Surface functionalization of detonation nanodiamonds by phosphonic dichloride derivatives. Langmuir 30(30), 9239–9245 (2014)CrossRefGoogle Scholar
  575. 575.
    Z.C. Kennedy, C.A. Barrett, M.G. Warner, Direct functionalization of an acid-terminated nanodiamond with azide: enabling access to 4-substituted-1,2,3-triazole-functionalized particles. Langmuir 33(11), 2790–2798 (2017)CrossRefGoogle Scholar
  576. 576.
    O. Muller, V. Pichot, L. Merlat, L. Schmidlin, D. Spitzer, Nonlinear optical behavior of porphyrin functionalized nanodiamonds: an efficient material for optical power limiting. Appl. Opt. 55(14), 3801–3808 (2016)CrossRefGoogle Scholar
  577. 577.
    N. Alzate-Carvajal, E.V. Basiuk, V. Meza-Laguna, et al., Solvent-free one-step covalent functionalization of graphene oxide and nanodiamond with amines. RSC Adv. 6, 113596–113610 (2016)CrossRefGoogle Scholar
  578. 578.
    G. Ke, S. Huan, F.-l. Huang, Synthesis and dispersibility of derivative of 1,3-propanediamine with nanodiamond. Gongneng Cailiao 40(5), 863–866 (2009)Google Scholar
  579. 579.
    Z. Remes, A. Choukourov, J. Stuchlik, J. Potmesil, M. Vanecek, Nanocrystalline diamond surface functionalization in radio frequency plasma. Diam. Relat. Mater. 15(4–8), 745–748 (2006)CrossRefGoogle Scholar
  580. 580.
    V.N. Mochalin, Y. Gogotsi, Wet chemistry route to hydrophobic blue fluorescent nanodiamond. J. Am. Chem. Soc. 131(13), 4594–4595 (2009)CrossRefGoogle Scholar
  581. 581.
    Y. Liang, M. Ozawa, A. Krueger, A general procedure to functionalize agglomerating nanoparticles demonstrated on nanodiamond. ACS Nano 3(8), 2288–2296 (2009)CrossRefGoogle Scholar
  582. 582.
    W.S. Yeap, S. Chen, K.P. Loh, Detonation nanodiamond: an organic platform for the suzuki coupling of organic molecules. Langmuir 25(1), 185–191 (2009)CrossRefGoogle Scholar
  583. 583.
    M. Baidakova, A. Vul, New prospects and frontiers of nanodiamond clusters. J. Phys. D: Appl. Phys. 40(20), 6300–6311 (2007)CrossRefGoogle Scholar
  584. 584.
    A.P. Puzyr, V.S. Bondar, A.A. Bukayemsky, G.E. Selyutin, V.F. Kargin, Physical and chemical properties of modified nanodiamonds. NATO Sci. Ser., II: Math., Phys. Chem. 192(Synthesis, Properties and Applications of Ultrananocrystalline Diamond), 261–270 (2005)CrossRefGoogle Scholar
  585. 585.
    B.V. Spitsyn, M.N. Gradoboev, T.B. Galushko, T.A. Karpukhina, N.V. Serebryakova, I.I. Kulakova, N.N. Melnik, Purification and functionalization of nanodiamond. NATO Sci. Ser., II: Math., Phys. Chem. 192(Synthesis, Properties and Applications of Ultrananocrystalline Diamond), 241–252 (2005)CrossRefGoogle Scholar
  586. 586.
    V.N. Khabashesku, J.L. Margrave, E.V. Barrera, Functionalized carbon nanotubes and nanodiamonds for engineering and biomedical applications. Diam. Relat. Mater. 14(3–7), 859–866 (2005)CrossRefGoogle Scholar
  587. 587.
    V.N. Khabashesku, Y. Liu, J.L. Margrave, M.L. Margrave, Functionalization of nanodiamond powder through fluorination and subsequent derivatization reactions. U.S. Pat. Appl. Publ. 2005, 18 pp. US 2005158549 A1 20050721 Patent written in English. Application: US 2004-996869 20041124. Priority: US 2003-525588 20031126Google Scholar
  588. 588.
