Applications and Cost-Benefit Data

  • Boris Ildusovich Kharisov
  • Oxana Vasilievna Kharissova


According to the statistic reports, graphite prices were up 30–40% in the second half of 2017 due to an improving steel industry, environmental related production problems in China, and continued strong demand growth from the lithium-ion battery industry. Prices for large flake graphite are currently up to $1200/t from US$750 in 2017. This is still well below the 2012 peak of US$2800/t which was entirely due to the commodity super cycle and strong steel demand. With steel demand also recovering and production issues in China, the supply/demand picture for graphite is very favorable [1]. Graphite prices depend on two factors – flake size and purity. Large flake (+80 mesh) and high-carbon (+94%) varieties command the premium pricing segment [2]. Graphite is applied in the following products and processes, among others:


Costs Graphite Carbon black, carbon nanotubes Carbon nanofibers Graphene 


  1. 1.
  2. 2.
  3. 3.
    E.I. Zhmurikov, I.A. Bubnenkov, V.V. Dremov, S.I. Samarin, A.S. Pokrovsky, D.V. Harkov, Graphite in science and nuclear technique. (2013). arXiv:1307.1869 [cond-mat.mtrl-sci]Google Scholar
  4. 4.
  5. 5.
    S. Pei, H.M. Cheng, The reduction of graphene oxide. Carbon 50, 3210–3228 (2012)CrossRefGoogle Scholar
  6. 6.
    W. Gao, L.B. Alemany, L. Ci, P.M. Ajayan, New insights into the structure and reduction of graphite oxide. Nat. Chem. 1, 403–408 (2009)CrossRefGoogle Scholar
  7. 7.
    S. Drewniak, R. Muzyka, A. Stolarczyk, T. Pustelny, M. Kotyczka-Morańska, M. Setkiewicz, Studies of reduced graphene oxide and graphite oxide in the aspect of their possible application in gas sensors. Sensors 16(1), 103 (2016)CrossRefGoogle Scholar
  8. 8.
    A.G. Bannov, J. Prášek, O. Jašek, L. Zajíˇcková, Investigation of pristine graphite oxide as room-temperature chemiresistive ammonia gas sensing material. Sensors 17, 320 (2017)CrossRefGoogle Scholar
  9. 9.
    O.A. Al-Hartomy, F. Al-Solamy, A. Al-Ghamdi, et al., Influence of carbon black structure and specific surface area on the mechanical and dielectric properties of filled rubber composites. Int. J. Polym. Sci. 2011., Article ID 521985, 8 pp (2011)Google Scholar
  10. 10.
  11. 11.
    G. Datt, C. Kotabage, A.C. Abhyankar, Ferromagnetic resonance of NiCoFe2O4 nanoparticles and microwave absorption properties of flexible NiCoFe2O4–carbon black/poly(vinyl alcohol) composites. Phys. Chem. Chem. Phys. 19, 20699–20712 (2017)CrossRefGoogle Scholar
  12. 12. Accessed 22 July 2018
  13. 13.
    C. Canales, L. Gidi, G. Ramírez, Electrochemical activity of modified glassy carbon electrodes with covalent bonds towards molecular oxygen reduction. Int. J. Electrochem. Sci. 10, 1684–1695 (2015)Google Scholar
  14. 14.
    J. Miliki, N. Markicevi, A. Jovic, R. Hercigonja, B. Šljuki, Glass-like carbon, pyrolytic graphite or nanostructured carbon for electrochemical sensing of bismuth ion? Process. Appl. Ceram. 10(2), 87–95 (2016)CrossRefGoogle Scholar
  15. 15.
    Y.E. Seidel, R.W. Lindström, Z. Jusys, et al., Stability of nanostructured Pt/glassy carbon electrodes prepared by colloidal lithography. J. Electrochem. Soc. 155(3), K50–K58 (2008)CrossRefGoogle Scholar
  16. 16.
    Y. Jalit, M.C. Rodríguez, M.D. Rubianes, S. Bollo, G.A. Rivas, Glassy carbon electrodes modified with multiwall carbon nanotubes dispersed in polylysine. Electroanalysis 20(15), 1623–1631 (2008)CrossRefGoogle Scholar
  17. 17.
    S.E. Subramani, T.V. Vineesh, T. Priya, V. Kathikeyan, N. Thinakaran, Electrochemical detection of Pb(II) ions using glassy carbon electrode surface modified by functionalized mesoporous carbon. Sens. Lett. 15(4), 320–327 (2017)CrossRefGoogle Scholar
  18. 18.
