Student Zone: Overview, Training, Practices, and Exercises

  • Boris Ildusovich Kharisov
  • Oxana Vasilievna Kharissova


In this section, we present several selected experimental procedures (including characterization of samples in some cases), directly borrowed from original articles. These experiments are of distinct grades of difficulty (for professors/researchers or students), requiring or not a special equipment. Not all of them can be easily reproduced; students and their advisors need to make a selection of appropriate practices. We hope this part of the book will be very useful as educational material for M.Sc. and Ph.D. students, working in the areas of nanochemistry and nanotechnology, biochemistry and drug delivery, fabrication of carbon thin films from dispersion, application of composites of various carbon allotropes with polymers, and so on.


Training Exercises Problems and calculations Students Synthesis Characterization Carbon allotropes Carbon nanotubes Hazards Safety 


  1. 1.
    Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, One-dimensional nanostructures: synthesis, characterization, and applications. Adv. Mater. 15(5), 353–389 (2003)CrossRefGoogle Scholar
  2. 2.
    Y. Li, W. Cai, G. Duan, Ordered micro/nanostructured arrays based on the monolayer colloidal crystals. Chem. Mater. 20(3), 615–624 (2008)CrossRefGoogle Scholar
  3. 3.
    M.T. Swihart, Vapor-phase synthesis of nanoparticles. Curr. Opin. Colloid Interface Sci. 8, 127–133 (2003)CrossRefGoogle Scholar
  4. 4.
    S. Mourdikoudis, R.M. Pallares, N.T.K. Thanh, Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale 10, 12871 (2018)CrossRefGoogle Scholar
  5. 5.
    P.S. Karthik, A.L. Himaja, S. Prakash Singh, Carbon-allotropes: synthesis methods, applications and future perspectives. Carbon Lett. 15(4), 219–237 (2014)CrossRefGoogle Scholar
  6. 6.
    J. Hodkiewicz., Raman spectroscopy can detect small changes in the structural morphology of carbon nanomaterials, making it an ideal solution for material sciences (2011), Accessed 5 June 2018
  7. 7.
    C.S. Casari, M. Tommasini, R.R. Tykwinskic, A. Milani, Carbon-atom wires: 1-D systems with tunable properties. Nanoscale 8, 4414–4435 (2016)CrossRefGoogle Scholar
  8. 8.
    R. Eba Medjo, Characterization of carbon nanotubes, in Physical and Chemical Properties of Carbon Nanotubes, (Intech, Rijeka, 2013)Google Scholar
  9. 9.
    R.M. Jacobberger, R. Machhi, J. Wroblewski, et al., Simple graphene synthesis via chemical vapor deposition. J. Chem. Educ. 92, 1903–1907 (2015)CrossRefGoogle Scholar
  10. 10.
    S. Gayathri, P. Jayabal, M. Kottaisamy, V. Ramakrishnan, Synthesis of few layer graphene by direct exfoliation of graphite and a Raman spectroscopic study. AIP Adv. 4, 027116 (2014)CrossRefGoogle Scholar
  11. 11.
    Q. Lu, C. Wu, D. Liu, H. Wang, et al., A facile and simple method for synthesis of graphene oxide quantum dots from black carbon. Green Chem. 19, 900–904 (2017)CrossRefGoogle Scholar
  12. 12.
    S. Nasimul Alam, N. Sharma, L. Kumar, Synthesis of graphene oxide (GO) by modified hummers method and its thermal reduction to obtain reduced graphene oxide (rGO). Graphene 6, 1–18 (2017). Scholar
  13. 13.
    A. Kouloumpis, K. Spyrou, K. Dimos, et al., A bottom-up approach for the synthesis of highly ordered fullerene-intercalated graphene hybrids. Front. Mater. 2(10), 1–8 (2015). Scholar
  14. 14.
    M.S.A. Bhuyan, M.N. Uddin, M.M. Islam, et al., Synthesis of graphene. Int. Nano Lett. 6(2), 65–83 (2016)CrossRefGoogle Scholar
  15. 15.
    Q. Zheng, J.-K. Kim, Synthesis, structure, and properties of graphene and graphene oxide, in Graphene for Transparent Conductors. Synthesis, Properties and Applications, (Springer, New York, 2015), pp. 29–38CrossRefGoogle Scholar
  16. 16.
    K. Hotta, K. Miyazawa, Synthesis and growth investigation of C60 fullerene nanowhiskers. J. Phys. Conf. Ser. 159, 012021 (2009)CrossRefGoogle Scholar
  17. 17.
    K.H. Le Ho, S. Campidelli, Synthesis and self-assembly properties of fulleropyrrolidine prepared by Prato reaction. Adv. Nat. Sci. Nanosci. Nanotechnol. 5, 025008 (2014). (6 pp)CrossRefGoogle Scholar
  18. 18.
    N. Jayaratna, M. Olmstead, B. Kharisov, H.V.R. Dias, Coinage metal pyrazolates [(3,5-(CF3)2Pz)M]3 (M = Au, Ag, Cu) as buckycatchers. Inorg. Chem. 55(17), 8277–8280 (2016)CrossRefGoogle Scholar
  19. 19.
    M. Mojica, J.A. Alonso, F. Méndez, Synthesis of fullerenes. J. Phys. Org. Chem. 26, 526–539 (2013)CrossRefGoogle Scholar
  20. 20.
    L.T. Scott, Methods for the chemical synthesis of fullerenes. Angew. Chem. Int. Ed. 43, 4994–5007 (2004)CrossRefGoogle Scholar
  21. 21.
    C. Zhang, J. Li, E. Liu, et al., Synthesis of hollow carbon nano-onions and their use for electrochemical hydrogen storage. Carbon 50(10), 3513–3521 (2012)CrossRefGoogle Scholar
  22. 22.
    J. Bartelmess, S. Giordani, Carbon nano-onions (multi-layer fullerenes): chemistry and applications. Beilstein J. Nanotechnol. 5, 1980–1998 (2014)CrossRefGoogle Scholar
  23. 23.
    O. Mykhailiv, H. Zubyk, M.E. Plonska-Brzezinska, Carbon nano-onions: unique carbon nanostructures with fascinating properties and their potential applications. Inorg. Chim. Acta 468, 49–66 (2017)CrossRefGoogle Scholar
  24. 24.
    E.Y. Choi, C.K. Kim, Fabrication of nitrogen-doped nano-onions and their electrocatalytic activity toward the oxygen reduction reaction. Sci. Rep. 7, 4178 (2017)CrossRefGoogle Scholar
  25. 25.
    A. Aguilar-Elguézabal, W. Antúnez, G. Alonso, et al., Study of carbon nanotubes synthesis by spray pyrolysis and model of growth. Diam. Relat. Mater. 15(9), 1329–1335 (2006)CrossRefGoogle Scholar
  26. 26.
    S.Y. Chen, H.Y. Miao, J.T. Lue, M.S. Ouyang, Fabrication and field emission property studies of multiwall carbon nanotubes. J. Phys. D. Appl. Phys. 37, 273–279 (2004)CrossRefGoogle Scholar
  27. 27.
    O. Jasek, P. Synek, L. Zajıckova, M. Elias, V. Kudrle, Synthesis of carbon nanostructures by plasma enhanced chemical vapour deposition at atmospheric pressure. J. Electr. Eng. 61(5), 311–313 (2010)Google Scholar
  28. 28.
    B. Hornbostel, M. Haluska, J. Cech, U. Dettlaff, S. Roth, Arc discharge and laser ablation synthesis of singlewalled carbon nanotubes, in Carbon Nanotubes, ed. by V. N. Popov, P. Lambin (Springer, Berlin, 2006), pp. 1–18Google Scholar
  29. 29.
    M. Keidar, A. Shashurin, O. Volotskova, Y. Raitses, I.I. Beilis, Mechanism of carbon nanostructure synthesis in arc plasma. Phys. Plasmas 17, 057101 (2010)CrossRefGoogle Scholar
  30. 30.
    H.W. Zhu, X.S. Li, B. Jiang, et al., Formation of carbon nanotubes in water by the electric-arc technique. Chem. Phys. Lett. 366, 664–669 (2002)CrossRefGoogle Scholar
  31. 31.
    J. Liu, M. Shao, X. Chen, et al., Large-scale synthesis of carbon nanotubes by an ethanol thermal reduction process. J. Am. Chem. Soc. 125, 8088–8089 (2003)CrossRefGoogle Scholar
  32. 32.
    J. Prasek, J. Drbohlavova, J. Chomoucka, et al., Methods for carbon nanotubes synthesis—review. J. Mater. Chem. 21, 15872–15884 (2011)CrossRefGoogle Scholar
  33. 33.
    V. Georgakilas, A.B. Bourlinos, E. Ntararas, et al., Graphene nanobuds: synthesis and selective organic derivatisation. Carbon 110, 51–55 (2016)CrossRefGoogle Scholar
  34. 34.
    J. Raula, M. Makowska, J. Lahtinen, et al., Selective covalent functionalization of carbon nanobuds. Chem. Mater. 22(15), 4347–4349 (2010)CrossRefGoogle Scholar
  35. 35.
    C.-H. Nee, S.-L. Yap, T.-Y. Tou, et al., Synthesis of nanodiamonds by femtosecond laser irradiation of etanol. Sci. Rep. 6, 33966 (2016)CrossRefGoogle Scholar
  36. 36.
    M. Bilal Khan, Z.H. Khan, Nanodiamonds: synthesis and applications, in Nanomaterials and Their Applications, Advanced Structured Materials 84, ed. by Z. H. Khan (Springer Nature, Singapore, 2018). Scholar
  37. 37.
    J.C. Arnault, H.A. Girard, Hydrogenated nanodiamonds: synthesis and surface properties. Curr. Opinion Solid State Mater. Sci. 21, 10–16 (2017)CrossRefGoogle Scholar
  38. 38.
    A.A. Fokin, T.S. Zhuk, A.E. Pashenko, et al., Oxygen-doped nanodiamonds: synthesis and functionalizations. Org. Lett. 11(14), 3068–3071 (2009)CrossRefGoogle Scholar
  39. 39.
    J.E. Butler, A.V. Sumant, The CVD of nanodiamond materials. Chem. Vap. Dep. 14(7–8), 145–160 (2008)CrossRefGoogle Scholar
  40. 40.