    Y. Liu, V.N. Khabashesku, N.J. Halas, Functionalization of nanodiamond powder and applications for glass surface diamond coatings. Abstracts of Papers, 229th ACS National Meeting, San Diego, CA, United States, March 13–17, 2005, 2005, COLL-581Google Scholar
  589. 589.
    Y. Liu, Z. Gu, J.L. Margrave, V.N. Khabashesku, Functionalization of nanoscale diamond powder: Fluoro-, Alkyl-, Amino-, and Amino Acid-Nanodiamond derivatives. Chem. Mater. 16(20), 3924–3930 (2004)CrossRefGoogle Scholar
  590. 590.
    Y. Liu, V.N. Khabashesku, N.J. Halas, Fluorinated nanodiamond as a wet chemistry precursor for diamond coatings covalently bonded to glass surface. J. Am. Chem. Soc. 127(11), 3712–3713 (2005)CrossRefGoogle Scholar
  591. 591.
    V.L. Kuznetsov, Y.V. Butenko, Nanodiamond graphitization and properties of onion-like carbon. NATO Sci. Ser., II: Math., Phys. Chem. 192(Synthesis, Properties and Applications of Ultrananocrystalline Diamond), 199–216 (2005)CrossRefGoogle Scholar
  592. 592.
    S.J. Kwon, J.G. Park, Theoretical analysis of the graphitization of a nanodiamond. J. Phys.: Condens. Matter 19, 386215 (2007)Google Scholar
  593. 593.
    J.-M. Leyssale, G.L. Vignoles, Molecular dynamics evidences of the full graphitization of a nanodiamond annealed at 1500K. Chem. Phys. Lett. 454(4–6), 299–304 (2008)CrossRefGoogle Scholar
  594. 594.
    Z. Qiao, J. Li, N. Zhao, C. Shi, P. Nash, Graphitization and microstructure transformation of nanodiamond to onion-like carbon. Scr. Mater. 54(2), 225–229 (2006)CrossRefGoogle Scholar
  595. 595.
    R. Narulkar, S. Bukkapatnam, L.M. Raff, R. Komanduri, Graphitization as a precursor to wear of diamond in machining pure iron: a molecular dynamics investigation. Comput. Mater. Sci. 45(2), 358–366 (2009)CrossRefGoogle Scholar
  596. 596.
    A. Brodka, L. Hawelek, A. Burian, S. Tomita, V. Honkimaeki, Molecular dynamics study of structure and graphitization process of nanodiamonds. J. Mol. Struct 887(1–3), 34–40 (2008)CrossRefGoogle Scholar
  597. 597.
    A.F. Azevedo, S.C. Ramos, M.R. Baldan, N.G. Ferreira, Graphitization effects of CH4 addition on NCD growth by first and second Raman spectra and by X-ray diffraction measurements. Diam. Relat. Mater. 17(7–10), 1137–1142 (2008)CrossRefGoogle Scholar
  598. 598.
    V.V. Kononenko, T.V. Kononenko, S.M. Pimenov, M.N. Sinyavskii, V.I. Konov, F. Dausinger, Effect of the pulse duration on graphitisation of diamond during laser ablation. Quantum Electron 35(3), 252–256 (2005)CrossRefGoogle Scholar
  599. 599.
    V.N. Strekalov, Graphitization of diamond stimulated by electron-hole recombination. Appl. Phys. A Mater. Sci. Process. 80(5), 1061–1066 (2005)CrossRefGoogle Scholar
  600. 600.
    I. Gouzman, S. Michaelson, A. Hoffman, Nanodiamond films deposited from energetic species: material characterization and mechanism of formation, in Ultrananocrystalline Diamond, ed. by O.A. Shenderova, D.M. Gruen (Eds), (2006), Elsevier Science, New York, pp. 229–272CrossRefGoogle Scholar
  601. 601.
