Skip to main content

Bimodal Polyethylene: Controlling Polymer Properties by Molecular Design

  • Chapter
  • First Online:
Multimodal Polymers with Supported Catalysts

Abstract

Polyethylene is one of the most widely used polymers, and it can be found in various industrial applications. The annual production and consumption of polyethylene is currently higher than 100 million tons worldwide, or about 40% of the consumption of all thermoplastic materials [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Plastics Europe: The Facts 2014. Retrieved November 9, 2018, from https://www.plasticseurope.org/download_file/view/479/179.

  2. Roberts, R. M. (1989). Serendipity: Accidental discoveries in science. New York: Wiley.

    Google Scholar 

  3. Mülhaupt, R. (2004). Hermann Staudinger und der Ursprung der Makromolekularen Chemie. Angewandte Chemie, 116, 1072–1080.

    Article  Google Scholar 

  4. Malpass, D. (2010). Introduction to industrial polyethylene: Properties, catalysts, and processes. Salem, MA: Wiley-Scrivener.

    Book  Google Scholar 

  5. Galli, P., & Vecellio, G. (2001). Technology: Driving force behind innovation and growth of polyolefins. Progress in Polymer Science, 26, 1287–1336.

    Article  CAS  Google Scholar 

  6. Shamiri, A., Chakrabarti, M. H., Jahan, S., Hussain, M. A., Kaminsky, W., Aravind, P. V., et al. (2014). The influence of Ziegler-Natta and metallocene catalysts on polyolefin structure, properties, and processing ability. Materials (Basel), 7, 5069–5108.

    Article  CAS  Google Scholar 

  7. Kissin, Y. V. (2013). Polyethylene end-use properties and their physical meaning. Munich: Hanser Verlag.

    Google Scholar 

  8. Soares, J. B. P., & McKenna, T. F. L. (2012). Polyolefin reaction engineering. Weinheim: Wiley-VCH.

    Book  Google Scholar 

  9. https://www.ptonline.com/articles/no-6%2D%2D-lldpe.

  10. Whiteley, K. S., Heggs, T. G., Koch, H., Mawer, R. L., & Immel, W. (2005). Polyolefins, Ulmann’s Encyclopedia of industrial chemistry. Weinheim: Wiley-VCH.

    Google Scholar 

  11. van Krevelen, D. W., & Nijenhuis, K. (2009). Properties of polymers: Their correlation with chemical structure; their numerical estimation and prediction from additive group contributions (4th ed.). Amsterdam, Boston: Elsevier.

    Google Scholar 

  12. Smallman, R. E., & Ngan, A. H. W. (2007). Physical metallurgy and advanced materials (7th ed.). Amsterdam, Boston: Butterworth Heinemann.

    Google Scholar 

  13. Steinborn, D. (2010). Grundlagen der metallorganischen Komplexkatalyse. Wiesbaden: Vieweg & Teubner.

    Book  Google Scholar 

  14. Cossee, P. (1964). Ziegler-Natta catalysis I. Mechanism of polymerization of α-olefins with Ziegler-Natta catalysts. Journal of Catalysis, 3, 80–88.

    Article  CAS  Google Scholar 

  15. Arlman, E. J. (1964). Ziegler-Natta catalysis II. Surface structure of layer-lattice transition metal chlorides. Journal of Catalysis, 3, 89–98.

    Article  CAS  Google Scholar 

  16. Cossee, P., & Arlman, E. J. (1964). Ziegler-Natta catalysis III. Stereospecific polymerization of propene with the catalyst system TiCl-AlEt. Journal of Catalysis, 3, 99–104.

    Article  Google Scholar 

  17. Hightower, J. W. (1996, June 30–July 5). 11th International congress on catalysis, Baltimore, USA. (Studies in surface science and catalysis, vol. 101), Amsterdam, NY: Elsevier (1996).

    Google Scholar 

  18. Alt, F., Böhm, L. L., & Enderle, H. (2001). Macromolecules, 163, 135–143.

    CAS  Google Scholar 

  19. Abedi, S., & Hassanpour, N. (2006). Preparation of bimodal polypropylene in two‐step polymerization. Journal of Applied Polymer Science, 101, 1456–1462.