    A. Stacey, I. Aharonovich, S. Prawer, J.E. Butler, Controlled synthesis of high quality micro/nano-diamonds by microwave plasma chemical vapor deposition. Diam. Relat. Mater. 18(1), 51–55 (2009)CrossRefGoogle Scholar
  41. 41.
    Q. Wang, R. Kitaura, Y. Yamamoto, S. Arai, H. Shinohara, Synthesis and TEM structural characterization of C60-flattened carbon nanotube nanopeapods. Nano Res. 7(12), 1843–1848 (2014)CrossRefGoogle Scholar
  42. 42.
    T. Okazaki, Chapter 10 – Preparation and properties of carbon nanopeapods, in Carbon Nanotubes and Graphene, ed. by K. Tanaka, S. Iijima, 2nd edn. (Elsevier, Amsterdam, 2014), pp. 225–252CrossRefGoogle Scholar
  43. 43.
    E. Hernández, V. Meunier, B.W. Smith, et al., Fullerene coalescence in nanopeapods: a path to novel tubular carbon. Nano Lett. 3(8), 1037–1042 (2003)CrossRefGoogle Scholar
  44. 44.
    M. Velasquez, C. Batiot-Dupeyrat, J. Gallego, J.J. Fernández, A. Santamaria, Synthesis of carbon nano-chains from glycerol-ethanol decomposition over Ni-Fe alloy catalyst. Diam. Relat. Mater. 70, 105–113 (2016)CrossRefGoogle Scholar
  45. 45.
    M. Zhang, C. He, E. Liu, et al., Activated carbon nanochains with tailored micro-meso pore structures and their application for supercapacitors. J. Phys. Chem. C 119, 21810–21817 (2015)CrossRefGoogle Scholar
  46. 46.
    M. Zhang, N. Zhao, J. Sha, et al., Synthesis of novel carbon nano-chains and their application as supercapacitors. J. Mater. Chem. A 2, 16268–16275 (2014)CrossRefGoogle Scholar
  47. 47.
    S. Kumar Sonkar, M. Saxena, M. Saha, S. Sarkar, Carbon nanocubes and nanobricks from pyrolysis of rice. J. Nanosci. Nanotechnol. 10, 4064–4067 (2010)CrossRefGoogle Scholar
  48. 48.
    R. Ravindra, B. Badekai Ramachandra, High yield synthesis of carbon nanofibers in an environmental friendly route. Appl. Nanosci. 1(2), 103–108 (2011)CrossRefGoogle Scholar
  49. 49.
    J. Ren, F.-F. Li, J. Lau, et al., One-pot synthesis of carbon nanofibers from CO2. Nano Lett. 15, 6142–6148 (2015)CrossRefGoogle Scholar
  50. 50.
    N. Díaz Silva, B. Valdez Salas, N. Nedev, et al., Synthesis of carbon nanofibers with maghemite via a modified sol-gel technique. J. Nanomater. 2017, 5794312 (2017). (10 pp)CrossRefGoogle Scholar
  51. 51.
    G. Zou, D. Zhang, C. Dong, et al., Carbon nanofibers: synthesis, characterization, and electrochemical properties. Carbon 44, 828–832 (2006)CrossRefGoogle Scholar
  52. 52.
    Y. Shen, L. Yan, H. Song, J. Yang, et al., A general strategy for the synthesis of carbon nanofibers from solid carbon materials. Angew. Chem. 51(49), 12202–12205 (2012)CrossRefGoogle Scholar
  53. 53.
    C.-T. Lin, T.-H. Chen, T.-S. Chin, C.-Y. Lee, H.-T. Chiu, Quasi two-dimensional carbon nanobelts synthesized using a template method. Carbon 46, 741–746 (2008)CrossRefGoogle Scholar
  54. 54.
    J. Liu, M. Shao, Q. Tang, S. Zhang, Y. Qian, Synthesis of carbon nanotubes and nanobelts through a medial-reduction method. J. Phys. Chem. B 107, 6329–6332 (2003)CrossRefGoogle Scholar
  55. 55.
    G. Povie, Y. Segawa, T. Nishihara, et al., Synthesis of a carbon nanobelt. Science 356(6334), 172–175 (2017)CrossRefGoogle Scholar
  56. 56.
    X. Lu, J. Wu, After 60 years of efforts: the chemical synthesis of a carbon nanobelt. Chem 2(5), 619–620 (2017)CrossRefGoogle Scholar
  57. 57.
    T. Ouyang, K. Cheng, F. Yang, et al., From biomass with irregular structures to 1D carbon nanobelts: a stripping and cutting strategy to fabricate high performance supercapacitor materials. J. Mater. Chem. A 5, 14551–14561 (2017)CrossRefGoogle Scholar
  58. 58.
    C. Su, C. Pei, B. Wu, J. Qian, Y. Tan, Highly doped carbon nanobelts with ultrahigh nitrogen content as high-performance supercapacitor materials. Small 13, 1700834 (2017)CrossRefGoogle Scholar
  59. 59.
    X. Wang, C. Zhao, T. Deng, et al., From amorphous carbon to carbon nanobelts and vertically oriented graphene nanosheets synthesized by plasma-enhanced chemical vapor deposition. Chem. Res. Chin. Univ. 29, 755–758 (2013)CrossRefGoogle Scholar
  60. 60.
    J. Li, S. Qi Yap, S. Lee Yoong, et al., Carbon nanotube bottles for incorporation, release and enhanced cytotoxic effect of cisplatin. Carbon 50, 1625–1634 (2012)CrossRefGoogle Scholar
  61. 61.
    J. Li, Y. Wang, Q. Wei, et al., Plasma-enhanced synthesis of carbon nanocone arrays by magnetic and electric fields coupling HFCVD. Surf. Coat. Technol. 324, 413–418 (2017)CrossRefGoogle Scholar
  62. 62.
    J.A. Jaszczak, G.W. Robinson, S. Dimovski, Y. Gogotsi, Naturally occurring graphite cones. Carbon 41, 2085–2092 (2003)CrossRefGoogle Scholar
  63. 63.
    M. Yudasaka, S. Iijima, V.H. Crespi, Single-wall carbon nanohorns and nanocones, in Carbon Nanotubes. Topics in Applied Physics, ed. by A. Jorio, G. Dresselhaus, M. S. Dresselhaus, vol. 111 (Springer, Berlin, Heidelberg, 2007), pp. 605–629Google Scholar
  64. 64.
    Y. Gogotsi, S. Dimovski, J.A. Libera, Conical crystals of graphite. Carbon 40(12)., 2002), 2263–2267 (2002)CrossRefGoogle Scholar
  65. 65.
    A.G. Zestos, C. Yang, C.B. Jacobs, D. Hensley, B. Jill Venton, Carbon nanospikes grown on metal wires as microelectrode sensors for dopamine. Analyst 140(21), 7283–7292 (2015)CrossRefGoogle Scholar
  66. 66.
    L.B. Sheridan, D.K. Hensley, N.V. Lavrik, et al., Growth and electrochemical characterization of carbon nanospike thin film electrodes. J. Electrochem. Soc. 161(9), H558–H563 (2014)CrossRefGoogle Scholar
  67. 67.
    H. Wang, J. Wang, S. Xie, W. Liu, C. Niu, Template synthesis of graphitic hollow carbon nanoballs as supports for SnOx nanoparticles towards enhanced lithium storage performance. Nanoscale 10, 6159–6167 (2018)CrossRefGoogle Scholar
  68. 68.
    W. Chen, Q. Li, Y. Chen, P. Dai, Z. Jiang, Preparation of carbon nanoball from starch by arc discharge. Adv. Mater. Res. 476–478, 1533–1536 (2012)Google Scholar
  69. 69.
    K. Pan, H. Ming, Y. Liu, Z. Kang, Large scale synthesis of carbon nanospheres and their application as electrode materials for heavy metal ions detection. New J. Chem. 36, 113–118 (2012)CrossRefGoogle Scholar
  70. 70.
    P. Karna, M. Ghimire, S. Mishra, S. Karna, Synthesis and characterization of carbon nanospheres. Open Access Library J. 4, e3619 (2017)Google Scholar
  71. 71.
    R. Vié, E. Drahi, O. Baudino, S. Blayac, S. Berthon-Fabry, Synthesis of carbon nanospheres for the development of inkjet-printed resistive layers and sensors. Flexible Printed Electron. 1, 015003 (2016)CrossRefGoogle Scholar
  72. 72.
    A. Pramanik, S. Biswas, A.K. Kole, et al., Template-free hydrothermal synthesis of amphibious fluorescent carbon nanorice towards anti-counterfeiting applications and unleashing its nonlinear optical properties. RSC Adv. 6, 99060–99071 (2016)CrossRefGoogle Scholar
  73. 73.
    P. Sekar Parasuraman, H.-C. Tsai, T. Imae, et al., In-situ hydrothermal synthesis of carbon nanorice using Nafion as a template. Carbon 77, 660–666 (2014)CrossRefGoogle Scholar
  74. 74.
    K. Sai Krishna, M. Eswaramoorthy, Novel synthesis of carbon nanorings and their characterization. Chem. Phys. Lett. 433, 327–330 (2007)CrossRefGoogle Scholar
  75. 75.
    I.-L. Chang, J.-W. Chou, A molecular analysis of carbon nanotori formation. J. Appl. Phys. 112, 063523 (2012)CrossRefGoogle Scholar
  76. 76.
    G. Li, H. Yu, L. Xu, et al., General synthesis of carbon nanocages and their adsorption of toxic compounds from cigarette smoke. Nanoscale 3, 3251–3257 (2011)CrossRefGoogle Scholar
  77. 77.
    S. Xiang, Y. Shi, K. Zhang, et al., Design and synthesis of dodecahedral carbon nanocages incorporated with Fe3O4. RSC Adv. 7, 13257–13262 (2017)CrossRefGoogle Scholar
  78. 78.
    D.A. Ziolkowska, J.S.D. Jangam, G. Rudakov, T.M. Paronyan, M. Akhtar, G.U. Sumanasekera, J.B. Jasinski, Simple synthesis of highly uniform bilayer-carbon nanocages. Carbon 115, 617–624 (2017)CrossRefGoogle Scholar
  79. 79.
    Y. Tan, C. Xu, G. Chen, et al., Synthesis of ultrathin nitrogen-doped graphitic carbon nanocages as advanced electrode materials for supercapacitor. ACS Appl. Mater. Interfaces 5, 2241–2248 (2013)CrossRefGoogle Scholar
  80. 80.
