Advertisement

Bimodal Polyethylene: Controlling Polymer Properties by Molecular Design

  • Christian PaulikEmail author
  • Gunnar Spiegel
  • Dusan Jeremic
Chapter

Abstract

Polyethylene is one of the most widely used polymers, and it can be found in various industrial applications. The annual production and consumption of polyethylene is currently higher than 100 million tons worldwide, or about 40% of the consumption of all thermoplastic materials [1].

References

  1. 1.
    Plastics Europe: The Facts 2014. Retrieved November 9, 2018, from https://www.plasticseurope.org/download_file/view/479/179.
  2. 2.
    Roberts, R. M. (1989). Serendipity: Accidental discoveries in science. New York: Wiley.Google Scholar
  3. 3.
    Mülhaupt, R. (2004). Hermann Staudinger und der Ursprung der Makromolekularen Chemie. Angewandte Chemie, 116, 1072–1080.CrossRefGoogle Scholar
  4. 4.
    Malpass, D. (2010). Introduction to industrial polyethylene: Properties, catalysts, and processes. Salem, MA: Wiley-Scrivener.CrossRefGoogle Scholar
  5. 5.
    Galli, P., & Vecellio, G. (2001). Technology: Driving force behind innovation and growth of polyolefins. Progress in Polymer Science, 26, 1287–1336.CrossRefGoogle Scholar
  6. 6.
    Shamiri, A., Chakrabarti, M. H., Jahan, S., Hussain, M. A., Kaminsky, W., Aravind, P. V., et al. (2014). The influence of Ziegler-Natta and metallocene catalysts on polyolefin structure, properties, and processing ability. Materials (Basel), 7, 5069–5108.CrossRefGoogle Scholar
  7. 7.
    Kissin, Y. V. (2013). Polyethylene end-use properties and their physical meaning. Munich: Hanser Verlag.Google Scholar
  8. 8.
    Soares, J. B. P., & McKenna, T. F. L. (2012). Polyolefin reaction engineering. Weinheim: Wiley-VCH.CrossRefGoogle Scholar
  9. 9.
  10. 10.
    Whiteley, K. S., Heggs, T. G., Koch, H., Mawer, R. L., & Immel, W. (2005). Polyolefins, Ulmann’s Encyclopedia of industrial chemistry. Weinheim: Wiley-VCH.Google Scholar
  11. 11.
    van Krevelen, D. W., & Nijenhuis, K. (2009). Properties of polymers: Their correlation with chemical structure; their numerical estimation and prediction from additive group contributions (4th ed.). Amsterdam, Boston: Elsevier.Google Scholar
  12. 12.
    Smallman, R. E., & Ngan, A. H. W. (2007). Physical metallurgy and advanced materials (7th ed.). Amsterdam, Boston: Butterworth Heinemann.Google Scholar
  13. 13.
    Steinborn, D. (2010). Grundlagen der metallorganischen Komplexkatalyse. Wiesbaden: Vieweg & Teubner.CrossRefGoogle Scholar
  14. 14.
    Cossee, P. (1964). Ziegler-Natta catalysis I. Mechanism of polymerization of α-olefins with Ziegler-Natta catalysts. Journal of Catalysis, 3, 80–88.CrossRefGoogle Scholar
  15. 15.
    Arlman, E. J. (1964). Ziegler-Natta catalysis II. Surface structure of layer-lattice transition metal chlorides. Journal of Catalysis, 3, 89–98.CrossRefGoogle Scholar
  16. 16.
    Cossee, P., & Arlman, E. J. (1964). Ziegler-Natta catalysis III. Stereospecific polymerization of propene with the catalyst system TiCl-AlEt. Journal of Catalysis, 3, 99–104.CrossRefGoogle Scholar
  17. 17.
    Hightower, J. W. (1996, June 30–July 5). 11th International congress on catalysis, Baltimore, USA. (Studies in surface science and catalysis, vol. 101), Amsterdam, NY: Elsevier (1996).Google Scholar
  18. 18.
    Alt, F., Böhm, L. L., & Enderle, H. (2001). Macromolecules, 163, 135–143.Google Scholar
  19. 19.
    Abedi, S., & Hassanpour, N. (2006). Preparation of bimodal polypropylene in two‐step polymerization. Journal of Applied Polymer Science, 101, 1456–1462.CrossRefGoogle Scholar