    C. Sun, L. Rotundo, C. Garino, Electrochemical CO2 reduction at glassy carbon electrodes functionalized by MnI and ReI organometallic complexes. Chem. Phys. Chem. 18(22), 3219–3229 (2017)CrossRefGoogle Scholar
  19. 19.
    A. Braun, J. Ilavsky, S. Seifert, Highly porous activated glassy carbon film sandwich structure for electrochemical energy storage in ultracapacitor applications: study of the porous film structure and gradient. J. Mater. Res. 25(8), 1532–1540 (2010)CrossRefGoogle Scholar
  20. 20.
    V.D. Chekanova, A.S. Fialkov, Vitreous carbon (preparation, properties, and applications). Russ. Chem. Rev. 1971(40), 413–428 (1971)CrossRefGoogle Scholar
  21. 21.
    C. Garion, Mechanical properties for reliability analysis of structures in glassy carbon. World J. Mech. 4, 79–89 (2014)CrossRefGoogle Scholar
  22. 22.
    N. Komarevskiy, V. Shklover, L. Braginsky, C. Hafner, J. Lawson, Potential of glassy carbon and silicon carbide photonic structures as electromagnetic radiation shields for atmospheric re-entry. Opt. Express 20(13), 14189–14200 (2012)CrossRefGoogle Scholar
  23. 23.
    J. Myalski, B. Hekner, A. Posmyk. The influence of glassy carbon on tribological properties in metal – ceramic composites with skeleton reinforcement. Additional Conferences (Device Packaging, HiTEC, HiTEN, & CICMT), 2015, Vol. 2015, No. CICMT, 000121–000124 (2015)CrossRefGoogle Scholar
  24. 24.
    Y. Koval, A. Geworski, K. Gieb, I. Lazareva, P. Müller, Fabrication and characterization of glassy carbon membranes. J. Vac. Sci. Technol. B: Nanotechnol. Microelectron.: Mater. Process. Meas. Phenom. 32, 042001 (2014)Google Scholar
  25. 25.
    M. Vomero, E. Castagnola, F. Ciarpella, E. Maggiolini, N. Goshi, E. Zucchini, S. Carli, L. Fadiga, S. Kassegne, D. Ricci, Highly stable glassy carbon interfaces for long-term neural stimulation and low-noise recording of brain activity. Sci. Rep. 7, 40332 (2017)CrossRefGoogle Scholar
  26. 26.
  27. 27. Accessed 9 Aug 2018
  28. 28.
    Y. Xing, L. Dai, Nanodiamonds for nanomedicine. Nanomedicine 4(2), 207–218 (2009)CrossRefGoogle Scholar
  29. 29.
    V. Vaijayanthimala, H.-C. Chang, Functionalized fluorescent nanodiamonds for biomedical applications. Nanomedicine 4(1), 47–55 (2009)CrossRefGoogle Scholar
  30. 30.
    S.H. Lee, Gas sensor using nanodiamond and gas detection method. 2009, 6 pp. KR 2009066740 A 20090624 Patent written in Korean. Application: KR 2007–134421 20071220. Priority: CAN 151:92754 AN 2009:780521Google Scholar
  31. 31.
    S. Raina, W.P. Kang, J.L. Davidson, Optimizing nitrogen incorporation in nanodiamond film for bio-analyte sensing. Diam. Relat. Mater. 18(5–8), 718–721 (2009)CrossRefGoogle Scholar
  32. 32.
    P.A. Vityaz, The state of the art and prospects of detonation-synthesis nanodiamond applications in Belarus. Phys. Solid State 46(4), 606–610 (2004)CrossRefGoogle Scholar
  33. 33.
    S. Shiozaki, Normal-temperature glass, its formation, and normal temperature glass coating material. 2009, 18 pp. JP 2009102188 A 20090514 Patent written in Japanese. Application: JP 2007–274359 20071022. Priority: CAN 150:499296 AN 2009:583008Google Scholar
  34. 34.
    V.S. Bondar, A.P. Puzyr, Possibilities and prospects for creation of new nanoprocesses based on detonation nanodiamond particles: medicobiological and technical aspects. Konstruktsii iz Kompozitsionnykh Materialov 4, 80–94 (2005)Google Scholar
  35. 35.
    S.A. Zibrov, V.V. Vasil'ev, V.L. Velichanskii, V.G. Pevgov, V.M. Rudoi, Method for protection of documents, valuable papers or products with nanodiamonds with active NV centers. 2009, 4 pp. RU 2357866 C1 20090610 Patent written in Russian. Application: RU 2008–136466 20080910. Priority: CAN 151:7812 AN 2009:703362Google Scholar
  36. 36.