    J. Xiang, T. Song, One-pot synthesis of multicomponent (Mo, Co) metal sulfide/carbon nanoboxes as anode materials for improving Na-ion storage. Chem. Commun. 53, 10820–10823 (2017)CrossRefGoogle Scholar
  81. 81.
    H. Hu, J. Zhang, B. Guan, X. Wen (David) Lou, Unusual formation of CoSe@carbon nanoboxes, which have an inhomogeneous shell, for efficient lithium storage. Angew. Chem. Int. Ed. 55, 9514–9518 (2016)CrossRefGoogle Scholar
  82. 82.
    Y. Hayashi, N. Takada, Wahyudiono, H. Kanda, M. Goto, One-step synthesis of water–dispersible carbon nanocapsules by pulsed arc discharge over aqueous solution under pressurized argon. Res. Chem. Intermed. 43, 4201–4211 (2017)CrossRefGoogle Scholar
  83. 83.
    B. Quan, G.-E. Nam, H. Jae Choi, Y. Piao, Synthesis of monodisperse hollow carbon nanocapsules by using protective silica shells. Chem. Asian J. 8(4), 765–770 (2013)CrossRefGoogle Scholar
  84. 84.
    P. Wu, N. Du, H. Zhang, J. Yu, D. Yang, Carbon nanocapsules as nanoreactors for controllable synthesis of encapsulated Iron and iron oxides: magnetic properties and reversible lithium storage. J. Phys. Chem. C 115, 3612–3620 (2011)CrossRefGoogle Scholar
  85. 85.
    T.-C. Liu, Y.-Y. Li, Synthesis of carbon nanocapsules and carbon nanotubes by an acetylene flame method. Carbon 44, 2045–2050 (2006)CrossRefGoogle Scholar
  86. 86.
    D. Jain, A. Winkel, R. Wilhelm, Solid-state synthesis of well-defined carbon nanocapsules from organometallic precursors. Small 2(6), 752–755 (2006)CrossRefGoogle Scholar
  87. 87.
    B. Xu, J. Guo, X. Wang, et al., Synthesis of carbon nanocapsules containing Fe, Ni or Co by arc discharge in aqueous solution. Carbon 44, 2631–2634 (2006)CrossRefGoogle Scholar
  88. 88.
    T. Kizuka, K. Miyazawa, D. Matsuura, Synthesis of carbon nanocapsules and nanotubes using Fe-doped fullerene nanowhiskers. J. Nanotechnol. 2012, 613746 (2012). (6 pp)Google Scholar
  89. 89.
    Z. Yao, X. Zhu, X. Li, Y. Xie, Synthesis of novel Y-junction hollow carbon nanotrees. Carbon 45, 1566–1570 (2007)CrossRefGoogle Scholar
  90. 90.
    Z. He, J.-L. Maurice, C. Seok Lee, C. Sorin Cojocarub, D. Pribat, Growth mechanisms of carbon nanostructures with branched carbon nanofibers synthesized by plasma-enhanced chemical vapour deposition. CrystEngComm 16, 2990–2995 (2014)CrossRefGoogle Scholar
  91. 91.
    T.-N. Ye, L.-B. Lv, X.-H. Li, M. Xu, J.-S. Chen, Strongly veined carbon nanoleaves as a highly efficient metal-free electrocatalyst. Angew. Chem. Int. Ed. 53, 6905–6909 (2014)CrossRefGoogle Scholar
  92. 92.
    X. Lepro, M.D. Lima, R.H. Baughman, Spinnable carbon nanotube forests grown on thin, flexible metallic substrates. Carbon 48, 3621–3627 (2010)CrossRefGoogle Scholar
  93. 93.
    G. Chen, D.N. Futaba, K. Hata, Catalysts for the growth of carbon nanotube “forests” and superaligned arrays. MRS Bull. 42, 802–808 (2017)CrossRefGoogle Scholar
  94. 94.
    K.K.S. Lau, J. Bico, K.B.K. Teo, et al., Superhydrophobic carbon nanotube forests. Nano Lett. 3(12), 1701–1705 (2003)CrossRefGoogle Scholar
  95. 95.
    N. Yang, M. Li, J. Patscheider, S. Ki Youn, H. Gyu Park, A forest of sub-1.5-nm-wide single-walled carbon nanotubes over an engineered alumina support. Sci. Rep. 7, 46725 (2017)CrossRefGoogle Scholar
  96. 96.
    Y.B. Zhang, S.P. Lau, Field emission from nanoforest carbon nanotubes grown on cobalt-containing amorphous carbon omposite films. J. Appl. Phys. 101, 033524 (2007)CrossRefGoogle Scholar
  97. 97.
    J. Du, Z. Liu, Z. Li, B. Han, Z. Sun, Y. Huang, Carbon nanoflowers synthesized by a reduction–pyrolysis–catalysis route. Mater. Lett. 59, 456–458 (2005)CrossRefGoogle Scholar
  98. 98.
    B.I. Kharisov, A review for synthesis of nanoflowers. Recent Pat. Nanotechnol. 2(3), 190–200 (2008)CrossRefGoogle Scholar
  99. 99.
    H. Heli, A. Rahi, Synthesis and applications of nanoflowers. Recent Pat. Nanotechnol. 10(2), 86–115 (2016)CrossRefGoogle Scholar
  100. 100.
    S. Thongtem, P. Singjai, T. Thongtem, S. Preyachoti, Growth of carbon nanoflowers on glass slides using sparked iron as a catalyst. Mater. Sci. Eng. A 423, 209–213 (2006)CrossRefGoogle Scholar
  101. 101.
    M. Wei, C. Terashima, M. Lv, A. Fujishima, Z.-Z. Gu, Boron-doped diamond nanograss array for electrochemical sensors. Chem. Commun., 3624–3626 (2009)Google Scholar
  102. 102.
    M. Wei, G. Ying Zeng, Y. Liu, Q. Lu, Detection of heavy metals based on boron-doped diamond nanograss array, boron-doped diamond film and glassy carbon electrodes. Asian J. Chem. 25(2), 861–863 (2013)CrossRefGoogle Scholar
  103. 103.
    Y. Luo, D. Kong, Y. Jia, et al., Self-assembled graphene@PANI nanoworm composites with enhanced supercapacitor performance. RSC Adv. 3, 5851–5859 (2013)CrossRefGoogle Scholar
  104. 104.
    Y. Piao, K. An, J. Kim, T. Yu, T. Hyeon, Sea urchin shaped carbon nanostructured materials: carbon nanotubes immobilized on hollow carbon spheres. J. Mater. Chem. 16, 2984–2989 (2006)CrossRefGoogle Scholar
  105. 105.
    Y. Wang, Z. Jun Han, S. Fung Yu, et al., Core-leaf onion-like carbon/MnO2 hybrid nano-urchins for rechargeable lithium-ion batteries. Carbon 64, 230–236 (2013)CrossRefGoogle Scholar
  106. 106.
    E.J. Hwang, S.K. Lee, M.G. Jeong, Y.B. Lee, D.S. Lim, Synthesis of sea urchin-like carbon nanotubes on nano-diamond powder. J. Nanosci. Nanotechnol. 12(7), 5875–5879 (2012)CrossRefGoogle Scholar
  107. 107.
    Y. Yao, C. Lian, G. Wu, et al., Synthesis of “sea urchin”-like carbon nanotubes/porous carbon superstructures derived from waste biomass for treatment of various contaminants. Appl. Catal. B Environ. 219, 563–571 (2017)CrossRefGoogle Scholar
  108. 108.
    X. Hoa Nguen, Y. Bok Lee, C. Hyun Lee, D.-S. Lim, Synthesis of sea urchin-like particles of carbon nanotubes directly grown on stainless steel cores and their effect on the mechanical properties of polymer composites. Carbon 48(10), 2910–2916 (2010)CrossRefGoogle Scholar
  109. 109.
    N. Jia, Y. Shi, S. Zhang, X. Chen, P. Chen, Z. An, Carbon nanobowls supported ultrafine palladium nanocrystals: a highly active electrocatalyst for the formic acid oxidation. Int. J. Hydrog. Energy 42, 8255–8263 (2017)CrossRefGoogle Scholar
  110. 110.
    C. Cui, X. Li, Z. Hu, J. Xu, H. Liu, J. Ma, Growth of MoS2@C nanobowls as a lithium-ion battery anode material. RSC Adv. 5, 92506–92514 (2015)CrossRefGoogle Scholar
  111. 111.
    A.S.H. Razi, K.Y. Jin, P. Yong-Ki, L. Chul Wee, Nano bowls of carbon by oxidative chopping of carbon nano sphere. Chem. Lett. 36(10), 1202–1203 (2007)CrossRefGoogle Scholar
  112. 112.
    M. Gwan Hahm, A. Leela Mohana Reddy, D.P. Cole, et al., Carbon nanotubes-nanocups hybrid structures for high power supercapacitor applications. Nano Lett. 12(11), 5616–5621 (2012)CrossRefGoogle Scholar
  113. 113.
    S. Majeed, J. Zhao, L. Zhang, S. Anjum, Z. Liu, G. Xu, Synthesis and electrochemical applications of nitrogen-doped carbon nanomaterials. Nanotechnol. Rev. 2(6), 615–635 (2013)CrossRefGoogle Scholar
  114. 114.
    B. Kumar Gupta, G. Kedawat, P. Kumar, et al., Field emission properties of highly ordered low-aspect ratio carbon nanocup arrays. RSC Adv. 6, 9932–9939 (2016)CrossRefGoogle Scholar
  115. 115.
    J. Cao, C.J. Jafta, J. Gong, et al., Synthesis of dispersible mesoporous nitrogen-doped hollow carbon nanoplates with uniform hexagonal morphologies for supercapacitors. ACS Appl. Mater. Interfaces 8, 29628–29636 (2016)CrossRefGoogle Scholar
  116. 116.
    Y. Soo Yun, S. Youn Cho, J. Shim, et al., Microporous carbon nanoplates from regenerated silk proteins for supercapacitors. Adv. Mater. 25, 1993–1998 (2013)CrossRefGoogle Scholar
  117. 117.
    Y. Soo Yun, K.-Y. Park, B. Lee, et al., Sodium-ion storage in pyroprotein-based carbon nanoplates. Adv. Mater. 27, 6914–6921 (2015)CrossRefGoogle Scholar
  118. 118.