    A. Hoffman, Mechanism and properties of nanodiamond films deposited by the DC-GD-CVD process. NATO Sci. Ser., II: Math., Phys. Chem. 192(Synthesis, Properties and Applications of Ultrananocrystalline Diamond), 125–144 (2005)CrossRefGoogle Scholar
  602. 602.
    W. Liu, C. Gu, The preparation and properties of nanostructured diamond films deposited by a hot-filament chemical vapor deposition method via continuous ion bombardment. Thin Solid Films 467(1–2), 4–9 (2004)CrossRefGoogle Scholar
  603. 603.
    M. Liao, F. Qin, J. Zhang, Z. Liu, S. Yang, Z. Wang, S.-T. Lee, Ion bombardment as the initial stage of diamond film growth. J. Appl. Phys. 89(3), 1983–1985 (2001)CrossRefGoogle Scholar
  604. 604.
    L. Grausova, L. Bacakova, A. Kromka, S. Potocky, M. Vanecek, M. Nesladek, V. Lisa, Nanodiamond as promising material for bone tissue engineering. J. Nanosci. Nanotech. 9(6), 3524–3534 (2009)CrossRefGoogle Scholar
  605. 605.
    S. Liu, W. Liu, L. Hei, W. Tang, F. Lv, Research on preparation of diamond coatings containing Si by microwave plasma chemical vapor deposition. Beijing Keji Daxue Xuebao 29(4), 408–412 (2007). 446.Google Scholar
  606. 606.
    W. Man, J. Wang, C. Wang, Z. Ma, S. Wang, L. Xiong, Low temperature synthesis of nanocrystalline diamond films deposited by microwave CVD. Wuhan Huagong Xueyuan Xuebao 28(4), 57–61 (2006)Google Scholar
  607. 607.
    E.A. Mujica, F. Piazza, J. De Jesus, B.R. Weiner, S.D. Wolter, G. Morell, Synthesis of unstrained failure-resistant nanocrystalline diamond films. Thin Solid Films 515(20–21), 7906–7910 (2007)CrossRefGoogle Scholar
  608. 608.
    J. Zhou, L. Wang, G. Liu, S. Ouyang, Method for synthesizing diamond nanofilm with microwave plasma at low temperature. 2007, 3 pp. CN 101024893 A 20070829 Patent written in Chinese. Application: CN 2007–10051244 20070111. Priority: CAN 147:353777 AN 2007:967265Google Scholar
  609. 609.
    V.V. Karbushev, I.I. Konstantinov, I.L. Parsamyan, V.G. Kulichikhin, V.A. Popov, T.F. George, Preparation of polymer-nanodiamond composites with improved properties. Adv. Mater. Res. 59(1st International Conference on New Materials for Extreme Environments, 2008), 275–278 (2009)Google Scholar
  610. 610.
    T. Sawaguchi, S. Yano, T. Hagiwara, H. Ito, Transparent heat-resistant polymer-nanodiamond composites. PCT Int. Appl. 2005, 20 pp. WO 2005085359 A1 20050915 Patent written in Japanese. Application: WO 2005-JP3887 20050307. Priority: JP 2004–64281 20040308Google Scholar
  611. 611.
    K. Eswar Prasad, B. Das, U. Maitra, U. Ramamurty, C.N.R. Rao, Extraordinary synergy in the mechanical properties of polymer matrix composites reinforced with 2 nanocarbons. Proc. Natl. Acad. Sci. U. S. A., Early Ed. 1-4, 4 (2009)Google Scholar
  612. 612.
    A.S. Gavrilov, A.P. Voznyakovskii, Rheological characteristics and relaxation properties of polymer-nanodiamond composites. Russ. J. Appl. Chem. 82(6), 1041–1045 (2009)CrossRefGoogle Scholar
  613. 613.
    V.Y. Dolmatov, Polymer-diamond composites based on detonation nanodiamonds. Report 3. Sverkhtverdye Materialy 4, 3–12 (2007)Google Scholar
  614. 614.