    Article  CAS  Google Scholar 

  20. Daftaribesheli, M. (2009). Ph.D. thesis, University Twente.

    Google Scholar 

  21. Fernandes, F. A. N., & Lona, L. M. F. (2004). Multizone circulating reactor modeling for gas‐phase polymerization. I. Reactor modeling. Journal of Applied Polymer Science, 93, 1042–1052.

    Article  CAS  Google Scholar 

  22. Ruff, M., & Paulik, C. (2012). Controlling polyolefin properties by in-reactor blending, 1—Polymerization process, precise kinetics, and molecular properties of UHMW-PE polymers. Macromolecular Reaction Engineering, 6, 302–317.

    Article  CAS  Google Scholar 

  23. Böhm, L. L., Enderle, H. F., & Fleibner, M. (1992). High density polyethylene pipe resins. Advanced Materials, 4(3), 234–238.

    Article  Google Scholar 

  24. Mezger, T. G. (2006). The rheology handbook: For users of rotational and oscillatory rheometers (2nd ed.). Hannover: Vincentz Network.

    Google Scholar 

  25. PE Pipe-design and Installation, American Water Works Association, 12 January 2011.

    Google Scholar 

  26. Böhm, L. L. (2003). The ethylene polymerization with Ziegler catalysts: Fifty Years after the discovery. Angewandte Chemie, International Edition, 42, 5010–5030.

    Article  CAS  Google Scholar 

  27. Fredriksen, S. B. (2005, June). ECOREP III.

    Google Scholar 

  28. Liu, H. T., Davey, C. R., & Shirodkar, P. P. (2003). Bimodal polyethylene products from UNIPOLTM single gas phase reactor using engineered catalysts. Macromolecular Symposia, 195, 309–316.

    Article  CAS  Google Scholar 

  29. Cho, H. S., Chung, J. S., & Lee, W. Y. (2000). Control of molecular weight distribution for polyethylene catalyzed over Ziegler-Natta/metallocene hybrid and mixed catalysts. Journal of Molecular Catalysis A: Chemical, 159, 203–213.

    Article  CAS  Google Scholar 

  30. Cho, H. S., Choi, Y. H., & Lee, W. Y. (2000). Characteristics of ethylene polymerization over Ziegler-Natta/metallocene catalysts comparison between hybrid and mixed catalysts. Catalysis Today, 63, 523–530.

    Article  CAS  Google Scholar 

  31. Rodrigues, S., Silveira, F., dos Santos, J. H. Z., & Ferreira, M. L. (2004). An explanation for experimental behavior of hybrid metallocene silica supported catalyst for ethylene polymerization. Journal of Molecular Catalysis A: Chemical, 216, 19–27.

    Article  CAS  Google Scholar 

  32. UNIVATION. Retrieved from http://www.univation.com/catalysts.prodigy.php

  33. Forte, M. M. C., da Cunha, F. O. V., dos Santos, J. H. Z., & Zacca, J. J. (2003). Ethylene and 1-butene copolymerization catalyzed by a Ziegler–Natta/metallocene hybrid catalyst through a 2 factorial experimental design. Polymer, 44, 1377–1384.

    Article  CAS  Google Scholar 

  34. Hong, S. C., Mihan, S., Lilge, D., Delux, L., & Rief, U. (2007). Immobilized Me Si(C Me)(N‐tBu)TiCl/(nBuCp) ZrCl hybrid metallocene catalyst system for the production of poly(ethylene‐co‐hexene) with pseudo‐bimodal molecular weight and inverse comonomer distribution. Polymer Engineering and Science, 47, 131–139.

    Article  CAS  Google Scholar 

  35. Ahmadi, M., Jamjah, R., Nekoomanesh, M., Zohuri, G. H., & Arabi, H. (2007). Ziegler‐Natta/metallocene hybrid catalyst for ethylene polymerization. Macromolecular Reaction Engineering, 1, 604–610.

    Article  CAS  Google Scholar 

  36. Lopez-Linares, F., Diaz-Barrios, A., Ortega, H., Matos, J. O., Joskowicz, P., & Agrifoglio, G. (2000). Toward the bimodality of polyethylene, initiated with a mixture of a Ziegler–Natta and a metallocene/MAO catalyst system. Journal of Molecular Catalysis A: Chemical, 159, 269–272.

    Article  CAS  Google Scholar 

  37. Lhost, O., & Zandona, N. (2000, January 11). US Patent 6-013-595, Solvay.

    Google Scholar 

  38. Follestad, A., Almquist, V., Ommundsen, E., & Dreng, T. (2003, April 1). Borealis Technology Oy, US Patent 6-541-581-B1.