    M.E. Lee, N.R. Kim, M.Y. Song, H.-J. Jin, Microporous carbon nanoplate/amorphous ruthenium oxide hybrids as supercapacitor electrodes. J. Nanosci. Nanotechnol. 16(10), 10431–10436 (2016)CrossRefGoogle Scholar
  119. 119.
    Y. Wei, F. Yan, X. Tang, et al., Solvent-controlled synthesis of NiO−CoO/carbon fiber nanobrushes with different densities and their excellent properties for lithium ion storage. ACS Appl. Mater. Interfaces 7, 21703–21711 (2015)CrossRefGoogle Scholar
  120. 120.
    NEC, NEC discovers “carbon nanobrush,” the world’s first fibrous aggregate of carbon nanohorns (30 June 2016), Accessed 26 Apr 2018
  121. 121.
    A. Cao, V.P. Veedu, X. Li, et al., Multifunctional brushes made from carbon nanotubes. Nat. Mater. 4, 540–545 (2005)CrossRefGoogle Scholar
  122. 122.
    R. Villegas Salvatierra, D. Zakhidov, J. Sha, et al., Graphene carbon nanotube carpets grown using binary catalysts for high-performance lithium-ion capacitors. ACS Nano 11, 2724–2733 (2017)CrossRefGoogle Scholar
  123. 123.
    P. Szroeder, N.G. Tsierkezos, P. Scharff, U. Ritter, Electrocatalytic properties of carbon nanotube carpets grown on Si-wafers. Carbon 48, 4489–4496 (2010)CrossRefGoogle Scholar
  124. 124.
    F. Seichepine, S. Salomon, M. Collet, et al., A combination of capillary and dielectrophoresis-driven assembly methods for wafer scale integration of carbon-nanotube-based nanocarpets. Nanotechnology 23, 095303 (2012). (7 pp)CrossRefGoogle Scholar
  125. 125.
    S. Hu, Y. Dong, J. Yang, J. Liu, S. Cao, Formation and nonlinear optical properties of carbon nanospindles from laser ablation. CrystEngComm 14, 4243–4246 (2012)CrossRefGoogle Scholar
  126. 126.
    H.-D. Lim, Y. Soo Yun, Y. Ko, et al., Three-dimensionally branched carbon nanowebs as air-cathode for redox-mediated Li-O2 batteries. Carbon 118, 114–119 (2017)CrossRefGoogle Scholar
  127. 127.
    Q. Huang, L. Liu, D. Wang, J. Liu, Z. Huang, Z. Zheng, One-step electrospinning of carbon nanowebs on metallic textiles for high-capacitance supercapacitor fabrics. J. Mater. Chem. A 4, 6802–6808 (2016)CrossRefGoogle Scholar
  128. 128.
    H. Eun Cho, S. Jung Seo, M.-S. Khil, H. Kim, Preparation of carbon nanoweb from cellulose nanowhisker. Fibers Polym. 16(2), 271–275 (2015)CrossRefGoogle Scholar
  129. 129.
    L. Li, A. Manthiram, O- and N-doped carbon nanowebs as metal-free catalysts for hybrid li-air batteries. Adv. Energy Mater. 4(10), 1301795 (2014)CrossRefGoogle Scholar
  130. 130.
    S. Luo, Y. Luo, H. Wu, et al., Self-assembly of 3D carbon nanotube sponges: a simple and controllable way to build macroscopic and ultralight porous architectures. Adv. Mater. 29, 1603549 (2017)CrossRefGoogle Scholar
  131. 131.
    X. Gui, J. Wei, K. Wang, et al., Carbon nanotube sponges. Adv. Mater. 22, 617–621 (2010)CrossRefGoogle Scholar
  132. 132.
    X. Gui, H. Li, K. Wang, et al., Recyclable carbon nanotube sponges for oil absorption. Acta Mater. 59, 4798–4804 (2011)CrossRefGoogle Scholar
  133. 133.
    K. Zhu, Y.-Y. Shang, P.-Z. Sun, et al., Oil spill cleanup from sea water by carbon nanotube sponges. Front. Mater. Sci. 7(2), 170–176 (2013)CrossRefGoogle Scholar
  134. 134.
    Z.-Y. Huo, Y. Luo, X. Xie, et al., Carbon-nanotube sponges enabling highly efficient and reliable cell inactivation by low-voltage electroporation. Environ. Sci. Nano 4, 2010–2017 (2017)CrossRefGoogle Scholar
  135. 135.
    N. Frese, S. Taylor Mitchell, A. Bowers, A. Gölzhäuser, K. Sattler, Diamond-like carbon nanofoam from low-temperature hydrothermal carbonization of a sucrose/naphthalene precursor solution. J. Carbon Res. 3, 23 (2017)CrossRefGoogle Scholar
  136. 136.
    N. Frese, S. Taylor Mitchell, C. Neumann, A. Bowers, A. Gölzhäuser, K. Sattler, Fundamental properties of high-quality carbon nanofoam: from low to high density. Beilstein J. Nanotechnol. 7, 2065–2073 (2016)CrossRefGoogle Scholar
  137. 137.
    D. Li, L. Pan, J. Qian, D. Liu, Highly efficient synthesis of carbon nanocoils by catalyst particles prepared by a sol–gel method. Carbon 48, 170–175 (2010)CrossRefGoogle Scholar
  138. 138.
    S. Vaudreuil, M. Bousmina, Stretchable carbon nanosprings production by a catalytic growth process. J. Nanosci. Nanotechnol. 9(8), 4880–4885 (2009)CrossRefGoogle Scholar
  139. 139.
    Y.J. Lee, S.R. Ham, J.H. Kim, et al., Highly dispersible buckled nanospring carbon nanotubes for polymer nano composites. Sci. Rep. 8, 4851 (2018)CrossRefGoogle Scholar
  140. 140.
    D. Li, L. Pan, K. Liu, W. Peng, Growth of multiwall carbon nanocoils using Fe catalyst films prepared by ion sputtering. J. Mater. Res. 28(10), 1316–1325 (2013)CrossRefGoogle Scholar
  141. 141.
    L. Liu, J. Zhao, Toroidal and coiled carbon nanotubes, in Syntheses and Applications of Carbon Nanotubes and Their Composites, (Intech, Rijeka, 2013), pp. 257–281Google Scholar
  142. 142.
    R. Cui, L. Pan, C. Deng, Synthesis of carbon nanocoils on substrates made of plant fibers. Carbon 89, 47–52 (2015)CrossRefGoogle Scholar
  143. 143.
    N. Tang, W. Kuo, C. Jeng, et al., Coil-in-coil carbon nanocoils: 11 gram-scale synthesis, single nanocoil electrical properties, and electrical contact improvement. ACS Nano 4(2), 781–788 (2010)CrossRefGoogle Scholar
  144. 144.
    Y. Shang, C. Hua, W. Xu, et al., Meter-long spiral carbon nanotube fibers show ultrauniformity and flexibility. Nano Lett. 16, 1768–1775 (2016)CrossRefGoogle Scholar
  145. 145.
    E.-X. Ding, J. Wang, H.-Z. Geng, et al., Y-junction carbon nanocoils: synthesis by chemical vapor deposition and formation mechanism. Sci. Rep. 5, 11281 (2015)CrossRefGoogle Scholar
  146. 146.
    K. Mae, H. Toyama, E. Nawa-Okita, et al., Self-organized micro-spiral of single-walled carbon nanotubes. Sci. Rep. 7, 5267 (2017)CrossRefGoogle Scholar
  147. 147.
    A. Shaikjee, N.J. Coville, The synthesis, properties and uses of carbon materials with helical morphology. J. Adv. Res. 3, 195–223 (2012)CrossRefGoogle Scholar
  148. 148.
    X. Liu, X. Tang, Y. Hou, Q. Wu, G. Zhang, Fluorescent nanothermometers based on mixed shell carbon nanodots. RSC Adv. 5, 81713–81722 (2015)CrossRefGoogle Scholar
  149. 149.
    D. Castelvecchi, Nanothermometer takes the temperature of living cells (31 July 2013). Accessed 28 Apr 2018
  150. 150.
    Y. Gao, Y. Bando, Nanotechnology: carbon nanothermometer containing gallium. Nature 415, 599 (2002)CrossRefGoogle Scholar
  151. 151.
    S. Akita, Y. Nakayama, et al., Nanotweezers consisting of carbon nanotubes operating in an atomic force microscope. Appl. Phys. Lett. 79(11), 1691–1693 (2001)CrossRefGoogle Scholar
  152. 152.
    C.-H. Ke, N. Pugno, B. Peng, H.D. Espinosa, Experiments and modeling of carbon nanotube-based NEMS devices. J. Mech. Phys. Solids 53, 1314–1333 (2005)CrossRefGoogle Scholar
  153. 153.
    J. Chang, B.-K. Min, J. Kim, S.-J. Lee, L. Lin, Electrostatically actuated carbon nanowire nanotweezers. Smart Mater. Struct. 18, 065017 (2009). (7 pp)CrossRefGoogle Scholar
  154. 154.
    J. Zare, A. Shateri, Instability threshold of rippled carbon nanotube nanotweezers in the low vacuum gas flow incorporating Dirichlet and Neumann modes of Casimir energy. Physica E 90, 67–75 (2017)CrossRefGoogle Scholar
  155. 155.
    T. Sasaki, J.-F. Morin, M. Lu, J.M. Tour, Synthesis of a single-molecule nanotruck. Tetrahedron Lett. 48, 5817–5820 (2007)CrossRefGoogle Scholar
  156. 156.
    S.S. Konyukhov, N.N. Artemov, I.A. Kaliman, I.V. Kupchenko, A.V. Nemukhin, A.A. Moskovskii, Electrostatically actuated carbon nanowire nanotweezers. Mosc. Univ. Chem. Bull. 65(4), 219–220 (2010)CrossRefGoogle Scholar
  157. 157.
    A. Nemati, H. Nejat Pishkenari, A. Meghdari, S. Sohrabpour, Directing the diffusive motion of fullerene-based nanocars using nonplanar gold surfaces. Phys. Chem. Chem. Phys. 20, 332–344 (2018)CrossRefGoogle Scholar
  158. 158.
    M. Ghorbanzadeh Ahangari, M. Darvish Ganji, A. Jalali, Interaction between fullerene-wheeled nanocar and gold substrate: a DFT study. Physica E 83, 174–179 (2016)CrossRefGoogle Scholar
  159. 159.
    AZoNano, Nanocars and nanoguitars leading to better understanding of construction and properties of materials at the nanoscale (24 Jan 2007.), Accessed 29 Apr 2018
  160. 160.