  20. 20.
    Daftaribesheli, M. (2009). Ph.D. thesis, University Twente.Google Scholar
  21. 21.
    Fernandes, F. A. N., & Lona, L. M. F. (2004). Multizone circulating reactor modeling for gas‐phase polymerization. I. Reactor modeling. Journal of Applied Polymer Science, 93, 1042–1052.CrossRefGoogle Scholar
  22. 22.
    Ruff, M., & Paulik, C. (2012). Controlling polyolefin properties by in-reactor blending, 1—Polymerization process, precise kinetics, and molecular properties of UHMW-PE polymers. Macromolecular Reaction Engineering, 6, 302–317.CrossRefGoogle Scholar
  23. 23.
    Böhm, L. L., Enderle, H. F., & Fleibner, M. (1992). High density polyethylene pipe resins. Advanced Materials, 4(3), 234–238.CrossRefGoogle Scholar
  24. 24.
    Mezger, T. G. (2006). The rheology handbook: For users of rotational and oscillatory rheometers (2nd ed.). Hannover: Vincentz Network.Google Scholar
  25. 25.
    PE Pipe-design and Installation, American Water Works Association, 12 January 2011.Google Scholar
  26. 26.
    Böhm, L. L. (2003). The ethylene polymerization with Ziegler catalysts: Fifty Years after the discovery. Angewandte Chemie, International Edition, 42, 5010–5030.CrossRefGoogle Scholar
  27. 27.
    Fredriksen, S. B. (2005, June). ECOREP III.Google Scholar
  28. 28.
    Liu, H. T., Davey, C. R., & Shirodkar, P. P. (2003). Bimodal polyethylene products from UNIPOLTM single gas phase reactor using engineered catalysts. Macromolecular Symposia, 195, 309–316.CrossRefGoogle Scholar
  29. 29.
    Cho, H. S., Chung, J. S., & Lee, W. Y. (2000). Control of molecular weight distribution for polyethylene catalyzed over Ziegler-Natta/metallocene hybrid and mixed catalysts. Journal of Molecular Catalysis A: Chemical, 159, 203–213.CrossRefGoogle Scholar
  30. 30.
    Cho, H. S., Choi, Y. H., & Lee, W. Y. (2000). Characteristics of ethylene polymerization over Ziegler-Natta/metallocene catalysts comparison between hybrid and mixed catalysts. Catalysis Today, 63, 523–530.CrossRefGoogle Scholar
  31. 31.
    Rodrigues, S., Silveira, F., dos Santos, J. H. Z., & Ferreira, M. L. (2004). An explanation for experimental behavior of hybrid metallocene silica supported catalyst for ethylene polymerization. Journal of Molecular Catalysis A: Chemical, 216, 19–27.CrossRefGoogle Scholar
  32. 32.
  33. 33.
    Forte, M. M. C., da Cunha, F. O. V., dos Santos, J. H. Z., & Zacca, J. J. (2003). Ethylene and 1-butene copolymerization catalyzed by a Ziegler–Natta/metallocene hybrid catalyst through a 2 factorial experimental design. Polymer, 44, 1377–1384.CrossRefGoogle Scholar
  34. 34.
    Hong, S. C., Mihan, S., Lilge, D., Delux, L., & Rief, U. (2007). Immobilized Me Si(C Me)(N‐tBu)TiCl/(nBuCp) ZrCl hybrid metallocene catalyst system for the production of poly(ethylene‐co‐hexene) with pseudo‐bimodal molecular weight and inverse comonomer distribution. Polymer Engineering and Science, 47, 131–139.CrossRefGoogle Scholar
  35. 35.
    Ahmadi, M., Jamjah, R., Nekoomanesh, M., Zohuri, G. H., & Arabi, H. (2007). Ziegler‐Natta/metallocene hybrid catalyst for ethylene polymerization. Macromolecular Reaction Engineering, 1, 604–610.CrossRefGoogle Scholar
  36. 36.
    Lopez-Linares, F., Diaz-Barrios, A., Ortega, H., Matos, J. O., Joskowicz, P., & Agrifoglio, G. (2000). Toward the bimodality of polyethylene, initiated with a mixture of a Ziegler–Natta and a metallocene/MAO catalyst system. Journal of Molecular Catalysis A: Chemical, 159, 269–272.CrossRefGoogle Scholar
  37. 37.