    D. Zhang, X.-G. Hu, Y. Tong, F.-L. Huang, The research development of nanodiamond as a lubricating additive. Runhuayou 21(1), 50–54 (2006)Google Scholar
  37. 37.
    J. Luo, X. Liu, X. Wang, Effect of proportion of nano-diamond and zirconia on color of core resin. Xiandai Kouqiang Yixue Zazhi 22(3), 251–254 (2008)Google Scholar
  38. 38.
    M. Comet, V. Pichot, B. Siegert, D. Spitzer, J.-P. Moeglin, Y. Boehrer, Use of nanodiamonds as a reducing agent in a chlorate-based energetic composition. Propellants Explos. Pyrotech. 34(2), 166–173 (2009)CrossRefGoogle Scholar
  39. 39.
    A.M. Schrand, S.A.C. Hens, O.A. Shenderova, Nanodiamond particles: properties and perspectives for bioapplications. Crit. Rev. Solid State Mater. Sci. 34(1–2), 18–74 (2009)CrossRefGoogle Scholar
  40. 40.
    O. Faklaris, V. Joshi, T. Irinopoulou, P. Tauc, H. Girard, C. Gesset, M. Senour, A. Thorel, J.-C. Arnault, J.-P. Boudou, P.A. Curmi, and F. Treussart, Determination of the internalization pathway of photoluminescent nanodiamonds in mammalian cells for biological labeling and optimization of the fluorescent yield., e-Print Archive, Physics, 2009, 1–24, arXiv:0907.1148v1 [physics.optics]
  41. 41.
  42. 42.
  43. 43.
    P.R. Unwin, A.G. Güell, G. Zhang, Nanoscale electrochemistry of sp(2) carbon materials: from graphite and graphene to carbon nanotubes. Acc. Chem. Res. 49(9), 2041–2048 (2016)CrossRefGoogle Scholar
  44. 44.
    N.A. Koratkar, Graphene in composite materials: synthesis, characterization and applications (DEStech Publications, Inc., Lancaster, 2013), p. 198Google Scholar
  45. 45.
    S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.B.T. Nguyen, R.S. Ruoff, Graphene-based composite materials. Nature 442, 282–286 (2006)CrossRefGoogle Scholar
  46. 46.
    X. Gong, G. Liu, Y. Li, et al., Functionalized-graphene composites: fabrication and applications in sustainable energy and environment. Chem. Mater. 28(22), 8082–8118 (2016)CrossRefGoogle Scholar
  47. 47.
    H. Zhang, Y. Yuan, Y. Sun, et al., An ionic liquid-magnetic graphene composite for magnet dispersive solid-phase extraction of triazine herbicides in surface water followed by high performance liquid chromatography. Analyst 143, 175–181 (2018)CrossRefGoogle Scholar
  48. 48.
    B.C. Marin, J. Liu, E. Aklile, et al., SERS-enhanced piezoplasmonic graphene composite for biological and structural strain mapping. Nanoscale 9, 1292–1298 (2017)CrossRefGoogle Scholar
  49. 49.
    D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H.B. Dommett, G. Evmenenko, S.B.T. Nguyen, R.S. Ruoff, Preparation and characterization of graphene oxide paper. Nature 448(7152), 457–460 (2007)CrossRefGoogle Scholar
  50. 50.
    Y. Huang, M. Zhu, W. Meng, et al., Robust reduced graphene oxide paper fabricated with a household non-stick frying pan: a large-area freestanding flexible substrate for supercapacitors. RSC Adv. 5, 33981–33989 (2015)CrossRefGoogle Scholar
  51. 51.
    J. Gao, C. Liu, L. Miao, X. Wang, Y. Chen, Free-standing reduced graphene oxide paper with high electrical conductivity. J. Electron. Mater. 45(3), 1290–1295 (2016)CrossRefGoogle Scholar
  52. 52.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)CrossRefGoogle Scholar
  53. 53.
    D.A. Areshkin, C.T. White, Building blocks for integrated graphene circuits. Nano Lett. 7(11), 3253–3259 (2007)CrossRefGoogle Scholar
  54. 54.
    H. Raza (ed.), Graphene Nanoelectronics: Metrology, Synthesis, Properties and Applications (Springer, New York, 2012), pp. 586Google Scholar
  55. 55.
