Comparison of Local Analysis Strategies for Exudate Detection in Fundus Images

  • Joana Pereira
  • Adrián ColomerEmail author
  • Valery Naranjo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11314)


Diabetic Retinopathy (DR) is a severe and widely spread eye disease. Exudates are one of the most prevalent signs during the early stage of DR and an early detection of these lesions is vital to prevent the patient’s blindness. Hence, detection of exudates is an important diagnostic task of DR, in which computer assistance may play a major role. In this paper, a system based on local feature extraction and Support Vector Machine (SVM) classification is used to develop and compare different strategies for automated detection of exudates. The main novelty of this work is allowing the detection of exudates using non-regular regions to perform the local feature extraction. To accomplish this objective, different methods for generating superpixels are applied to the fundus images of E-OPHTA database and texture and morphological features are extracted for each of the resulting regions. An exhaustive comparison among the proposed methods is also carried out.


Exudates Superpixels LBP Granulometries SVM 



This paper was supported by the European Union’s Horizon 2020 research and innovation programme under the Project GALAHAD [H2020-ICT-2016-2017, 732613]. The work of Adrián Colomer has been supported by the Spanish Government under a FPI Grant [BES-2014-067889]. We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan Xp GPU used for this research.


  1. 1.
    Sidibé, D., Sadek, I., Mériaudeau, F.: Discrimination of retinal images containing bright lesions using sparse coded features and SVM. Comput. Biol. Med. 62, 175–184 (2015)CrossRefGoogle Scholar
  2. 2.
    Zhou, W., Wu, C., Yi, Y., Du, W.: Automatic detection of exudates in digital color fundus images using superpixel multi-feature classification. IEEE Access 5, 17077–17088 (2017)CrossRefGoogle Scholar
  3. 3.
    Sinthanayothin, C., et al.: Automated detection of diabetic retinopathy on digital fundus images. Diabet. Med. 19(2), 105–112 (2002)CrossRefGoogle Scholar
  4. 4.
    Walter, T., Klein, J.C., et al.: A contribution of image processing to the diagnosis of diabetic retinopathy-detection of exudates in color fundus images of the human retina. IEEE Trans. Med. Imaging 21(10), 1236–1243 (2002)CrossRefGoogle Scholar
  5. 5.
    Ali, S., et al.: Statistical atlas based exudate segmentation. Comput. Med. Imaging Graph. 37(5–6), 358–368 (2013)CrossRefGoogle Scholar
  6. 6.
    Zhang, X., Thibault, G., Decencière, E., Marcotegui, B., et al.: Exudate detection in color retinal images for mass screening of diabetic retinopathy. Med. Image Anal. 18(7), 1026–1043 (2014)CrossRefGoogle Scholar
  7. 7.
    Li, H., Chutatape, O.: Automated feature extraction in color retinal images by a model based approach. IEEE Trans. Biomed. Eng. 51(2), 246–254 (2004)CrossRefGoogle Scholar
  8. 8.
    Welfer, D., Scharcanski, J., Marinho, D.R.: A coarse-to-fine strategy for automatically detecting exudates in color eye fundus images. Comput. Med. Imaging Graph. 34(3), 228–235 (2010)CrossRefGoogle Scholar
  9. 9.
    Giancardo, L., et al.: Exudate-based diabetic macular edema detection in fundus images using publicly available datasets. Med. Image Anal. 16(1), 216–226 (2012)CrossRefGoogle Scholar
  10. 10.
    Amel, F., Mohammed, M., Abdelhafid, B.: Improvement of the hard exudates detection method used for computer-aided diagnosis of diabetic retinopathy. Int. J. Image Graph. Signal Process. 4(4), 19 (2012)CrossRefGoogle Scholar
  11. 11.
    Akram, M.U., Khalid, S., Tariq, A., Khan, S.A., Azam, F.: Detection and classification of retinal lesions for grading of diabetic retinopathy. Comput. Biol. Med. 45, 161–171 (2014)CrossRefGoogle Scholar
  12. 12.
    Akram, M.U., Tariq, A., Khan, S.A., Javed, M.Y.: Automated detection of exudates and macula for grading of diabetic macular edema. Comput. Methods Programs Biomed. 114(2), 141–152 (2014)CrossRefGoogle Scholar
  13. 13.
    Machairas, V.: Waterpixels and their application to image segmentation learning. Ph.D. thesis, Université de recherche Paris Sciences et Lettres (2016)Google Scholar
  14. 14.
    Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)CrossRefGoogle Scholar
  15. 15.
    Veksler, O., Boykov, Y., Mehrani, P.: Superpixels and supervoxels in an energy optimization framework. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6315, pp. 211–224. Springer, Heidelberg (2010). Scholar
  16. 16.
    Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002)CrossRefGoogle Scholar
  17. 17.
    Levinshtein, A., Stere, A., Kutulakos, K.N., Fleet, D.J., Dickinson, S.J., Siddiqi, K.: TurboPixels: fast superpixels using geometric flows. IEEE Trans. Pattern Anal. Mach. Intell. 31(12), 2290–2297 (2009)CrossRefGoogle Scholar
  18. 18.
    Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)CrossRefGoogle Scholar
  19. 19.
    Machairas, V., Faessel, M., Cárdenas-Peña, D., Chabardes, T., Walter, T., Decencière, E.: Waterpixels. IEEE Trans. Image Process. 24(11), 3707–3716 (2015)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)CrossRefGoogle Scholar
  21. 21.
    Guo, Z., Zhang, L., Zhang, D.: Rotation invariant texture classification using LBP variance (LBPV) with global matching. Pattern Recognit. 43(3), 706–719 (2010)CrossRefGoogle Scholar
  22. 22.
    Morales, S., Naranjo, V., Angulo, J., Alcañiz, M.: Automatic detection of optic disc based on PCA and mathematical morphology. IEEE Trans. Med. Imaging 32(4), 786–796 (2013)CrossRefGoogle Scholar
  23. 23.
    Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2(3), 27 (2011)Google Scholar
  24. 24.
    Decencière, E., Cazuguel, G., Zhang, X., Thibault, G., Klein, J.C., Meyer, F., et al.: TeleOphta: machine learning and image processing methods for teleophthalmology. IRBM 34(2), 196–203 (2013)CrossRefGoogle Scholar
  25. 25.
    DErrico, J.: inpaint\_nans, matlab central file exchange (2004). Accessed 13 Aug 2012

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Joana Pereira
    • 1
  • Adrián Colomer
    • 2
    Email author
  • Valery Naranjo
    • 2
  1. 1.Campus GualtarUniversity of MinhoBragaPortugal
  2. 2.Instituto de Investigación e Innovación en Bioingeniería (I3B)Universitat Politècnica de ValènciaValenciaSpain

Personalised recommendations