    Lhost, O., & Zandona, N. (2000, January 11). US Patent 6-013-595, Solvay.Google Scholar
  38. 38.
    Follestad, A., Almquist, V., Ommundsen, E., & Dreng, T. (2003, April 1). Borealis Technology Oy, US Patent 6-541-581-B1.Google Scholar
  39. 39.
    Follestad, A., Jens, K. J., Blom, R., & Dahl, I. M. (2004, September 21). Borealis Technology Oy, US Patent 6-794-326-B1.Google Scholar
  40. 40.
    Almquist, V., Dreng, T., Follestad, A., & Ommundsen, E. (1999, August 12). Borealis Technology Oy, Patent WO 99/40131.Google Scholar
  41. 41.
    Follestad, A., Almquist, V., Palmqvist, U., & Hokkanen, H. (2004, August 24). Borealis Technology Oy, US Patent 6-780-809-B1.Google Scholar
  42. 42.
    Yamamoto, K., Ishihama, Y., & Sakata, K. (2010). Preparation of bimodal HDPEs with metallocene on Cr-montmorillonite support. Journal of Polymer Science, Part A: Polymer Chemistry, 48, 3722–3728.CrossRefGoogle Scholar
  43. 43.
    Moreno, J., van Grieken, R., Carrero, A., & Paredes, B. (2011). Development of novel chromium oxide/metallocene hybrid catalysts for bimodal polyethylene. Polymer, 52, 1891–1899.CrossRefGoogle Scholar
  44. 44.
    Paredes, B., van Grieken, R., Carrero, A., Moreno, J., & Moral, A. (2012). Chromium oxide/metallocene binary catalysts for bimodal polyethylene: Hydrogen effects. Chemical Engineering Journal, 213, 62–69.CrossRefGoogle Scholar
  45. 45.
    Chu, K. J., Soares, J. B. P., & Penlidis, A. (2000). Effect of hydrogen on ethylene polymerization using in‐situ supported metallocene catalysts. Macromolecular Chemistry and Physics, 201, 340–348.CrossRefGoogle Scholar
  46. 46.
    Scheirs, J., Böhm, L. L., Boot, J. C., & Leevers, P. S. (1996). PE100 resins for pipe applications: Continuing the development into the 21 century. Trends in Polymer Science, 4, 408–415.Google Scholar
  47. 47.
    Lüker, H., & Schulte, U. (1995). PE-Rohre – Kunststoffe mit verbessertem Leistungsniveau. Kunststoffe, 85, 1127–1128.Google Scholar
  48. 48.
    Richard, K., & Diedrich, G. (1956). Rohre aus Niederdruckpolyäthylen – Eigenschaften und Erprobung in Labor und Praxis. Kunststoffe, 46, 183–190.Google Scholar
  49. 49.
    Richard, K., Gaube, E., & Diedrich, G. (1959). Trinkwasserrohre aus Niederdruckpolyäthylen. Kunststoffe, 49, 516–525.Google Scholar
  50. 50.
    Gaube, E., Diedrich, G., & Müller, W. (1976). Rohre aus thermoplastischen Kunststoffen - Erfahrungen aus 20 Jahren Zeitstandprüfung. Kunststoffe, 66, 2–8.Google Scholar
  51. 51.
    Fleißner, M. (1987). Langsames Rißwachstum und Zeitstandfestigkeit von Rohren aus Polyethylen. Kunststoffe, 77, 45–50.Google Scholar
  52. 52.
    Fleißner, M. (1998). Experience with a full notch creep test in determining the stress crack performance of polyethylenes. Polymer Engineering and Science, 38, 330–340.CrossRefGoogle Scholar
  53. 53.
    McKenna, T. F. L., Di Martino, A., Weickert, G., & Soares, J. B. P. (2010). Particle growth during the polymerisation of olefins on supported catalysts, 1—Nascent polymer structures. Macromolecular Reaction Engineering, 4, 40–64.CrossRefGoogle Scholar
  54. 54.
    Ruff, M., & Paulik, C. (2012). Controlling polyolefin properties by in‐reactor blending: 2. Particle design. Macromolecular Reaction Engineering, 7, 71–83.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Christian Paulik
    • 1
    Email author
  • Gunnar Spiegel
    • 1
  • Dusan Jeremic
    • 2
  1. 1.Institute for Chemical Technology of Organic MaterialsJohannes Kepler UniversityLinzAustria
  2. 2.Borealis Polyolefine GmbHLinzAustria

Personalised recommendations