    X. Liang, Z. Fu, S.Y. Chou, D.A. Areshkin, C.T. White, Graphene transistors fabricated via transfer-printing in device active-areas on large wafer. Nano Lett. 7(12), 3840–3844 (2007)CrossRefGoogle Scholar
  56. 56.
    Y.G. Semenov, K.W. Kim, J.M. Zavada, Spin field effect transistor with a graphene channel. Appl. Phys. Lett. 91, 153105 (2007)CrossRefGoogle Scholar
  57. 57.
    Z. Chen, Y.-M. Lin, M.J. Rooks, P. Avouris, Graphene nano-ribbon electronics. Physica E 40(2), 228–232 (2007)CrossRefGoogle Scholar
  58. 58.
    R.C. Ordonez, C.K. Hayashi, C.M. Torres, et al., Rapid fabrication of graphene field-effect transistors with liquid-metal interconnects and electrolytic gate dielectric made of honey. Sci. Rep. 7, 10171 (2017)CrossRefGoogle Scholar
  59. 59.
    P. Aydogan, O. Balci, C. Kocabas, S. Suzer, et al., Monitoring the operation of a graphene transistor in an integrated circuit by XPS. Org. Electron. 37, 178–182 (2016)CrossRefGoogle Scholar
  60. 60.
    T. Jayasekera, J.W. Mintmire, Transport in multiterminal graphene nanodevices. Nanotechnology 18(42), 424033 (2007)CrossRefGoogle Scholar
  61. 61.
    N. Staley, H. Wang, C. Puls, J. Forster, T.N. Jackson, K. McCarthy, B. Clouser, Y. Liu, Lithography-free fabrication of graphene devices. Appl. Phys. Lett. 90, 143518 (2007)CrossRefGoogle Scholar
  62. 62.
    S.J. Heerema, C. Dekker, Graphene nanodevices for DNA sequencing. Nat. Nanotechnol. 11, 127–136 (2016)CrossRefGoogle Scholar
  63. 63.
    M. Balcioglu, B. Zafer Buyukbekar, M. Selman Yavuz, M.V. Yigit, Smart-polymer-functionalized graphene nanodevices for thermo-switch-controlled biodetection. ACS Biomater Sci. Eng. 1(1), 27–36 (2015)CrossRefGoogle Scholar
  64. 64.
    X. Wang, L. Zhi, K. Mullen, Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8(1), 323–327 (2008)CrossRefGoogle Scholar
  65. 65.
    M.F. Bhopal, D.W. Lee, A. ur Rehman, S.H. Lee, Past and future of graphene/silicon heterojunction solar cells: a review. J. Mater. Chem. C 5, 10701–10714 (2017)CrossRefGoogle Scholar
  66. 66.
    J. Yoon, H. Sung, G. Lee, W. Cho, et al., Superflexible, high-efficiency perovskite solar cells utilizing graphene electrodes: towards future foldable power sources. Energy Environ. Sci. 10, 337–345 (2017)CrossRefGoogle Scholar
  67. 67.
    N. Park, S. Hong, G. Kim, S.-H. Jhi, Computational study of hydrogen storage characteristics of covalent-bonded graphenes. J. Am. Chem. Soc. 129(29), 8999–9003 (2007)CrossRefGoogle Scholar
  68. 68.
    C. Zhou, J.A. Szpunar, X. Cui, Synthesis of Ni/graphene nanocomposite for hydrogen storage. ACS Appl. Mater. Interfaces 8(24), 15232–15241 (2016)CrossRefGoogle Scholar
  69. 69.
    H.G. Shiraz, O. Tavakoli, Investigation of graphene-based systems for hydrogen storage. Renew. Sust. Energ. Rev. 74, 104–109 (2017)CrossRefGoogle Scholar
  70. 70.
    F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Detection of individual gas molecules adsorbed on graphene. Nature Mater. 6, 652–655 (2007)CrossRefGoogle Scholar
  71. 71.
    C.I.L. Justino, A.R. Gomes, A.C. Freitas, Graphene based sensors and biosensors. TrAC Trends Anal. Chem. 91, 53–66 (2017)CrossRefGoogle Scholar
  72. 72.
    S.S. Varghese, S. Lonkar, K.K. Singh, et al., Recent advances in graphene based gas sensors. Sensors Actuators B Chem. 218, 160–183 (2015)CrossRefGoogle Scholar
  73. 73.
  74. 74.
  75. 75.
    J. Cai, W. Li, P. Zhao, J. Yu, Z. Yang, Low-cost and high-performance electrospun carbon nanofiber film anodes. Int. J. Electrochem. Sci. 13, 2934–2944 (2018)CrossRefGoogle Scholar
  76. 76.
