Different Approaches of Data and Attribute Selection on Headache Disorder

  • Svetlana Simić
  • Zorana Banković
  • Dragan SimićEmail author
  • Svetislav D. Simić
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11315)


Half of the general population experiences a headache during any given year. Medical data and information in turn provide knowledge on which physicians base their decisions and actions but, in general, it is not easy to manage them. It becomes increasingly necessary to extract useful knowledge and make scientific decisions for diagnosis and treatment of this disease from the database. This paper presents comparison of data and attribute selected features by automatic machine learning methods and algorithms, and by diagnostic tools and expert physicians, almost all from the last decade.


Data selection Attribute selection Headache Diagnosis Machine learning Decision support 


  1. 1.
    Hagen, K., Zwart, J.-A., Vatten, L., Stovner, L.J., Bovin, G.: Prevalence of migraine and non-migrainous headache – head-HUNT, a large population-based study. Cephalalgia 20(10), 900–906 (2000)CrossRefGoogle Scholar
  2. 2.
    Simić, S., Simić, D., Slankamenac, P., Simić-Ivkov, M.: Computer-assisted diagnosis of primary headaches. In: Corchado, E., Abraham, A., Pedrycz, W. (eds.) HAIS 2008. LNCS (LNAI), vol. 5271, pp. 314–321. Springer, Heidelberg (2008). Scholar
  3. 3.
    Relich, M., Bzdyra, K.: Knowledge discovery in enterprise databases for forecasting new product success. In: Jackowski, K., Burduk, R., Walkowiak, K., Woźniak, M., Yin, H. (eds.) IDEAL 2015. LNCS, vol. 9375, pp. 121–129. Springer, Cham (2015). Scholar
  4. 4.
    Simić, S., Simić, D., Slankamenac, P., Simić-Ivkov, M.: Rule-based fuzzy logic system for diagnosing migraine. In: Darzentas, J., Vouros, George A., Vosinakis, S., Arnellos, A. (eds.) SETN 2008. LNCS (LNAI), vol. 5138, pp. 383–388. Springer, Heidelberg (2008). Scholar
  5. 5.
    Krawczyk, B., Simić, D., Simić, S., Woźniak, M.: Automatic diagnosis of primary headaches by machine learning methods. Open Med. 8(2), 157–165 (2013)CrossRefGoogle Scholar
  6. 6.
    Jackowski, K., Jankowski, D., Ksieniewic, P., Simić, D., Simić, S., Wozniak, M.: Ensemble classifier systems for headache diagnosis. In: Piętka, E., Kawa, J., Wieclawek, W. (eds.) Information Technologies in Biomedicine. AISC, vol. 284, pp. 273–284. Springer, Cham (2014). Scholar
  7. 7.
    Simić, S., Banković, Z., Simić, D., Simić, S.D.: A hybrid clustering approach for diagnosing medical diseases. In: de Cos Juez, F., et al. (eds.) Hybrid Artificial Intelligent Systems. LNCS, vol. 10870, pp. 741–752. Springer, Cham (2018). Scholar
  8. 8.
    The International Classification of Headache Disorders. 3rd edn.
  9. 9.
    Arendt-Nielsen, L.: Headache: muscle tension, trigger points and referred pain. Int. J. Clin. Pract. 69(Suppl. 182), 8–12 (2015)CrossRefGoogle Scholar
  10. 10.
    Tallón-Ballesteros, A.J., Correia, L., Cho, S.-B.: Stochastic and non-stochastic feature selection. In: Yin, H., et al. (eds.) IDEAL 2017. LNCS, vol. 10585, pp. 592–598. Springer, Cham (2017). Scholar
  11. 11.
    Arauzo-Azofra, A., Benitez, J.M., Castro, J.L.: Consistency measures for feature selection. J. Intell. Inf. Syst. 30(3), 273–292 (2008)CrossRefGoogle Scholar
  12. 12.
    Kira, K., Rendell, L. A.: A practical approach to feature selection. In: Ninth International Workshop on Machine Learning, pp. 249–256 (1992)CrossRefGoogle Scholar
  13. 13.
    Rosario, F.S., Thangadurai, K.: Relief: feature selection approach. Int. J. Innov. Res. Dev. 4(11), 218–224 (2015)Google Scholar
  14. 14.
    Hansen, M.H., Yu, B.: Model selection and the principle of minimum description length. J. Am. Stat. Assoc. 96(454), 746–774 (2001)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Sugiura, N.: Further analysis of the data by Akaike’s information criterion and the finite corrections. Commun. Stat. 7(454), 13–26 (1978)CrossRefGoogle Scholar
  16. 16.
    Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L.: Feature Extraction, Foundations and Applications. Springer, Heidelberg (2006). Scholar
  17. 17.
    Michelakos, I., Mallios, N., Papageorgiou, E., Vassilakopoulos, M.: Ant colony optimization and data mining. In: Bessis, N., Xhafa, F. (eds.) Next Generation Data Technologies for Collective Computational Intelligence. SCI, vol. 352, pp. 31–60. Springer, Heidelberg (2011). Scholar
  18. 18.
    Celik, U., Yurtay, N.: An ant colony optimization algorithm-based classification for the diagnosis of primary headaches using a website questionnaire expert system. Turk. J. Electr. Eng. Comput. Sci. 25(5), 4200–4210 (2017)CrossRefGoogle Scholar
  19. 19.
    Tallón-Ballesteros, A.J., Riquelme, J.C.: Tackling ant colony optimization meta-heuristic as search method in feature subset selection based on correlation or consistency measures. In: Corchado, E., Lozano, J.A., Quintián, H., Yin, H. (eds.) IDEAL 2014. LNCS, vol. 8669, pp. 386–393. Springer, Cham (2014). Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Svetlana Simić
    • 1
  • Zorana Banković
    • 2
  • Dragan Simić
    • 3
    Email author
  • Svetislav D. Simić
    • 3
  1. 1.Faculty of MedicineUniversity of Novi SadNovi SadSerbia
  2. 2.Frontiers Media SAMadridSpain
  3. 3.Faculty of Technical SciencesUniversity of Novi SadNovi SadSerbia

Personalised recommendations