General Data on Carbon Allotropes

  • Boris Ildusovich Kharisov
  • Oxana Vasilievna Kharissova


Carbon, the 6th element in the periodic table denoted by the letter “C” and true element of life, provides the chemical basis for life on Earth due to its ability to form stable bonds with other carbon atoms, oxygen, nitrogen, sulfur, and many other elements in Mendeleev’s Periodic Table. Carbon is found almost everywhere, and it is one of the most abundant materials on earth. It is the 4th most common element in the universe and 15th most common on earth’s crust. All life on Earth contains various forms of carbonic structures, from proteins to the tallest trees [1]. Existence of a host of carbon inorganic forms is the also responsibility of stable single and multiple carbon-carbon covalent bonds. This process is called catenation, in which an element can bond with itself to form long chains. During much time, only two conventional carbon allotropes, graphite (black, soft, and conductive) and diamond (shiny, transparent, and extremely hard), have been known. Only in the last few decades have new synthetic carbon allotropes such as carbon nanotubes, fullerenes (buckminsterfullerene C60, smaller and higher fullerenes), and graphene been discovered. Their outstanding properties, current and potential applications, testify their unique scientific and technological importance [2]. In addition, a host of other carbon structures, both obtained and still predicted, have been reported up to date.


Carbon allotropes General data Hybridization Dimensionality Predicted allotropes Classifications 


  1. 1.
    G.E.J. Poinern, A laboratory course in nanoscience and nanotechnology (CRC Press, Boca Raton, 2015). 230 pp.Google Scholar
  2. 2.
    A. Hirsch, The era of carbon allotropes. Nat. Mater. 9, 868–871 (2010)CrossRefGoogle Scholar
  3. 3.
    B. Pan, J. Xiao, J. Li, P. Liu, C. Wang, G. Yang, Carbyne with finite length: The one-dimensional sp carbon. Sci. Adv. 1(9), e1500857 (2015)CrossRefGoogle Scholar
  4. 4.
    B. Lesiak, L. Kövér, J. Tóth, et al., C sp2/sp3 hybridisations in carbon nanomaterials – XPS and (X)AES study. Appl. Surf. Sci. 452, 223–231 (2018)CrossRefGoogle Scholar
  5. 5.
    L.A. Burchfield, M. AlFahim, R.S. Wittman, F. Delodovicic, N. Manini, Novamene: a new class of carbon allotropes. Heliyon 3(2), e00242 (2017)CrossRefGoogle Scholar
  6. 6.
    A. Seral-Ascaso, R. Garriga, M.L. Sanjuán, et al., ‘Laser chemistry’ synthesis, physicochemical properties, and chemical processing of nanostructured carbon foams. Nanoscale Res. Lett. 8, 233 (2013)CrossRefGoogle Scholar
  7. 7.
    Z. Zeng, L. Yang, Q. Zeng, H. Lou, et al., Synthesis of quenchable amorphous diamond. Nat. Commun. 8 (2017). Article number: 322Google Scholar
  8. 8.
    P.S. Karthik, A.L. Himaja, S. Prakash Singh, Carbon-allotropes: synthesis methods, applications and future perspectives. Carbon Lett. 15(4), 219–237 (2014)CrossRefGoogle Scholar
  9. 9.
    C.S. Casari, M. Tommasini, R.R. Tykwinski, A. Milani, Carbon-atom wires: 1-D systems with tunable properties. Nanoscale 8, 4414–4435 (2016)CrossRefGoogle Scholar
  10. 10.
    A. Mostofizadeh, Y. Li, B. Song, Y. Huang, Synthesis, properties, and applications of low-dimensional carbon-related nanomaterials. J. Nanomater. 2011., Article ID 685081, 21 (2011)CrossRefGoogle Scholar
  11. 11.
    J.N. Tiwari, R.N. Tiwari, K.S. Kim, Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog. Mater. Sci. 57, 724–803 (2012)CrossRefGoogle Scholar
  12. 12.
    N. Aich, J. Plazas-Tuttle, J.R. Lead, N.B. Saleh, A critical review of nanohybrids: synthesis, applications and environmental implications. Environ. Chem. 11, 609–623 (2014)CrossRefGoogle Scholar
  13. 13.
    V. Thanh Dang, D. Dung Nguyen, T. Thanh Cao, et al., Recent trends in preparation and application of carbon nanotube–graphene hybrid thin films. Adv. Nat. Sci. Nanosci. Nanotechnol 7, 033002 (2016)CrossRefGoogle Scholar
  14. 14.
    A.C. Tripathi, S.A. Saraf, S.K. Saraf, Carbon nanotropes: a contemporary paradigm in drug delivery. Materials 8, 3068–3100 (2015)CrossRefGoogle Scholar
  15. 15.
    F. Delodovici, N. Manini, R.S. Wittman, D.S. Choi, M. Al Fahim, L.A. Burchfield, Protomene: a new carbon allotrope. Carbon 126, 574–579 (2018)CrossRefGoogle Scholar
  16. 16.
    L.A. Burchfield, M. Al Fahim, R.S. Wittman, F. Delodovici, N. Manini, Novamene: a new class of carbon allotropes. Heliyon 3, e00242 (2017)CrossRefGoogle Scholar
  17. 17.
  18. 18.
    S. Zhang, J. Zhou, Q. Wang, X. Chen, Y. Kawazoe, P. Jena, Penta-graphene: a new carbon allotrope. Proc. Natl. Acad. Sci. 112(8), 2372–2377 (2015)CrossRefGoogle Scholar
  19. 19.
    Y. Tian, D. Chassaing, A.G. Nasibulin, et al., The local study of a nanoBud structure. Phys. Stat. Sol. B 245(10), 2047–2050 (2008)CrossRefGoogle Scholar
  20. 20.
    S.R. Stoyanov, A.V. Titov, P. Král, Transition metal and nitrogen doped carbon nanostructures. Coord. Chem. Rev. 253, 2852–2871 (2009)CrossRefGoogle Scholar
  21. 21.
    Q.-L. Zhu, Q. Xu, Immobilization of ultrafine metal nanoparticles to high-surface-area materials and their catalytic applications. Chem 1, 220–245 (2016)CrossRefGoogle Scholar
  22. 22.
    A. Oganov, R.J. Hemley, R.M. Hazen, A.P. Jones, Structure, bonding, and mineralogy of carbon at extreme conditions. Rev. Mineral. Geochem. 75, 47–77 (2013)CrossRefGoogle Scholar
  23. 23.
    A.N. Khlobystov, A. Hirsch, Organometallic and coordination chemistry of carbon nanomaterials. Dalton Trans. 43, 7345 (2014)CrossRefGoogle Scholar
  24. 24.
    X.-W. Liu, T.-J. Sun, J.-L. Hu, S.-D. Wang, Composites of metal–organic frameworks andcarbon-based materials: preparations, functionalities and applications. J. Mater. Chem. A 4, 3584–3616 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Boris Ildusovich Kharisov
    • 1
  • Oxana Vasilievna Kharissova
    • 1
  1. 1.Universidad Autónoma de Nuevo LeónMonterreyMexico

Personalised recommendations