    G. Vives, J.M. Tour, Synthesis of single-molecule nanocars. Acc. Chem. Res. 2(3), 473–487 (2009)CrossRefGoogle Scholar
  161. 161.
    D. Wang, Y. Wang, H. Liu, W. Xu, L. Xu, Unusual carbon nanomesh constructed by interconnected carbon nanocages for ionic liquid-based supercapacitor with superior rate capability. Chem. Eng. J. 342, 474–483 (2018)CrossRefGoogle Scholar
  162. 162.
    D. Wang, S. Liu, L. Jiao, G. Fang, G. Geng, J. Ma, Unconventional mesopore carbon nanomesh prepared through explosioneassisted activation approach: a robust electrode material for ultrafast organic electrolyte supercapacitors. Carbon 119, 30–39 (2017)CrossRefGoogle Scholar
  163. 163.
    H. Wang, L. Zhi, K. Liu, et al., Thin-sheet carbon nanomesh with an excellent electrocapacitive performance. Adv. Funct. Mater. 25, 5420–5427 (2015)CrossRefGoogle Scholar
  164. 164.
    H. Kohno, T. Hasegawa, Chains of carbon nanotetrahedra/nanoribbons. Sci. Rep. 5, 8430 (2015)CrossRefGoogle Scholar
  165. 165.
    H. Kohno, Y. Masuda, In situ transmission electron microscopy of individual carbon nanotetrahedron/ribbon structures in bending. Appl. Phys. Lett. 106, 193103 (2015)CrossRefGoogle Scholar
  166. 166.
    T. Hasegawaa, H. Kohno, Splitting and joining in carbon nanotube/nanoribbon/nanotetrahedron growth. Phys. Chem. Chem. Phys. 17, 3009–3013 (2015)CrossRefGoogle Scholar
  167. 167.
    A. Yamauchi, H. Kohno, Verification of mechanism for the formation of carbon nanotetrahedra using Electron beam tomography. J. Nanosci. Nanotechnol. 17(1), 842–845 (2017)CrossRefGoogle Scholar
  168. 168.
    B. Sun, S. Chen, H. Liu, G. Wang, Mesoporous carbon nanocube architecture for high-performance lithium–oxygen batteries. Adv. Funct. Mater. 25, 4436–4444 (2015)CrossRefGoogle Scholar
  169. 169.
    C.M. Lentz, B.A. Samuel, H.C. Foley, M.A. Haque, Synthesis and characterization of glassy carbon nanowires. J. Nanomater. 2011, 129298 (2011). (8 pp)CrossRefGoogle Scholar
  170. 170.
    X.-L. Wu, T. Wen, H.-L. Guo, S. Yang, X. Wang, A.-W. Xu, Biomass-derived sponge-like carbonaceous hydrogels and aerogels for supercapacitors. ACS Nano 7(4), 3589–3597 (2013)CrossRefGoogle Scholar
  171. 171.
    W. Li, S. Wang, Y. Li, et al., One-step hydrothermal synthesis of fluorescent nanocrystallinecellulose/carbon dot hydrogels. Carbohydr. Polym. 175, 7–17 (2017)CrossRefGoogle Scholar
  172. 172.
    C.S. Sharma, M.M. Kulkarni, A. Sharma, M. Madou, Synthesis of carbón xerogel particles and fractal-like structures. Chem. Eng. Sci. 64, 1536–1543 (2009)CrossRefGoogle Scholar
  173. 173.
    M. Kakunuri, S. Vennamalla, C.S. Sharma, Synthesis of carbon xerogel nanoparticles by inverse emulsion polymerization of resorcinol–formaldehyde and their use as anode materials for lithium-ion battery. RSC Adv. 5, 4747–4753 (2015)CrossRefGoogle Scholar
  174. 174.
    E.J. Zanto, S.A. Al-Muhtaseb, J.A. Ritter, Sol-gel-derived carbon aerogels and xerogels: design of experiments approach to materials synthesis. Ind. Eng. Chem. Res. 41, 3151–3162 (2002)CrossRefGoogle Scholar
  175. 175.
    M.-F. Yan, L.-H. Zhang, R. He, Z.-F. Liu, Synthesis and characterization of carbon aerogels with different catalysts. J. Porous. Mater. 22, 699–703 (2015)CrossRefGoogle Scholar
  176. 176.
    E.G. Calvo, C.O. Ania, L. Zubizarreta, J.A. Menendez, A. Arenillas, Exploring new routes in the synthesis of carbon xerogels for their application in electric double-layer capacitors. Energy Fuel 24, 3334–3339 (2010)CrossRefGoogle Scholar
  177. 177.
    J. Shen, D.Y. Guan, Preparation and application of carbon aerogels, in Aerogels Handbook, Advances in Sol-Gel Derived Materials and Technologies, ed. by M. A. Aegerter et al. (Springer Science+Business Media, LLC, Dordrecht, 2011). Scholar
  178. 178.
    P.S. Skell, L.M. Jackman, S. Ahmed, M.L. McKee, P.B. Shedin, Some reactions and properties of molecular Cz. An experimental and theoretical treatment. J. Am. Chem. Soc. 111, 4422–4429 (1989)CrossRefGoogle Scholar
  179. 179.
    C.G. Parigger, J.O. Hornkohl, A.M. Keszler, L. Nemes, Measurement and analysis of atomic and diatomic carbon spectra from laser ablation of graphite. Appl. Opt. 42(30), 6192–6198 (2003)CrossRefGoogle Scholar
  180. 180.
    Q. Sun, L. Cai, S. Wang, et al., Bottom-up synthesis of metalated carbyne. J. Am. Chem. Soc. 138, 1106–1109 (2016)CrossRefGoogle Scholar
  181. 181.
    C.S. Casari, C.S. Giannuzzi, V. Russo, Carbon-atom wires produced by nanosecond pulsed laser deposition in a background gas. Carbon 104, 190–195 (2016)CrossRefGoogle Scholar
  182. 182.
    C.B. Cannella, N. Goldman, Carbyne fiber synthesis within evaporating metallic liquid carbon. J. Phys. Chem. C 119, 21605–21611 (2015)CrossRefGoogle Scholar
  183. 183.
    A. Kucherik, A. Antipov, S. Kutrovskaya, A. Osipov, A. Povolotckaia, S. Arakelian, Metal-carbyne clusters for SERS realization. J. Phys. Conf. Ser. 951, 012020 (2018)CrossRefGoogle Scholar
  184. 184.
    J.B. Wallace, D. Chen, L. Shao, Carbon displacement-induced single carbon atomic chain formation and its effects on sliding of SiC fibers in SiC/graphene/SiC composite. Mater. Res. Lett. 4(1), 55–61 (2016)CrossRefGoogle Scholar
  185. 185.
    C.S. Casari, M. Tommasini, R.R. Tykwinski, A. Milani, Carbon-atom wires: 1-D systems with tunable properties. Nanoscale 8, 4414–4435 (2016)CrossRefGoogle Scholar
  186. 186.
    L. Giacomo Bettini, F. Della Foglia, P. Piseri, P. Milani, Interfacial properties of a carbyne-rich nanostructured carbon thin film in ionic liquid. Nanotechnology 27, 115403 (2016). (6 pp)CrossRefGoogle Scholar
  187. 187.
    S. Li, G. Ji, Z. Huang, F. Zhang, Y. Du, Synthesis of chaoite-like macrotubes at low temperature and ambient pressure. Carbon 45, 2946–2950 (2007)CrossRefGoogle Scholar
  188. 188.
    A. Fadllan, P. Marwoto, M.P. Aji, Susanto, R.S. Iswari, Synthesis of carbon nanodots from waste paper with hydrothermal method. AIP Conf. Proc. 1788, 030069 (2017)CrossRefGoogle Scholar
  189. 189.
    J. Prakash Naik, P. Sutradhar, M. Saha, Molecular scale rapid synthesis of graphene quantum dots (GQDs). J. Nanostruct. Chem. 7, 85–89 (2017)CrossRefGoogle Scholar
  190. 190.
    C. Kiang Chua, Z. Sofer, P. Simek, et al., Synthesis of strongly fluorescent graphene quantum dots by cage-opening buckminsterfullerene. ACS Nano 9(3), 2548–2555 (2015)CrossRefGoogle Scholar
  191. 191.
    H. Li, Z. Kang, Y. Liu, S.-T. Lee, Carbon nanodots: synthesis, properties and applications. J. Mater. Chem. 22, 24230–24253 (2012)CrossRefGoogle Scholar
  192. 192.
    P. Roy, P.-C. Chen, A. Prakash Periasamy, Y.-N. Chen, H.-T. Chang, Photoluminescent carbon nanodots: synthesis, physicochemical properties and analytical applications. Mater. Today 18(8), 447–458 (2015)CrossRefGoogle Scholar
  193. 193.
    S. Kellici, J. Acord, N.P. Power, et al., Rapid synthesis of graphene quantum dots using a continuous hydrothermal flow synthesis approach. RSC Adv. 7, 14716–14720 (2017)CrossRefGoogle Scholar
  194. 194.
    H. Teymourinia, M. Salavati-Niasari, O. Amiri, H. Safardoust-Hojaghan, Synthesis of graphene quantum dots from corn powder and their application in reduce charge recombination and increase free charge carriers. J. Mol. Liq. 242, 447–455 (2017)CrossRefGoogle Scholar
  195. 195.
    M. Ozhukil Valappil, V.K. Pillai, S. Alwarappan, Spotlighting graphene quantum dots and beyond: synthesis, properties and sensing applications. Appl. Mater. Today 9, 350–371 (2017)CrossRefGoogle Scholar
  196. 196.
    G.N. Yushin, E.N. Hoffman, A. Nikitin, et al., Synthesis of nanoporous carbide-derived carbon by chlorination of titanium silicon carbide. Carbon 43, 2075–2082 (2005)CrossRefGoogle Scholar
  197. 197.
    M.R. Lukatskaya, J. Halim, B. Dyatkin, et al., Room-temperature carbide-derived carbon synthesis by electrochemical etching of MAX phases. Angew. Chem. 126, 4977–4980 (2014)CrossRefGoogle Scholar
  198. 198.
    J. Gläsel, J. Diao, Z. Feng, et al., Mesoporous and graphitic carbide-derived carbons as selective and stable catalysts for the dehydrogenation reaction. Chem. Mater. 27, 5719–5725 (2015)CrossRefGoogle Scholar
  199. 199.