    I.I. Konstantinov, V.V. Karbushev, A.V. Semakov, V.G. Kulichikhin, Combining carbon and polymeric particles in an inert fluid as a promising approach to synthesis of nanocomposites. Russ. J. Appl. Chem. 82(3), 483–487 (2009)CrossRefGoogle Scholar
  615. 615.
    M. Mahdavi, N. Mahmoudi, F. Rezaie Anaran, A. Simchi, Electrospinning of nanodiamond-modified polysaccharide nanofibers with physico-mechanical properties close to natural skins. Mar. Drugs 14, 128 (2016)CrossRefGoogle Scholar
  616. 616.
    H. Yoshioka, R. Furukuwa, H. Sawada, Preparation and applications of fluoroalkylated oligomeric nanoparticles. Hyomen 44(5), 167–182 (2006)Google Scholar
  617. 617.
    W. Zhang, S.-T. Lee, I. Bello, K.M. Leung, H.-Q. Li, Y.-S. Zou, Y.M. Chong, K.L. Ma, Ultrahard multilayer coatings based on alternating layers of nanocrystalline diamond and nanocrystalline cubic boron nitride. U.S. Pat. Appl. Publ., 2009, 14 pp. US 2009022969 A1 20090122 Patent written in English. Application: US 2007-880115 20070719. Priority: CAN 150:150364 AN 2009:93515Google Scholar
  618. 618.
    H.Q. Li, K.M. Leung, K.L. Ma, Q. Ye, Y.M. Chong, Y.S. Zou, W.J. Zhang, S.T. Lee, I. Bello, Nanocubic boron nitride/nanodiamond multilayer structures. Appl. Phys. Lett. 91(20), 201918/1–201918/3 (2007)Google Scholar
  619. 619.
    F.A. Almeida, M. Belmonte, A.J.S. Fernandes, F.J. Oliveira, R.F. Sand ilva, MPCVD diamond coating of Si3N4-TiN electroconductive composite substrates. Diam. Relat. Mater. 16(4–7), 978–982 (2007)CrossRefGoogle Scholar
  620. 620.
    Y. Tzeng, Y.-C. Chen, A.-J. Cheng, Y.-T. Hung, C.-S. Yeh, M. Park, B.M. Wilamowski, Chemically vapor deposited diamond-tipped one-dimensional nanostructures and nanodiamond-silica-nanotube composites. Diam. Relat. Mater. 18(2–3), 173–176 (2009)CrossRefGoogle Scholar
  621. 621.
    M.K. Singh, E. Titus, J.C. Madaleno, L. Pereira, G. Cabral, V.F. Neto, J. Gracio, Nanocrystalline diamond on SiO2 fiber: a new class of hybrid material. Diam. Relat. Mater. 17(7–10), 1106–1109 (2008)CrossRefGoogle Scholar
  622. 622.
    E.A. Ekimov, A. Zoteev, N.F. Borovikov, Sintering of a nanodiamond in the presence of cobalt. Inorg. Mater. 45(5), 491–494 (2009)CrossRefGoogle Scholar
  623. 623.
    I.I. Vlasov, O.I. Lebedev, V.G. Ralchenko, E. Goovaerts, G. Bertoni, G. Van Tendeloo, V.I. Konov, Hybrid diamond-graphite nanowires produced by microwave plasma chemical vapor deposition. Adv. Mater. 19(22), 4058–4062 (2007)CrossRefGoogle Scholar
  624. 624.
    I.P. Chang, K.C. Hwang, C.-S. Chiang, Preparation of fluorescent magnetic nanodiamonds and cellular imaging. J. Amer. Chem. Soc. 130(46), 15476–15481 (2008)CrossRefGoogle Scholar
  625. 625.
    R.K. Yafarov, Production of nanodiamond composites in a low-pressure microwave gas-discharge plasma. Tech. Phys. 51(1), 40–46 (2006)CrossRefGoogle Scholar
  626. 626.