    B. Kumar, M. Asadi, D. Pisasale, et al., Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction. Nat. Commun. 4, 2819 (2013)CrossRefGoogle Scholar
  77. 77.
  78. 78.
    M. Bierdel, S. Buchholz, V. Michele, L. Mleczko, R. Rudolf, M. Voetz, A. Wolf, Industrial production of multiwalled carbon nanotubes. Phys. Stat. Sol. 244, 3939–3943 (2007)CrossRefGoogle Scholar
  79. 79. Accessed 9 Aug 2018
  80. 80.
    I.V. Zaporotskova, N.P. Boroznina, Y.N. Parkhomenko, L.V. Kozhitov, Carbon nanotubes: sensor properties. A review. Mod. Electron. Mater. 2(4), 95–105 (2016)CrossRefGoogle Scholar
  81. 81.
    O.V. Kharissova, L.M. Torres Martínez, B.I. Kharisov, in Advances in Carbon Nanostructures, ed. by A.M.T. Silva, S.A.C. Carabineiro. Recent Trends of Reinforcement of Cement with Carbon Nanotubes and Fibers, (INTECH, London, UK, 2016)Google Scholar
  82. 82.
    M.F.L. De Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart, Carbon nanotubes: present and future commercial applications. Science 339(6119), 535–539 (2013)CrossRefGoogle Scholar
  83. 83.
    M. Eguílaz, C.J. Venegas, A. Gutiérrez, Carbon nanotubes non-covalently functionalized with cytochrome c: a new bioanalytical platform for building bienzymatic biosensors. Microchem. J. 128, 161–165 (2016)CrossRefGoogle Scholar
  84. 84.
    S. Hou, A. Zhang, M. Su, Nanomaterials for biosensing applications. Nanomaterials 6, 58, 4 pp (2016)CrossRefGoogle Scholar
  85. 85.
    M. Durga Prakash, S.R.K. Vanjari, C.S. Sharma, S.G. Singh, Ultrasensitive, label free, chemiresistive nanobiosensor using multiwalled carbon nanotubes embedded electrospun SU-8 nanofibers. Sensors 16, 1354, 15 pp (2016)CrossRefGoogle Scholar
  86. 86.
    G. Hughes, K. Westmacott, K.C. Honeychurch, A. Crew, R.M. Pemberton, J.P. Hart, Recent advances in the fabrication and application of screen-printed electrochemical (bio)sensors based on carbon materials for biomedical, agri-food and environmental analyses. Biosensors 6, 50 (2016). 39 ppCrossRefGoogle Scholar
  87. 87.
    X. Sun, Z. Gong, Y. Cao, X. Wang, Acetylcholiesterase biosensor based on poly(diallyldimethylammonium chloride)-multi-walled carbon nanotubes-graphene hybrid film. Nano-Micro Lett. 5(1), 47–56 (2013)CrossRefGoogle Scholar
  88. 88.
    B.C. Kim, I. Lee, S.-J. Kwon, et al., Fabrication of enzyme-based coatings on intact multi-walled carbon nanotubes as highly effective electrodes in biofuel cells. Sci. Rep. 7, 40202 (2017)CrossRefGoogle Scholar
  89. 89.
    Z. Jiang, D. Chen, Y. Yu, J. Miao, Y. Liu, L. Zhang, Composite fibers prepared from multi-walled carbon nanotubes/cellulose dispersed/dissolved in ammonium/dimethyl sulfoxide mixed solvent. RSC Adv. 7, 2186–2192 (2017)CrossRefGoogle Scholar
  90. 90.
    J. Foldyna, V. Foldyna, M. Zelenák, Dispersion of carbon nanotubes for application in cement composites. Procedia Eng. 149, 94–99 (2016)CrossRefGoogle Scholar
  91. 91.
    T. Jarolim, M. Labaj, R. Hela, K. Michnova, Carbon nanotubes in cementitious composites: dispersion, implementation, and influence on mechanical characteristics. Adv. Mater. Sci. Eng. 2016., Article ID 7508904, 6Google Scholar
  92. 92.
    M.G. Raucci, M. Alvarez-Perez, D. Giugliano, S. Zeppetelli, L. Ambrosio, Properties of carbon nanotube-dispersed Sr-hydroxyapatite injectable material for bone defects. Regen Biomater. 3(1), 13–23 (2016)CrossRefGoogle Scholar
  93. 93.
    Y. Dror, W. Salalha, W. Pyckhout-Hintzen, et al., From carbon nanotube dispersion to composite nanofibers. Progr. Colloid Polym. Sci. 130, 64–69 (2005)Google Scholar
  94. 94.