    L. Zhang, X. Qin, G. Shao, et al., A new route for preparation of titanium carbide derived carbon and its performance for supercapacitors. Mater. Lett. 122, 78–81 (2014)CrossRefGoogle Scholar
  200. 200.
    E.N. Hoffman, G. Yushin, B.G. Wendler, et al., Carbide-derived carbon membrane. Mater. Chem. Phys. 112, 587–591 (2008)CrossRefGoogle Scholar
  201. 201.
    B. Kruner, C. Odenwald, A. Tolosa, et al., Carbide-derived carbon beads with tunable nanopores from continuously produced polysilsesquioxanes for supercapacitor electrodes. Sustain. Energy Fuels 1, 1588–1600 (2017)CrossRefGoogle Scholar
  202. 202.
    A.H. Farmahini, D.S. Sholl, S.K. Bhatia, Fluorinated carbide-derived carbon: more hydrophilic, yet apparently more hydrophobic. J. Am. Chem. Soc. 137, 5969–5979 (2015)CrossRefGoogle Scholar
  203. 203.
    Y.-X. Zhou, Y.-Z. Chen, L. Cao, et al., Conversion of metal−organic framework to N-doped porous carbon incorporating Co and CoO nanoparticles: direct oxidation of alcohols to esters. Chem. Commun. 51, 8292–8295 (2015)CrossRefGoogle Scholar
  204. 204.
    X. Feng, X. Bo, L. Guo, CoM (M = Fe, Cu, Ni)-embedded nitrogen-enriched porous carbon framework for efficient oxygen and hydrogen evolution reactions. J. Power Sources 389, 249–259 (2018)CrossRefGoogle Scholar
  205. 205.
    D. Chen, C. Chen, W. Shen, et al., MOF-derived magnetic porous carbon-based sorbent: synthesis, characterization, and adsorption behavior of organic micropollutants. Adv. Powder Technol. 28(7), 1769–1779 (2017)CrossRefGoogle Scholar
  206. 206.
    M. Hui Yap, K. Loon Fow, G. Zheng Chen, Synthesis and applications of MOF-derived porous nanostructures. Green Energy Environ. 2, 218–245 (2017)CrossRefGoogle Scholar
  207. 207.
    X.-F. Guo, G.-J. Kim, Synthesis of ultrafine carbon black by pyrolysis of polymers using a direct current thermal plasma process. Plasma Chem. Plasma Process. 30, 75–90 (2010)CrossRefGoogle Scholar
  208. 208.
    J.J. Ivie, L.J. Forney, A numerical model of the synthesis of carbon black by benzene pyrolysis. AlChE J. 34(11), 1813–1820 (1988)CrossRefGoogle Scholar
  209. 209.
    Q. Li, Y. Li, Y. Chen, L. Wu, C. Yang, X. Cui, Synthesis of γ-graphyne by mechanochemistry and its electronic structure. Carbon 136, 248–254 (2018)CrossRefGoogle Scholar
  210. 210.
    N. Han, H. Liu, S. Zhou, J. Zhao, Possible formation of graphyne on transition metal surfaces: a competition with graphene from the chemical potential point of view. J. Phys. Chem. C 120, 14699–14705 (2016)CrossRefGoogle Scholar
  211. 211.
    M.M. Haley, Synthesis and properties of annulenic subunits of graphyne and graphdiyne nanoarchitectures. Pure Appl. Chem. 80(3), 519–532 (2008)CrossRefGoogle Scholar
  212. 212.
    D. Bousa, J. Luxa, D. Sedmidubsky, et al., Nanosized graphane (C1H1.14)n by hydrogenation of carbon nanofibers by Birch reduction method. RSC Adv. 6, 6475–6485 (2016)CrossRefGoogle Scholar
  213. 213.
    Q. Peng, A.K. Dearden, J. Crean, et al., New materials graphyne, graphdiyne, graphone, and graphane: review of properties, synthesis, and application in nanotechnology. Nanotechnol. Sci. Appl. 7, 1–29 (2014)CrossRefGoogle Scholar
  214. 214.
    V.E. Antonov, I.O. Bashkin, A.V. Bazhenov, et al., Multilayer graphane synthesized under high hydrogen pressure. Carbon 100, 465–473 (2016)CrossRefGoogle Scholar
  215. 215.
    C.F. Woellner, P.A. da Silva Autreto, D.S. Galvao, One side-graphene hydrogenation (graphone): substrate effects. MRS Adv. 1(20). (Nanomaterials and Synthesis)), 1429–1434 (2016)CrossRefGoogle Scholar
  216. 216.
    S.C. Ray, N. Soin, T. Makgato, et al., Graphene supported graphone/graphane bilayer nanostructure material for spintronics. Sci. Rep. 4, 3862 (2014)CrossRefGoogle Scholar
  217. 217.
    A. Kumar Sharma, R. Saini, R. Singh, A. Mahajan, R.K. Bedi, D.K. Aswal, Substituted copper phthalocyanine/multiwalled carbon nanotubes hybrid material for Cl2 sensing application. AIP Conf. Proc. 1591, 671–673 (2014)CrossRefGoogle Scholar
  218. 218.
    L.J. Brennan, Y.K. Gun’ko, Advances in the organometallic chemistry of carbon nanomaterials. Organometallics 34(11), 2086–2097 (2015)CrossRefGoogle Scholar
  219. 219.
    A.N. Khlobystov, A. Hirsch, Organometallic and coordination chemistry of carbon nanomaterials. (Editorial). Dalton Trans. 43, 7345–7345 (2014)CrossRefGoogle Scholar
  220. 220.
    Z.-Y. Wu, W. Wang, Terpyridine chelate complex-functionalized single-walled carbon nanotubes: synthesis and redox properties. Fullerenes, Nanotubes, Carbon Nanostruct. 23(2), 131–141 (2015)CrossRefGoogle Scholar
  221. 221.
    S.M. Alshehri, T. Ahamad, A. Aldalbahi, N. Alhokbany, Pyridylimine cobalt(II) and nickel(II) complex functionalized multiwalled carbon nanotubes and their catalytic activities for ethylene oligomerization. Adv. Polym. Technol. 35(1) (2016).
  222. 222.
    S. Sarkar, H. Zhang, J.-W. Huang, et al., Organometallic hexahapto functionalization of single layer graphene as a route to high mobility graphene devices. Adv. Mater. 25(8), 1131–1136 (2013)CrossRefGoogle Scholar
  223. 223.
    T. Ohmura, A. Usuki, Y. Mukae, et al., Supramolecular porphyrin-based metal–organic frameworks with fullerenes: crystal structures and preferential intercalation of C70. Chem. Asian J. 11, 700–704 (2016)CrossRefGoogle Scholar
  224. 224.
    J. Kaminsky, J. Vícha, P. Bour, M. Straka, Properties of the only thorium fullerene, Th@C84, uncovered. J. Phys. Chem. A 121, 3128–3135 (2017)CrossRefGoogle Scholar
  225. 225.
    P. Chakraborty, A. Nag, G. Paramasivam, et al., Fullerene-functionalized monolayer-protected silver clusters: [Ag29(BDT)12(C60)n]3− (n = 1−9). ACS Nano 12(3), 2415–2425 (2018)CrossRefGoogle Scholar
  226. 226.
    N.B. Jayaratna, M.M. Olmstead, B.I. Kharisov, H.V. Rasika Dias, Coinage metal pyrazolates [(3,5-(CF3)2Pz)M]3 (M = Au, Ag, Cu) as buckycatchers. Inorg. Chem. 55(17), 8277–8280 (2016)CrossRefGoogle Scholar
  227. 227.
    L.M. Manus, D.J. Mastarone, E.A. Waters, et al., Gd(III)-nanodiamond conjugates for MRI contrast enhancement. Nano Lett. 10(2), 484–489 (2010)CrossRefGoogle Scholar
  228. 228.
    L. Lai, A.S. Barnard, Functionalized nanodiamonds for biological and medical applications. J. Nanosci. Nanotechnol. 15(2), 989–999 (2015)CrossRefGoogle Scholar
  229. 229.
    A. Palkar, A. Kumbhar, A.J. Athans, L. Echegoyen, Pyridyl-functionalized and water-soluble carbon nano onions: first supramolecular complexes of carbon nano onions. Chem. Mater. 20(5), 1685–1687 (2008)CrossRefGoogle Scholar
  230. 230.
    B.-S. Xu, Prospects and research progress in nano onion-like fullerenes. New Carbon Mater. 23(4), 289–301 (2008)CrossRefGoogle Scholar
  231. 231.
    A. Arul, M. Christy, M. Young Oh, Y. Sung Lee, K. Suk Nahm, Nanofiber carbon-supported phthalocyanine metal complexes as solid electrocatalysts for lithium-air batteries. Electrochim. Acta 218, 335–344 (2016)CrossRefGoogle Scholar
  232. 232.
    J.-S. Li, Y.-J. Tang, S.-L. Li, et al., Carbon nanodots functional MOFs composites by a stepwise synthetic approach: enhanced H2 storage and fluorescent sensing. CrystEngComm 17, 1080–1085 (2015)CrossRefGoogle Scholar
  233. 233.
    R.A. Giguere, in Organic Synthesis: Theory and Application, ed. by T. Hudlicky (Ed), vol. 1, (JAI Press Inc., Bingley, UK, 1989), pp. 103–172Google Scholar
  234. 234.
    G. Roussy, J.A. Pearce, Foundations and Industrial Applications of Microwave and Radio Frecuency Fields (Wiley, Chichester/New York/Brisbane/Toronto/Singapore, 1995)Google Scholar
  235. 235.
    T. Matsumura-Inoue, M. Tanabe, T. Minami, T. Ohashi, A remarkably rapid synthesis of ruthenium(II) polypyridine complexes by microwave irradiation. Chem. Lett., 2443–2446 (1994)CrossRefGoogle Scholar
  236. 236.
    F. Wiesbrock, R. Hoogenboom, U.S. Schubert, Microwave-assisted polymer synthesis: state-of-the-art and future perspectives. Macromol. Rapid Commun. 25, 1739–1764 (2004)CrossRefGoogle Scholar
  237. 237.
    J. Aguilera-Sigalat, D. Bradshaw, Synthesis and applications of metal-organic framework – quantum dot (QD@MOF) composites. Coord. Chem. Rev. 307(2), 267–291 (2016)CrossRefGoogle Scholar
  238. 238.