    R. Blum, P. Molian, Liquid-phase sintering of nanodiamond composite coatings on aluminum A319 using a focused laser beam. Surf. Coat. Technol. 204(1–2), 1–14 (2009)CrossRefGoogle Scholar
  627. 627.
    H. Matsubara, Fabrication of novel materials by the incorporation of nanodiamond into plated films. Hyomen Kagaku 30(5), 279–286 (2009)CrossRefGoogle Scholar
  628. 628.
    H. Matsubara, Co-deposition behavior of nanodiamond with electrolessly plated nickel films. Hyomen Gijutsu 57(7), 484–488 (2006)Google Scholar
  629. 629.
    P.Y. Detkov, V.A. Popov, V.G. Kulichikhin, S.I. Chukhaeva, Development of composite materials based on improved nanodiamonds. Top. Appl. Phys. 109(Molecular Building Blocks for Nanotechnology), 29–43 (2007)CrossRefGoogle Scholar
  630. 630.
    H. Uetsuka, T. Nakamura, C.E. Nebel, Nanodiamond-containing microstructure composites and method for transporting biological molecules into bodies by using them. 2009, 7 pp. JP 2009119561 A 20090604 Patent written in Japanese. Application: JP 2007–296378 20071115Google Scholar
  631. 631.
    S.H. Lee, Gas sensor using nanodiamond and gas detection method. 2009, 6 pp. KR 2009066740 A 20090624 Patent written in Korean. Application: KR 2007–134421 20071220. Priority: CAN 151:92754 AN 2009:780521Google Scholar
  632. 632.
    S. Raina, W.P. Kang, J.L. Davidson, Optimizing nitrogen incorporation in nanodiamond film for bio-analyte sensing. Diam. Relat. Mater. 18(5–8), 718–721 (2009)CrossRefGoogle Scholar
  633. 633.
    K.B. Holt, D.J. Caruana, E.J. Millan-Barrios, Electrochemistry of undoped diamond nanoparticles: accessing surface redox states. J. Am. Chem. Soc. 131(32), 11272–11273 (2009)CrossRefGoogle Scholar
  634. 634.
    I.S. Larionova, V.N. Belyaev, K.F. Il’inykh, A.V. Frolov, N.V. Bychin, V.M. Mitrofanov, Method for preparation and galvanic deposition of wear-resistant nanodiamonds based coating composition on metal surfaces. 2009, 5 pp. RU 2357017 C1 20090527 Patent written in Russian. Application: RU 2007–128703 20070725. Priority: CAN 150:565842 AN 2009:646846Google Scholar
  635. 635.
    P.A. Vityaz, The state of the art and prospects of detonation-synthesis nanodiamond applications in Belarus. Phys. Solid State 46(4), 606–610 (2004)CrossRefGoogle Scholar
  636. 636.
    S. Shiozaki, Normal-temperature glass, its formation, and normal temperature glass coating material. 2009, 18 pp. JP 2009102188 A 20090514 Patent written in Japanese. Application: JP 2007–274359 20071022. Priority: CAN 150:499296 AN 2009:583008Google Scholar
  637. 637.
    K.V. Purtov, V.S. Bondar, A.P. Puzyr, Nanodiamond sorbent and method of its obtaining. 2009, 7 pp. RU 2352387 C1 20090420 Patent written in Russian. Application: RU 2007–127892 20070719. Priority: CAN 150:450910 AN 2009:474289Google Scholar
  638. 638.
    V.S. Bondar, A.P. Puzyr, Possibilities and prospects for creation of new nanoprocesses based on detonation nanodiamond particles: medicobiological and technical aspects. Konstruktsii iz Kompozitsionnykh Materialov 4, 80–94 (2005)Google Scholar
  639. 639.
    S.A. Zibrov, V.V. Vasil’ev, V.L. Velichanskii, V.G. Pevgov, V.M. Rudoi, Method for protection of documents, valuable papers or products with nanodiamonds with active NV centers. 2009, 4 pp. RU 2357866 C1 20090610 Patent written in Russian. Application: RU 2008–136466 20080910. Priority: CAN 151:7812 AN 2009:703362Google Scholar
  640. 640.
