Deep Learning-Based Approach for the Semantic Segmentation of Bright Retinal Damage

  • Cristiana Silva
  • Adrián ColomerEmail author
  • Valery Naranjo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11314)


Regular screening for the development of diabetic retinopathy is imperative for an early diagnosis and a timely treatment, thus preventing further progression of the disease. The conventional screening techniques based on manual observation by qualified physicians can be very time consuming and prone to error. In this paper, a novel automated screening model based on deep learning for the semantic segmentation of exudates in color fundus images is proposed with the implementation of an end-to-end convolutional neural network built upon U-Net architecture. This encoder-decoder network is characterized by the combination of a contracting path and a symmetrical expansive path to obtain precise localization with the use of context information. The proposed method was validated on E-OPHTHA and DIARETDB1 public databases achieving promising results compared to current state-of-the-art methods.


Semantic segmentation Deep learning Fundus images Exudates U-Net 



This paper was supported by the European Union’s Horizon 2020 research and innovation programme under the Project GALAHAD [H2020-ICT-2016-2017, 732613]. The work of Adrián Colomer has been supported by the Spanish Government under a FPI Grant [BES-2014-067889]. We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan Xp GPU used for this research.


  1. 1.
    World Health Organization: Diabetes fact sheet. Sci. Total Environ. 20, 1–88 (2011)Google Scholar
  2. 2.
    Verma, L., Prakash, G., Tewari, H.K.: Diabetic retinopathy: time for action. No complacency please! Bull. World Health Organ. 80(5), 419–419 (2002)Google Scholar
  3. 3.
    Sopharak, A.: Machine learning approach to automatic exudate detection in retinal images from diabetic patients. J. Mod. Opt. 57(2), 124–135 (2010)CrossRefGoogle Scholar
  4. 4.
    Imani, E., Pourreza, H.R.: A novel method for retinal exudate segmentation using signal separation algorithm. Comput. Methods Programs Biomed. 133, 195–205 (2016)CrossRefGoogle Scholar
  5. 5.
    Haloi, M., Dandapat, S., Sinha, R.: A Gaussian scale space approach for exudates detection, classification and severity prediction. arXiv preprint arXiv:1505.00737 (2015)
  6. 6.
    Welfer, D., Scharcanski, J., Marinho, D.R.: A coarse-to-fine strategy for automatically detecting exudates in color eye fundus images. Comput. Med. Imaging Graph. 34(3), 228–235 (2010)CrossRefGoogle Scholar
  7. 7.
    Harangi, B., Hajdu, A.: Automatic exudate detection by fusing multiple active contours and regionwise classification. Comput. Biol. Med. 54, 156–171 (2014)CrossRefGoogle Scholar
  8. 8.
    Sopharak, A., Uyyanonvara, B., Barman, S.: Automatic exudate detection from non-dilated diabetic retinopathy retinal images using fuzzy C-means clustering. Sensors 9(3), 2148–2161 (2009)CrossRefGoogle Scholar
  9. 9.
    Havaei, M., Davy, A., Warde-Farley, D.: Brain tumor segmentation with deep neural networks. Med. Image Anal. 35, 18–31 (2017)CrossRefGoogle Scholar
  10. 10.
    Liskowski, P., Krawiec, K.: Segmenting retinal blood vessels with deep neural networks. IEEE Trans. Med. Imag. 35(11), 2369–2380 (2016)CrossRefGoogle Scholar
  11. 11.
    Pratt, H., Coenen, F., Broadbent, D.M., Harding, S.P.: Convolutional neural networks for diabetic retinopathy. Procedia Comput. Sci. 90, 200–205 (2016)CrossRefGoogle Scholar
  12. 12.
    Gulshan, V., Peng, L., Coram, M.: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316(22), 2402–2410 (2016)CrossRefGoogle Scholar
  13. 13.
    Prentašić, P., Lončarić, S.: Detection of exudates in fundus photographs using deep neural networks and anatomical landmark detection fusion. Comput. Methods Programs Biomed. 137, 281–292 (2016)CrossRefGoogle Scholar
  14. 14.
    Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). Scholar
  15. 15.
    Garcia-Garcia, A., Orts-Escolano, S., Oprea, S., Villena-Martinez, V., Garcia-Rodriguez, J.: A review on deep learning techniques applied to semantic segmentation, pp. 1–23. arXiv preprint arXiv:1704.06857 (2017)
  16. 16.
    Deng, Z., Fan, H., Xie, F., Cui, Y., Liu, J.: Segmentation of dermoscopy images based on fully convolutional neural network. In: IEEE International Conference on Image Processing (ICIP 2017), pp. 1732–1736. IEEE (2017)Google Scholar
  17. 17.
    Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440. IEEE (2014)Google Scholar
  18. 18.
    Li, W., Qian, X., Ji, J.: Noise-tolerant deep learning for histopathological image segmentation, vol. 510 (2017)Google Scholar
  19. 19.
    Chen, H., Qi, X., Yu, L.: DCAN: deep contour-aware networks for object instance segmentation from histology images. Med. Image Anal. 36, 135–146 (2017)CrossRefGoogle Scholar
  20. 20.
    Walter, T., Klein, J.C., Massin, P., Erginay, A.: A contribution of image processing to the diagnosis of diabetic retinopathy-detection of exudates in color fundus images of the human retina. IEEE Trans. Med. Imaging 21(10), 1236–1243 (2002)CrossRefGoogle Scholar
  21. 21.
    Morales, S., Naranjo, V., Angulo, U., Alcaniz, M.: Automatic detection of optic disc based on PCA and mathematical morphology. IEEE Trans. Med. Imaging 32(4), 786–796 (2013)CrossRefGoogle Scholar
  22. 22.
    Zhang, X., Thibault, G., Decencière, E.: Exudate detection in color retinal images for mass screening of diabetic retinopathy. Med. Image Anal. 18(7), 1026–1043 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Cristiana Silva
    • 1
  • Adrián Colomer
    • 2
    Email author
  • Valery Naranjo
    • 2
  1. 1.Campus GualtarUniversity of MinhoBragaPortugal
  2. 2.Instituto de Investigación e Innovación en Bioingeniería (I3B)Universitat Politècnica de ValènciaValenciaSpain

Personalised recommendations