    J.-S. Kim, G.-W. Kim, Hysteresis compensation of piezoresistive carbon nanotube/polydimethylsiloxane composite-based force sensors. Sensors 17, 229 (2017). 12 ppCrossRefGoogle Scholar
  95. 95.
    S.-H. Park, J. Bae, Polymer composite containing carbon nanotubes and their applications. Rec. Patents Nanotechn. 11(2), 109–115 (2017)Google Scholar
  96. 96.
    S. Boukheir, A. Len, J. Füzi, V. Kenderesi, Structural characterization and electrical properties of carbon nanotubes/epoxy polymer composites. J. Appl. Polym. Sci. 134(8), 44514 (2017)CrossRefGoogle Scholar
  97. 97.
    M. Shigeta, K. Kamiya, M. Uejima, S. Okada, Dispersion of carbon nanotubes in organic solvent by commercial polymers with ethylene chains: Experimental and theoretical studies. Jpn. J. Appl. Phys. 54, 035101 (2015)CrossRefGoogle Scholar
  98. 98.
    S.-H. Jang, S. Kawashima, H. Yin, Influence of carbon nanotube clustering on mechanical and electrical properties of cement pastes. Materials 9, 220 (2016). 11 ppCrossRefGoogle Scholar
  99. 99.
    A. Mukherjee, S. Majumdar, A.D. Servin, L. Pagano, O.P. Dhankher, J.C. White, Carbon nanomaterials in agriculture: a critical review. Front. Plant Sci. 7, 172 (2016). 16 ppCrossRefGoogle Scholar
  100. 100.
    B.D. Che, L.-T.T. Nguyen, B.Q. Nguyen, et al., Effects of carbon nanotube dispersion methods on the radar absorbing properties of MWCNT/epoxy nanocomposites. Macromol. Res. 22(11), 1221–1228 (2014)CrossRefGoogle Scholar
  101. 101.
    V.S.W. Chan, Nanomedicine: an unresolved regulatory issue. Regul. Toxicol. Pharmacol. 46(3), 218–224 (2006)CrossRefGoogle Scholar
  102. 102.
    Z. Liu, X. Sun, N. Nakayama-Ratchford, H. Dai, Supramolecular chemistry on water- soluble carbon nanotubes for drug loading and delivery. ACS Nano 1(1), 50–56 (2007)CrossRefGoogle Scholar
  103. 103.
    C. Klumpp, K. Kostarelos, M. Prato, A. Bianco, Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. BBA-Biomembranes 1758(3), 404–412 (2006)CrossRefGoogle Scholar
  104. 104.
    A. Bianco, K. Kostarelos, M. Prato, Applications of carbon nanotubes in drug delivery. Curr. Opin. Chem. Biol. 9(6), 674–679 (2005)CrossRefGoogle Scholar
  105. 105.
    K. Fu, W. Huang, Y. Lin, D. Zhang, T.W. Hanks, A.M. Rao, Y.-P. Sun, Functionalization of carbon nanotubes with bovine serum albumin in homogeneous aqueous solution. J. Nanosci. Nanotechn. 2(5), 457–461 (2002)CrossRefGoogle Scholar
  106. 106.
    L.W. Zhang, L. Zeng, A.R. Barron, N.A. Monteiro-Riviere, Biological interactions of functionalized single-wall carbon nanotubes in human epidermal keratinocytes. Int. J. Toxicology 26(2), 103–113 (2007)CrossRefGoogle Scholar
  107. 107.
    X. Dong, Z. Sun, X. Wang, D. Zhu, L. Liu, X. Leng, Simultaneous monitoring of the drug release and antitumor effect of a novel drug delivery system-MWCNTs/DOX/TC. Drug Deliv. 24(1), 143–151 (2017)CrossRefGoogle Scholar
  108. 108.
    S. Kumar, R. Rani, N. Dilbaghi, K. Tankeshwar, K.-H. Kim, Carbon nanotubes: a novel material for multifaceted applications in human healthcare. Chem. Soc. Rev. 46, 158–196 (2017)CrossRefGoogle Scholar
  109. 109.
    S. Sharma, N. Kumar Mehra, K. Jain, N. Kumar Jain, Effect of functionalization on drug delivery potential of carbon nanotubes. Art. Cells. Nanomed. Biotechn. 44(8), 1851–1860 (2016)CrossRefGoogle Scholar
  110. 110.