    D. Zhang, X.-G. Hu, Y. Tong, F.-L. Huang, The research development of nanodiamond as a lubricating additive. Runhuayou 21(1), 50–54 (2006)Google Scholar
  641. 641.
    J. Qu, X. Li, B. Song, Polytetrafluoroethylene friction material for ultrasonic motor, 2004, 4 pp. CN 1473865 A 20040211 Patent written in Chinese. Application: CN 2003–132555 20030807. Priority: CAN 142:393210 AN 2004:1024000Google Scholar
  642. 642.
    J. Luo, X. Liu, X. Wang, Effect of proportion of nano-diamond and zirconia on color of core resin. Xiandai Kouqiang Yixue Zazhi 22(3), 251–254 (2008)Google Scholar
  643. 643.
    M. Comet, V. Pichot, B. Siegert, D. Spitzer, J.-P. Moeglin, Y. Boehrer, Use of nanodiamonds as a reducing agent in a chlorate-based energetic composition. Propellants, Explos., Pyrotech. 34(2), 166–173 (2009)CrossRefGoogle Scholar
  644. 644.
    Y. Xing, L. Dai, Nanodiamonds for nanomedicine. Nanomedicine 4(2), 207–218 (2009)CrossRefGoogle Scholar
  645. 645.
    V. Vaijayanthimala, H.-C. Chang, Functionalized fluorescent nanodiamonds for biomedical applications. Nanomedicine 4(1), 47–55 (2009)CrossRefGoogle Scholar
  646. 646.
    A.M. Schrand, S.A.C. Hens, O.A. Shenderova, Nanodiamond Particles: Properties and Perspectives for Bioapplications. Crit. Rev. Solid State Mater. Sci. 34(1–2), 18–74 (2009)CrossRefGoogle Scholar
  647. 647.
    C.-Y. Cheng, E. Perevedentseva, J.-S. Tu, P.-H. Chung, C.-L. Cheng, K.-K. Liu, J.-I. Chao, P.-H. Chen, C.-C. Chang, Direct and in vitro observation of growth hormone receptor molecules in A549 human lung epithelial cells by nanodiamond labeling. Appl. Phys. Lett. 90(16), 163903/1–163903/3 (2007)CrossRefGoogle Scholar
  648. 648.
    R.A. Shimkunas, E. Robinson, R. Lam, S. Lu, X. Xu, X.-Q. Zhang, H. Huang, E. Osawa, D. Ho, Nanodiamond-insulin complexes as pH-dependent protein delivery vehicles. Biomaterials 30(29), 5720–5728 (2009)CrossRefGoogle Scholar
  649. 649.
    K.-K. Liu, C.-C. Wang, C.-L. Cheng, J.-I. Chao, Endocytic carboxylated nanodiamond for the labeling and tracking of cell division and differentiation in cancer and stem cells. Biomaterials 30(26), 4249–4259 (2009)CrossRefGoogle Scholar
  650. 650.
    M. Chen, E.D. Pierstorff, R. Lam, S.-Y. Li, H. Huang, E. Osawa, D. Ho, Nanodiamond-mediated delivery of water-insoluble therapeutics. ACS Nano. 3(7), 2016–2022 (2009)CrossRefGoogle Scholar
  651. 651.
    O. Faklaris, V. Joshi, T. Irinopoulou, P. Tauc, H. Girard, C. Gesset, M. Senour, A. Thorel, J.-C. Arnault, J.-P. Boudou, P.A. Curmi, F. Treussart, Determination of the internalization pathway of photoluminescent nanodiamonds in mammalian cells for biological labeling and optimization of the fluorescent yield., e-Print Archive, Physics, 2009, pp. 1–24, arXiv:0907.1148v1 [physics.optics]

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Boris Ildusovich Kharisov
    • 1
  • Oxana Vasilievna Kharissova
    • 1
  1. 1.Universidad Autónoma de Nuevo LeónMonterreyMexico

Personalised recommendations