    Google Scholar 

  39. Follestad, A., Jens, K. J., Blom, R., & Dahl, I. M. (2004, September 21). Borealis Technology Oy, US Patent 6-794-326-B1.

    Google Scholar 

  40. Almquist, V., Dreng, T., Follestad, A., & Ommundsen, E. (1999, August 12). Borealis Technology Oy, Patent WO 99/40131.

    Google Scholar 

  41. Follestad, A., Almquist, V., Palmqvist, U., & Hokkanen, H. (2004, August 24). Borealis Technology Oy, US Patent 6-780-809-B1.

    Google Scholar 

  42. Yamamoto, K., Ishihama, Y., & Sakata, K. (2010). Preparation of bimodal HDPEs with metallocene on Cr-montmorillonite support. Journal of Polymer Science, Part A: Polymer Chemistry, 48, 3722–3728.

    Article  CAS  Google Scholar 

  43. Moreno, J., van Grieken, R., Carrero, A., & Paredes, B. (2011). Development of novel chromium oxide/metallocene hybrid catalysts for bimodal polyethylene. Polymer, 52, 1891–1899.

    Article  CAS  Google Scholar 

  44. Paredes, B., van Grieken, R., Carrero, A., Moreno, J., & Moral, A. (2012). Chromium oxide/metallocene binary catalysts for bimodal polyethylene: Hydrogen effects. Chemical Engineering Journal, 213, 62–69.

    Article  CAS  Google Scholar 

  45. Chu, K. J., Soares, J. B. P., & Penlidis, A. (2000). Effect of hydrogen on ethylene polymerization using in‐situ supported metallocene catalysts. Macromolecular Chemistry and Physics, 201, 340–348.

    Article  CAS  Google Scholar 

  46. Scheirs, J., Böhm, L. L., Boot, J. C., & Leevers, P. S. (1996). PE100 resins for pipe applications: Continuing the development into the 21 century. Trends in Polymer Science, 4, 408–415.

    CAS  Google Scholar 

  47. Lüker, H., & Schulte, U. (1995). PE-Rohre – Kunststoffe mit verbessertem Leistungsniveau. Kunststoffe, 85, 1127–1128.

    Google Scholar 

  48. Richard, K., & Diedrich, G. (1956). Rohre aus Niederdruckpolyäthylen – Eigenschaften und Erprobung in Labor und Praxis. Kunststoffe, 46, 183–190.

    Google Scholar 

  49. Richard, K., Gaube, E., & Diedrich, G. (1959). Trinkwasserrohre aus Niederdruckpolyäthylen. Kunststoffe, 49, 516–525.

    Google Scholar 

  50. Gaube, E., Diedrich, G., & Müller, W. (1976). Rohre aus thermoplastischen Kunststoffen - Erfahrungen aus 20 Jahren Zeitstandprüfung. Kunststoffe, 66, 2–8.

    CAS  Google Scholar 

  51. Fleißner, M. (1987). Langsames Rißwachstum und Zeitstandfestigkeit von Rohren aus Polyethylen. Kunststoffe, 77, 45–50.

    Google Scholar 

  52. Fleißner, M. (1998). Experience with a full notch creep test in determining the stress crack performance of polyethylenes. Polymer Engineering and Science, 38, 330–340.

    Article  Google Scholar 

  53. McKenna, T. F. L., Di Martino, A., Weickert, G., & Soares, J. B. P. (2010). Particle growth during the polymerisation of olefins on supported catalysts, 1—Nascent polymer structures. Macromolecular Reaction Engineering, 4, 40–64.

    Article  CAS  Google Scholar 

  54. Ruff, M., & Paulik, C. (2012). Controlling polyolefin properties by in‐reactor blending: 2. Particle design. Macromolecular Reaction Engineering, 7, 71–83.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Paulik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Paulik, C., Spiegel, G., Jeremic, D. (2019). Bimodal Polyethylene: Controlling Polymer Properties by Molecular Design. In: Albunia, A., Prades, F., Jeremic, D. (eds) Multimodal Polymers with Supported Catalysts. Springer, Cham. https://doi.org/10.1007/978-3-030-03476-4_7

Download citation

Publish with us

Policies and ethics