    P.S. Uttekar, A.M. Kulkarni, P.N. Sable, P.D. Chaudhari, Surface modification of carbon nano tubes with nystatin for drug delivery applications. Indian J. Pharm. Educ. Res. 50(3), 385–390 (2016)CrossRefGoogle Scholar
  111. 111.
    T. Ohta, Y. Hashida, F. Yamashita, M. Hashida, Development of novel drug and gene delivery carriers composed of single-walled carbon nanotubes and designed peptides with PEGylation. J. Pharm. Sci. 105(9), 2815–2824 (2016)CrossRefGoogle Scholar
  112. 112.
    M. Kawaguchi, T. Fukushima, T. Hayakawa, N. Nakashima, Y. Inoue, S. Takeda, K. Okamura, K. Taniguchi, Preparation of carbon nanotube-alginate nanocomposite gel for tissue engineering. Dent. Mater. J. 25(4), 719–725 (2006)CrossRefGoogle Scholar
  113. 113.
    C.J. Gannon, P. Cherukuri, B.I. Yakobson, L. Cognet, J.S. Kanzius, C. Kittrell, B.R. Weisman, S.A. Curley, Carbon nanotube-enhanced thermal destruction of cancer cells in a noninvasive radiofrequency field. Cancer 110(12), 2654–2665 (2007)CrossRefGoogle Scholar
  114. 114.
    R.P. Feazell, N. Nakayama-Ratchford, H. Dai, S.J. Lippard, Soluble single-walled carbon nanotubes as longboat delivery systems for platinum(IV) anticancer drug design. J. Amer. Chem. Soc. 129, 8438–8439 (2007)CrossRefGoogle Scholar
  115. 115.
    Y. Hwang, S.-H. Park, J.W. Lee, Applications of functionalized carbon nanotubes for the therapy and diagnosis of cancer. Polymers 9, 13 (2017). 26 ppCrossRefGoogle Scholar
  116. 116.
    N.M. Bardhan, 30 years of advances in functionalization of carbon nanomaterials for biomedical applications: a practical review. (Annual issue: early career scholars in materials science). J. Mater. Res. 32(1), 107–127 (2017)CrossRefGoogle Scholar
  117. 117.
    E. Heister, E.W. Brunner, G.R. Dieckmann, I. Jurewicz, A.B. Dalton, Are carbon nanotubes a natural solution? Applications in biology and medicine. ACS Appl. Mater. Interfaces 5(6), 1870–1891 (2013)CrossRefGoogle Scholar
  118. 118.
    I. Jesion, M. Skibniewski, E. Skibniewska, et al., Graphene and carbon nanocompounds: biofunctionalization and applications in tissue engineering. Biotechnol. Biotechnol. Equip. 29(3), 415–422 (2015)CrossRefGoogle Scholar
  119. 119.
    R. Amezcua, A. Shirolkar, C. Fraze, D.A. Stout, Nanomaterials for cardiac myocyte tissue engineering. Nano 6, 133 (2016). 15 ppGoogle Scholar
  120. 120.
    J. Venkatesan, R. Ramjee Pallela, S.-K. Kim, Applications of carbon nanomaterials in bone tissue engineering. J. Biomed. Nanotechnol. 10, 3105–3123 (2014)CrossRefGoogle Scholar
  121. 121.
    N. Burblies, J. Schulze, H.-C. Schwarz, Coatings of different carbon nanotubes on platinum electrodes for neuronal devices: preparation, cytocompatibility and interaction with spiral ganglion cells. PLoS One 11(7), e0158571 (2016)CrossRefGoogle Scholar
  122. 122.
    J.L. Hernandez-Lopez, E.R. Alvizo-Paez, S.E. Moya, J. Ruiz-Garcia, Ordered carbon nanotube thin films produced by the trapping of water-soluble single-wall carbon nanotubes at the air/water interface. Carbon 45(12), 2448–2450 (2007)CrossRefGoogle Scholar
  123. 123.
    J. Li, Y. Zhang, Large-scale aligned carbon nanotubes films. Physica E 33(1), 235–239 (2006)CrossRefGoogle Scholar
  124. 124.
    M.A.H. Nawaz, S. Rauf, et al., One step assembly of thin films of carbon nanotubes on screen printed interface for electrochemical aptasensing of breast cancer biomarker. Sensors 16, 1651 (2016). 15 ppCrossRefGoogle Scholar
  125. 125.
    F. Li, B. Tang, J. Xiu, S. Shufen Zhang, Hydrophilic modification of multi-walled carbon nanotube for building photonic crystals with enhanced color visibility and mechanical strength. Molecules 21, 547 (2016). 9 ppCrossRefGoogle Scholar
  126. 126.
