Multi-dimensional Bayesian Network Classifier Trees

  • Santiago Gil-Begue
  • Pedro Larrañaga
  • Concha Bielza
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11314)


Multi-dimensional Bayesian network classifiers (MBCs) are probabilistic graphical models tailored to solving multi-dimensional classification problems, where an instance has to be assigned to multiple class variables. In this paper, we propose a novel multi-dimensional classifier that consists of a classification tree with MBCs in the leaves. We present a wrapper approach for learning this classifier from data. An experimental study carried out on randomly generated synthetic data sets shows encouraging results in terms of predictive accuracy.


Multi-dimensional and multi-label supervised classification problems Bayesian networks Classification trees Meta-classifiers Hybrid classifiers Performance evaluation measures 



This work has been partially supported by the Spanish Ministry of Economy, Industry and Competitiveness through the Cajal Blue Brain (C080020-09; the Spanish partner of the Blue Brain initiative from EPFL) and TIN2016-79684-P projects, by the Regional Government of Madrid through the S2013/ICE-2845-CASI-CAM-CM project, and by Fundación BBVA grants to Scientific Research Teams in Big Data 2016.


  1. 1.
    Bielza, C., Larrañaga, P.: Discrete Bayesian network classifiers: A survey. ACM Comput. Surv. 47(1), 5 (2014). Scholar
  2. 2.
    Bielza, C., Li, G., Larrañaga, P.: Multi-dimensional classification with Bayesian networks. Int. J. Approx. Reason. 52(6), 705–727 (2011). Scholar
  3. 3.
    Borchani, H., Bielza, C., Martínez-Martí, P., Larrañaga, P.: Markov blanket-based approach for learning multi-dimensional Bayesian network classifiers: An application to predict the European quality of life-5 dimensions (EQ-5D) from the 39-item Parkinson’s disease questionnaire (PDQ-39). J. Biomed. Inform. 45(6), 1175–1184 (2012). Scholar
  4. 4.
    Borchani, H., Bielza, C., Toro, C., Larrañaga, P.: Predicting human immunodeficiency virus inhibitors using multi-dimensional Bayesian network classifiers. Artif. Intell. Med. 57(3), 219–229 (2013). Scholar
  5. 5.
    Breiman, L., Friedman, J.H., Olshen, R., Stone, C.J.: Classification and Regression Trees. Wadsworth, California (1984)zbMATHGoogle Scholar
  6. 6.
    van der Gaag, L.C., de Waal, P.R.: Muti-dimensional Bayesian network classifiers. In: Proceedings of the 3rd European Workshop in Probabilistic Graphical Models, pp. 107–114 (2006)Google Scholar
  7. 7.
    Gibaja, E., Ventura, S.: A tutorial on multi-label learning. ACM Comput. Surv. 47(3), 52 (2015). Scholar
  8. 8.
    Henrion, M.: Propagating uncertainty in Bayesian networks by probabilistic logic sampling. Mach. Intell. Pattern Recognit. 5, 149–163 (1988). Scholar
  9. 9.
    Ide, J.S., Cozman, F.G.: Random generation of Bayesian networks. In: Bittencourt, G., Ramalho, G.L. (eds.) SBIA 2002. LNCS (LNAI), vol. 2507, pp. 366–376. Springer, Heidelberg (2002). Scholar
  10. 10.
    Kohavi, R.: Scaling up the accuracy of naive-Bayes classifiers: A decision-tree hybrid. In: Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, vol. 96, pp. 202–207 (1996)Google Scholar
  11. 11.
    Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. The MIT Press, Cambridge (2009)zbMATHGoogle Scholar
  12. 12.
    Landwehr, N., Hall, M., Frank, E.: Logistic model trees. Mach. Learn. 59(1–2), 161–205 (2005). Scholar
  13. 13.
    Ortigosa-Hernández, J., Rodríguez, J.D., Alzate, L., Lucania, M., Inza, I., Lozano, J.A.: Approaching sentiment analysis by using semi-supervised learning of multi-dimensional classifiers. Neurocomputing 92, 98–115 (2012). Scholar
  14. 14.
    Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann Publishers, Burlington (1988)zbMATHGoogle Scholar
  15. 15.
    Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986). Scholar
  16. 16.
    Rodríguez, J.D., Pérez, A., Arteta, D., Tejedor, D., Lozano, J.A.: Using multidimensional Bayesian network classifiers to assist the treatment of multiple sclerosis. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 42(6), 1705–1715 (2012). Scholar
  17. 17.
    Schapire, R.E., Singer, Y.: Improved boosting algorithms using confidence-rated predictions. Mach. Learn. 37(3), 297–336 (1999). Scholar
  18. 18.
    Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997). Scholar
  19. 19.
    Zhang, M., Zhou, Z.: A review on multi-label learning algorithms. IEEE Trans. Knowl. Data Eng. 26(8), 1819–1837 (2014). Scholar
  20. 20.
    Zheng, Z., Webb, G.I.: Lazy learning of Bayesian rules. Mach. Learn. 41(1), 53–84 (2000). Scholar
  21. 21.
    Zhu, S., Ji, X., Xu, W., Gong, Y.: Multi-labelled classification using maximum entropy method. In: Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 274–281. ACM (2005).

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Santiago Gil-Begue
    • 1
  • Pedro Larrañaga
    • 1
  • Concha Bielza
    • 1
  1. 1.Universidad Politécnica de MadridBoadilla del MonteSpain

Personalised recommendations