    G. Fomo, O.J. Achadu, T. Nyokong, One-pot synthesis of graphene quantum dots–phthalocyanines supramolecular hybrid and the nvestigation of their photophysical properties. J. Mater. Sci. 53, 538–548 (2018)CrossRefGoogle Scholar
  239. 239.
    E. Ghasemi, E. Alimardani, E. Shams, G.A. Koohmareh, Modification of glassy carbon electrode with iron-terpyridine complex and iron-terpyridine complex covalently bonded to ordered mesoporous carbon substrate: preparation, electrochemistry and application to H2O2 determination. J. Electroanal. Chem. 789, 92–99 (2017)CrossRefGoogle Scholar
  240. 240.
    K. Deng, X. Li, H. Huang, A glassy carbon electrode modified with a nickel(II) norcorrole complex and carbon nanotubes for simultaneous or individual determination of ascorbic acid, dopamine, and uric acid. Microchim. Acta 183(7), 2139–2145 (2016)CrossRefGoogle Scholar
  241. 241.
    J. Marwan, T. Addou, D. Bélanger, Functionalization of glassy carbon electrodes with metal-based species. Chem. Mater. 17(9), 2395–2403 (2005)CrossRefGoogle Scholar
  242. 242.
    Q. Zheng, J.A. Gladysz, A synthetic breakthrough into an unanticipated stability regime: readily isolable complexes in which C16-C28 polyynediyl chains span two platinum atoms. J. Am. Chem. Soc. 127, 10508–10509 (2005)CrossRefGoogle Scholar
  243. 243.
    R. Dembinski, T. Bartik, B. Bartik, M. Jaeger, J.A. Gladysz, Toward metal-capped one-dimensional carbon allotropes: wirelike C6−C20 polyynediyl chains that span two redox-active (η5-C5Me5)Re(NO)(PPh3) endgroups. J. Am. Chem. Soc. 122(5), 810–822 (2000)CrossRefGoogle Scholar
  244. 244.
    X. Tian, S. Sarkar, M.L. Moser, et al., Effect of group 6 transition metal coordination on the conductivity of graphite nanoplatelets. Mater. Lett. 80, 171–174 (2012)CrossRefGoogle Scholar
  245. 245.
    C. Petit, B. Mendoza, D. O’Donnell, T.J. Bandosz, Effect of graphite features on the properties of metal–organic framework/graphite hybrid materials prepared using an in situ process. Langmuir 27(16), 10234–10242 (2011)CrossRefGoogle Scholar
  246. 246.
    C. Petit, T.J. Bandosz, Exploring the coordination chemistry of MOF–graphite oxide composites and their applications as adsorbents. Dalton Trans. 41, 4027–4035 (2012)CrossRefGoogle Scholar
  247. 247.
    Y. Sim, J. Park, Y.J. Kim, M.J. Seong, S. Hong, Synthesis of graphene layers using graphite dispersion in aqueous surfactant solutions. J. Korean Phys. Soc. 58(4), 938–942 (2011)CrossRefGoogle Scholar
  248. 248.
    L. Zheng, Y. Chi, Y. Dong, J. Lin, B. Wang, Electrochemiluminescence of water-soluble carbon nanocrystals released electrochemically from graphite. J. Am. Chem. Soc. 131(13), 4564–4565 (2009)CrossRefGoogle Scholar
  249. 249.
    A.B. Bourlinos, V. Georgakilas, R. Zboril, T.A. Sterioti, A.K. Stubos, Liquid-phase exfoliation of graphite towards solubilized graphenes. Small 5(16), 1841–1845 (2009)CrossRefGoogle Scholar
  250. 250.
    Z. Lin, Y. Yao, Z. Li, Y. Liu, Z. Li, C.P. Wong, Solvent-assisted thermal reduction of graphite oxide. J. Phys. Chem. C 114(35), 14819–14825 (2010)CrossRefGoogle Scholar
  251. 251.
    J. Liu, H. Jeong, J. Liu, K. Lee, J.Y. Park, Y. Ahn, S. Lee, Reduction of functionalized graphite oxides by trioctylphosphine in non-polar organic solvents. Carbon 48(8), 2282–2289 (2010)CrossRefGoogle Scholar
  252. 252.
    S. Niyogi, E. Bekyarova, M.E. Itkis, J.L. McWilliams, M.A. Hamon, R.C. Haddon, Solution properties of graphite and graphene. J. Am. Chem. Soc. 128(24), 7720–7721 (2006)CrossRefGoogle Scholar
  253. 253.
    Y. Liu, R.L. Vander Wal, V.N. Khabashesku, Functionalization of carbon nano-onions by direct fluorination. Chem. Mater. 19(4), 778–786 (2007)CrossRefGoogle Scholar
  254. 254.
    M.E. Plonska-Brzezinska, J. Mazurczyk, B. Palys, J. Breczko, A. Lapinski, A.T. Dubis, L. Echegoyen, Preparation and characterization of composites that contain small carbon nano-onions and conducting polyaniline. Chemistry 18(9), 2600–2608 (2012)CrossRefGoogle Scholar
  255. 255.
    E. Wajs, A. Molina-Ontoria, T.T. Nielsen, L. Echegoyen, A. Fragoso, Supramolecular solubilization of cyclodextrinmodified carbon nano-onions by host-guest interactions. Langmuir 31(1), 535–541 (2015)CrossRefGoogle Scholar
  256. 256.
    K.N. Semenova, N.A. Charykov, E.R. López, et al., Pressure dependence of the solubility of light fullerenes in n-nonane. J. Chem. Thermodyn. 112, 259–266 (2017)CrossRefGoogle Scholar
  257. 257.
    K.J. Moor, S.D. Snow, J.-H. Kim, Differential photoactivity of aqueous [C60] and [C70] fullerene aggregates. Environ. Sci. Technol. 49(10), 5990–5998 (2015)CrossRefGoogle Scholar
  258. 258.
    Y.J. Marcus, Solubilities of buckminsterfullerene and sulfur hexafluoride in various solvents. Phys. Chem. B 101(42), 8617–8623 (1997)CrossRefGoogle Scholar
  259. 259.
    U. Ritter, Y.I. Prylutskyy, M.P. Evstigneev, N.A. Davidenko, V.V. Cherepanov, A.I. Senenko, O.A. Marchenko, A.G. Naumovets, Structural features of highly stable reproducible C60 fullerene aqueous colloid solution probed by various techniques. Fullerenes, Nanotubes, Carbon Nanostruct. 23(6), 530–534 (2015)CrossRefGoogle Scholar
  260. 260.
    S. Park, J. An, I. Jung, et al., Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett. 9, 1593–1597 (2009)CrossRefGoogle Scholar
  261. 261.
    J. Texter, Graphene dispersions. Curr. Opin. Colloid Interface Sci. 19(2), 163–174 (2014)CrossRefGoogle Scholar
  262. 262.
    U. Khan, H. Porwal, A. O’Neill, K. Nawaz, P. May, J.N. Coleman, Solvent-exfoliated graphene at extremely high concentration. Langmuir 27, 9077–9082 (2011)CrossRefGoogle Scholar
  263. 263.
    C.C. Li, C.L. Huang, Preparation of clear colloidal solutions of detonation nanodiamond in organic solvents. Colloids Surf. A Physicochem. Eng. Asp. 353(1), 52–56 (2010)CrossRefGoogle Scholar
  264. 264.
    A. Pentecost, S. Gour, V. Mochalin, I. Knoke, Y. Gogotsi, Deaggregation of nanodiamond powders using salt- and sugar-assisted milling. ACS Appl. Mater. Interfaces 2(11), 3289–3294 (2010)CrossRefGoogle Scholar
  265. 265.
    Y. Zhu, X. Xu, B. Wang, Z. Feng, Surface modification and dispersion of nanodiamond in clean oil. China Particuol. 2(3), 132–134 (2004)CrossRefGoogle Scholar
  266. 266.
    Y. Wang, Y. Meng, S. Wang, C. Li, W. Shi, J. Chen, J. Wang, R. Huang, Direct solvent-derived polymer-coated nitrogen-doped carbon nanodots with high water solubility for targeted fluorescence imaging of glioma. Small 2015(29), 11, 3575–3581CrossRefGoogle Scholar
  267. 267.
    L. Deng, X. Wang, Y. Kuang, C. Wang, L. Luo, F. Wang, X. Sun, Development of hydrophilicity gradient ultracentrifugation method for photoluminescence investigation of separated non-sedimental carbon dots. Nano Res. 8(9), 2810–2821 (2015)CrossRefGoogle Scholar
  268. 268.
    F. Arcudi, L. Dordevic, M. Prato, Synthesis, separation, and characterization of small and highly fluorescent nitrogen-doped carbon nanodots. Angew. Chem. Int. Ed. Engl. 55(6), 2107–2112 (2016)CrossRefGoogle Scholar
  269. 269.
    J.I. Paredes, M. Burghard, Dispersions of individual single-walled carbon nanotubes of high length. Langmuir 20, 5149–5152 (2004)CrossRefGoogle Scholar
  270. 270.
    M. Jellur Rahman, T. Mieno, Water-dispersible multiwalled carbon nanotubes obtained from citric-acid-assisted oxygen plasma functionalization. J. Nanomater. 2014, 508192 (2014). (9 pp)Google Scholar
  271. 271.
    A. Graf, Y. Zakharko, S.P. Schießl, C. Backes, M. Pfohl, B.S. Flavel, J. Zaumseil, Large scale, selective dispersion of long single-walled carbon nanotubes with high photoluminescence quantum yield by shear force mixing. Carbon 105, 593–599 (2016)CrossRefGoogle Scholar
  272. 272.
    K. Jagadish, S. Srikantaswamy, K. Byrappa, L. Shruthi, M.R. Abhilash, Dispersion of multiwall carbon nanotubes in organic solvents through hydrothermal supercritical condition. J. Nanomater. 2015, 381275 (2015). (6 pp)CrossRefGoogle Scholar
  273. 273.
    O. Byl, J. Jie Liu, J.T. Yates Jr., Etching of carbon nanotubes by ozones. A surface area study. Langmuir 21, 4200–4204 (2005)CrossRefGoogle Scholar
  274. 274.
    L.P. Lukhele, B.B. Mamba, N. Musee, V. Wepener, Acute toxicity of double-walled carbon nanotubes to three aquatic organisms. J. Nanomater. 2015, 219074 (2015). (19 pp)CrossRefGoogle Scholar
  275. 275.