    X. Meng, Y. Liu, M. Huang, J.-P. Cao, Flexible perfluoroalkoxy films filled with carbon nanotubes and their electric heating property. J. Appl. Polym. Sci. 134(18), 44782 (2017). 6 ppCrossRefGoogle Scholar
  127. 127.
    A. Almowarai, Y. Ueno, Y. Show, Fabrication of CNT dispersion fluid by wet-jet milling method for coating on bipolar plate of fuel cell. J. Nanomater., 7 (2015., Article ID 315017)Google Scholar
  128. 128.
    A.G. Rozhin, Y. Sakakibara, M. Tokumoto, H. Kataura, Y. Achiba, Near-infrared nonlinear optical properties of single-wall carbon nanotubes embedded in polymer film. Thin Solid Films 464, 368–372 (2004)CrossRefGoogle Scholar
  129. 129.
    K. Yu, Z. Zhu, M. Xu, Q. Li, W. Lu, Q. Chen, Soluble carbon nanotube films treated using a hydrogen plasma for uniform electron field emission. Surf. Coat. Technol. 179(1), 63–69 (2004)CrossRefGoogle Scholar
  130. 130.
    C. Hu, X. Chen, S. Hu, Water-soluble single-walled carbon nanotubes films: preparation, characterization and applications as electrochemical sensing films. J. Electroanalytical Chem. 586(1), 77–85 (2006)CrossRefGoogle Scholar
  131. 131.
    J. Zaumseil, Single-walled carbon nanotube networks for flexible and printed electronics. Semicond. Sci. Technol. 30, 074001 (2015). 20 ppCrossRefGoogle Scholar
  132. 132.
    S. Kumar, B.A. Cola, R. Jackson, S. Graham, A review of carbon nanotube ensembles as flexible electronics and advanced packaging materials. J. Electron. Packag. 133, 020906 (2011). 12 ppCrossRefGoogle Scholar
  133. 133.
    S. Lawes, A. Riese, Q. Sun, N. Cheng, X. Sun, Printing nanostructured carbon for energy storage and conversion applications. Carbon 92, 150–176 (2015)CrossRefGoogle Scholar
  134. 134.
    M.A. Meitl, Y. Zhou, A. Gaur, S. Jeon, M.L. Usrey, M.S. Strano, et al., Solution casting and transfer printing single-walled carbon nanotube films. Nano Lett. 4(9), 1643–1647 (2004)CrossRefGoogle Scholar
  135. 135.
    G.S. Tulevski, J. Hannon, A. Afzali, Z. Chen, P. Avouris, C.R. Kagan, Chemically assisted directed assembly of carbon nanotubes for the fabrication of large-scale device arrays. J. Amer. Chem. Soc. 129(39), 11964–11968 (2007)CrossRefGoogle Scholar
  136. 136.
    M.I.H. Panhuis, J. Wu, S.A. Ashraf, G.G. Wallace, Conducting textiles from single-walled carbon nanotubes. Synth. Met. 157(8), 358–362 (2007)CrossRefGoogle Scholar
  137. 137.
    X. Huang, R.K. Kobos, G. Xu, Hair coloring and cosmetic compositions comprising carbon nanotubes. US7276088 (2007)Google Scholar
  138. 138.
    A.J. Miller, R.A. Hatton, S.R.P. Silva, Interpenetrating multiwall carbon nanotube electrodes for organic solar cells. Appl. Phys. Lett. 89, 133117 (2006)CrossRefGoogle Scholar
  139. 139.
    H.A. Alturaif, Z.A. ALOthman, J.G. Shapter, S.M. Wabaidur, Use of carbon nanotubes (CNTs) with polymers in solar cells. Molecules 19, 17329–17344 (2014)CrossRefGoogle Scholar
  140. 140.
    T. Grace, L.P. Yu, C. Gibson, et al., Investigating the effect of carbon nanotube diameter and wall number in carbon nanotube/silicon heterojunction solar cells. Nano 6, 52 (2016). 13 ppGoogle Scholar
  141. 141.
    C. Klumpp, K. Kostarelos, M. Prato, A. Bianco, Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. Biochim. Biophys. Acta Biomembr. 1758(3), 404–412 (2006)CrossRefGoogle Scholar
  142. 142.
  143. 143.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Boris Ildusovich Kharisov
    • 1
  • Oxana Vasilievna Kharissova
    • 1
  1. 1.Universidad Autónoma de Nuevo LeónMonterreyMexico

Personalised recommendations