    Y. Liu, I. Zhitomirsky, Aqueous electrostatic dispersion and heterocoagulation of multiwalled carbon nanotubes and manganese dioxide for the fabrication of supercapacitor electrodes and devices. RSC Adv. 4, 45481–45489 (2014)CrossRefGoogle Scholar
  276. 276.
    M. Park, S. Kim, H. Kwon, et al., Selective dispersion of highly pure large-diameter semiconducting carbon nanotubes by a flavin for thin-film transistors. ACS Appl. Mater. Interfaces 8, 23270–23280 (2016)CrossRefGoogle Scholar
  277. 277.
    K. Huang, A. Saha, K. Dirian, C. Jiang, P.-L. Chu, J.M. Tour, D.M. Guldi, A.A. Martí, Carbon nanotubes dispersed in aqueous solution by ruthenium(II) polypyridyl complexes. Nanoscale 8, 13488–13497 (2016)CrossRefGoogle Scholar
  278. 278.
    S.H. Min, H.-I. Kim, K.-s. Kim, et al., Selective dispersion of single-walled carbon nanotubes by binaphthyl based conjugated polymers: integrated experimental and simulation approach. Polymer 96, 63–69 (2016)CrossRefGoogle Scholar
  279. 279.
    C. Hu, Y. Zhang, G. Bao, et al., DNA functionalized single-walled carbon nanotubes for electrochemical detection. J. Phys. Chem. B 109, 20072–20076 (2005)CrossRefGoogle Scholar
  280. 280.
    S.S. Karajanagi, H. Yang, P. Asuri, et al., Protein-assisted solubilization of single-walled carbon nanotubes. Langmuir 22(4), 1392–1395 (2006)CrossRefGoogle Scholar
  281. 281.
    C. Jiang, A. Saha, C. Xiang, et al., Increased solubility, liquid-crystalline phase, and selective functionalization of single-walled carbon nanotube polyelectrolyte dispersions. ACS Nano (7, 5), 4503–4510 (2013)CrossRefGoogle Scholar
  282. 282.
    R.E. Anderson, A.R. Barron, Solubilization of single-wall carbon nanotubes in organic solvents without sidewall functionalization. J. Nanosci. Nanotechnol. 7(10), 3646–3640 (2007)CrossRefGoogle Scholar
  283. 283.
    L. Henao-Holguín, V. Meza-Laguna, T.Y. Gromovoy, E. Basiuk, M. Rivera, V.A. Basiuk, Solvent-free covalent functionalization of fullerene C60 and pristine multi-walled carbon nanotubes with crown ethers. J. Nanosci. Nanotechnol. 16(6), 6173–6184 (2016)CrossRefGoogle Scholar
  284. 284.
    J. Chen, P.C. Collier, Noncovalent functionalization of single-walled carbon nanotubes with water-soluble porphyrins. J. Phys. Chem. B 109(16), 7605–7609 (2005)CrossRefGoogle Scholar
  285. 285.
    H. Wu, Z. Chen, J. Zhang, et al., Stably dispersed carbon nanotubes covalently bonded to phthalocyanine cobalt(II) for ppb-level H2S sensing at room temperature. J. Mater. Chem. A 4, 1096–1104 (2016)CrossRefGoogle Scholar
  286. 286.
    D.M. Guldi, G.M. Aminur Rahman, S. Qin, M. Tchoul, W.T. Ford, M. Marcaccio, D. Paolucci, F. Paolucci, S. Campidelli, M. Prato, Versatile coordination chemistry towards multifunctional carbon nanotube nanohybrids. Chem. Eur. J. 12, 2152–2161 (2006)CrossRefGoogle Scholar
  287. 287.
    D. Priftis, N. Petzetakis, G. Sakellariou, M. Pitsikalis, D. Baskaran, J.W. Mays, N. Hadjichristidis, Surface-initiated titanium-mediated coordination polymerization from catalyst-functionalized single and multiwalled carbon nanotubes. Macromolecules 42, 3340–3346 (2009)CrossRefGoogle Scholar
  288. 288.
    N. Tagmatarchis, M. Prato, D.M. Guldi, Soluble carbon nanotube ensembles for light-induced electron transfer interactions. Physica E 29(3), 546–550 (2005)CrossRefGoogle Scholar
  289. 289.
    G.E. Jay Poinern, A Laboratory Course in Nanoscience and Nanotechnology (CRC Press, Boca Raton, 2015)., 230 ppGoogle Scholar
  290. 290.
  291. 291.
  292. 292.
  293. 293.
    A. Groso, A. Petri-Fink, A. Magrez, M. Riediker, T. Meyer, Management of nanomaterials safety in research environment. Part. Fibre Toxicol. 7, 40 (2010). (8 pp)CrossRefGoogle Scholar
  294. 294.
    Y. Liu, Y. Zhao, B. Sun, C. Chen, Understanding the toxicity of carbon nanotubes. Acc. Chem. Res. 46(3), 702–713 (2013)CrossRefGoogle Scholar
  295. 295.
  296. 296.
    S. Bellucci, Carbon nanotubes toxicity, in Nanoparticles and Nanodevices in Biological Applications. Lecture Notes in Nanoscale Science and Technology, vol. XII, (Springer-Verlag, Berlin, Heidelberg, 2009), pp. 47–67CrossRefGoogle Scholar
  297. 297.
    W. Qi, L. Tian, W. An, et al., Curing the toxicity of multi-walled carbon nanotubes through native small-molecule drugs. Sci. Rep. 7, 2815 (2017)CrossRefGoogle Scholar
  298. 298.
    N. Kobayashi, H. Izumi, Y. Morimoto, Review of toxicity studies of carbon nanotubes. J. Occup. Health 59(5), 394–407 (2017)CrossRefGoogle Scholar
  299. 299.
    A. Jafar, Y. Alshatti, A. Ahmad, Carbon nanotube toxicity: the smallest biggest debate in medical care. Cogent Med. 3, 1217970 (2016)CrossRefGoogle Scholar
  300. 300.
  301. 301.
    E. Oberdorster, Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in brain of juvenile largemouth bass. Environ. Health Perspect. 112(10), 1058–1062 (2004)CrossRefGoogle Scholar
  302. 302.
    G.V. Andrievsky, V.K. Klochkov, L.I. Derevyanchenko, Is C60 fullerene molecule toxic?! Fullerenes, Nanotubes, Carbon Nanostruct. 13(4), 363–376 (2005)CrossRefGoogle Scholar
  303. 303.
    N. Gharbi, M. Pressac, M. Hadchouel, H. Szwarc, S.R. Wilson, F. Moussa, [60]Fullerene is an in vivo powerful antioxidant with no acute or sub-acute toxicity. Nano Lett. 5(12), 2578–2585 (2005)CrossRefGoogle Scholar
  304. 304.
    N. Shinohara, M. Gamo, J. Nakanishi, Fullerene C60: inhalation hazard assessment and derivation of a period-limited acceptable exposure level. Toxicol. Sci. 123(2), 576–589 (2011)CrossRefGoogle Scholar
  305. 305.
  306. 306.
    H. Aschberger, J. Johnston, V. Stone, et al., Review of fullerene toxicity and exposure – Appraisal of a human health risk assessment, based on open literature. Regul. Toxicol. Pharmacol. 58(3), 455–473 (2010)CrossRefGoogle Scholar
  307. 307.
    J. Kolosnjaj, H. Szwarc, F. Moussa, Toxicity studies of fullerenes and derivatives, in Bio-Applications of Nanoparticles. Advances in Experimental Medicine and Biology, ed. by W. C. W. Chan, vol. 620 (Springer, New York, 2007)CrossRefGoogle Scholar
  308. 308.
  309. 309.
    G. Lalwani, B. Sitharaman, Multifunctional fullerene and metallofullerene based nanobiomaterials. Nano LIFE 3, 1342003 (2013)CrossRefGoogle Scholar
  310. 310.
    D. Bradley, Is graphene safe? Mater. Today 15(6), 230 (2012)CrossRefGoogle Scholar
  311. 311.
    L. Ou, B. Song, H. Liang, et al., Toxicity of graphene-family nanoparticles: a general review of the origins and mechanisms. Part. Fibre Toxicol. 13, 57 (2016)CrossRefGoogle Scholar
  312. 312.
    M. Ema, M. Gamo, K. Honda, A review of toxicity studies on graphene-based nanomaterials in laboratory animals. Regul. Toxicol. Pharmacol. 85, 7–24 (2017)CrossRefGoogle Scholar
  313. 313.
    X. Guo, N. Mei, Assessment of the toxic potential of graphene family nanomaterials. J. Food Drug Anal. 22(1), 105–115 (2014)CrossRefGoogle Scholar
  314. 314.
    A.B. Seabr, A.J. Paula, R. de Lima, O.L. Alves, N. Durán, Nanotoxicity of graphene and graphene oxide. Chem. Res. Toxicol. 27(2), 159–168 (2014)CrossRefGoogle Scholar
  315. 315.
    G. Lalwani, M. D’Agati, A. Mahmud Khan, B. Sitharaman, Toxicology of graphene-based nanomaterials. Adv. Drug Deliv. Rev. 105(Pt B), 109–144 (2016)CrossRefGoogle Scholar
  316. 316.
    CDC – NIOSH Pocket Guide to Chemical Hazards – Graphite (natural). Accessed 3 Nov 2015
  317. 317.
  318. 318.
  319. 319.
    E.D. Kuempel, T. Sorahan, Identification of research needs to resolve the carcinogenicity of high-priority IARC carcinogens. Views and Expert Opinions of an IARC/NORA Expert Group Meeting, Lyon, France, 30 June – 2 July 2009. IARC Technical Publication No. 42. Lyon, France. Int. Agency Res. Cancer 42, 61–72 (2010)Google Scholar
  320. 320.
    T. Sorahan, J.M. Harrington, A “lugged” analysis of lung cancer risks in UK carbon black production workers, 1951–2004. Am. J. Ind. Med. 50(8), 555–564 (2007)CrossRefGoogle Scholar
  321. 321.
    ICBA, Health and hygiene – what is carbon black? (2016), Accessed 8 Aug 2018
  322. 322.
    Flexicon, Carbon black (2018), Accessed 8 Aug 2018

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Boris Ildusovich Kharisov
    • 1
  • Oxana Vasilievna Kharissova
    • 1
  1. 1.Universidad Autónoma de Nuevo LeónMonterreyMexico

Personalised recommendations