Advertisement

Industrial Multimodal Processes

  • Vasileios KanellopoulosEmail author
  • Costas Kiparissides
Chapter

Abstract

Polyolefins are the most widely used plastics today due to their low production cost and wide range of applications (packaging and other disposables, building and construction, agriculture, appliances, transportation, electrics and electronics, furniture, communication, automotive industry, etc.). It is well acknowledged that the degree of technological and scientific sophistication in relation to the catalytic polyolefin manufacturing has no equal among other synthetic polymer production processes. Presently, the total polyolefin world-production exceeds 130 million tons per year covering around 45% of the total plastic production (about 1.5 times the steel consumption in volume).

Keywords

Multimodality Reactor Polymerization Reactor technologies Multimodal process Slurry reactor Gas-phase reactor Borstar process Advanced cascade process Spherilene C Spheripol Hypol Unipol Spherizone Multi-zone circulating reactor 

References

  1. 1.
    Mulhaupt, R. (2003). Catalytic polymerization and post polymerization catalysis fifty years after the discovery of Ziegler’s catalysts. Macromolecular Chemical Engineering, 204, 289–327.CrossRefGoogle Scholar
  2. 2.
    Galli, P., & Vecellio, G. (2004). Polyolefins: The most promising large-volume materials for the 21st century. Journal of Polymer Science, 42, 396–415.Google Scholar
  3. 3.
    CMAI. (2008). Global plastics and polymer market report, 123, 1–66.Google Scholar
  4. 4.
    Soares, J. B. P., & McKenna, T. F. L. (2002). Polyolefins reaction engineering. Weinheim: Wiley-VCH.Google Scholar
  5. 5.
    Xie, T., McAuley, K. B., Hsu, J. C. C., & Bacon, D. W. (1994). Gas phase ethylene polymerization: Production processes, polymer properties, and reactor modelling. Industrial and Engineering Chemistry Research, 33, 449–479.CrossRefGoogle Scholar
  6. 6.
    Dompazis, G., Kanellopoulos, V., Touloupides, V., & Kiparissides, C. (2008). Development of a multi-scale, multi-phase multi-zone dynamic model for the prediction of particle segregation in catalytic olefin polymerization FBRs. Chemical Engineering Science, 63, 4735–4753.CrossRefGoogle Scholar
  7. 7.
    Fontes, C. H., & Mendes, M. J. (2005). Analysis of an industrial continuous slurry reactor for ethylene–butane copolymerization. Polymer, 46, 2922–2932.CrossRefGoogle Scholar
  8. 8.
    Touloupides, V., Kanellopoulos, V., Pladis, P., Kiparissides, C., Mignon, D., & Van-Grambezen, P. (2010). Modeling and simulation of an industrial slurry-phase catalytic olefin polymerization reactor series. Chemical Engineering Science, 65, 3208–3222.CrossRefGoogle Scholar
  9. 9.
    Zacca, J. J., & Ray, H. W. (1993). Modelling of the liquid phase polymerization of olefins in loop reactors. Chemical Engineering Science, 48, 3743–3765.CrossRefGoogle Scholar
  10. 10.
    Ferrero, M. A., & Chiovetta, M. G. (1990). Preliminary design of a loop reactor for bulk propylene polymerization. Polymer – Plastics Technology and Engineering, 29, 263–283.CrossRefGoogle Scholar
  11. 11.
    Drusco, G., & Rinaldi, R. (1984). Polypropylene-process selection criteria. Hydrocarbon Processing, 63, 113–117.Google Scholar
  12. 12.
    Kanellopoulos, V., & Kiparissides, C. (2019). Mathematical modelling and simulation of gas- and slurry-phase catalytic olefin polymerization reactors: A comparative study. Macromolecular Reaction Engineering (To be submitted).Google Scholar
  13. 13.
    Pladis, P., Kanellopoulos, V., Chatzidoukas, C., & Kiparissides, C. (2008). Effect of reaction conditions and catalyst design on the rheological properties of polyolefins produced in gas-phase olefin polymerization reactors. Macromolecular Theory and Simulations, 17, 478–487.CrossRefGoogle Scholar
  14. 14.
    Polyolefins Planning Service Technology Review. (2011). Nexant. Retrieved from www.chemsystems
  15. 15.
    Covezzi, M., & Mei, G. (2001). The multizone circulating reactor technology. Chemical Engineering Science, 56, 4059–4067.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Borealis PolymersPorvooFinland
  2. 2.Department of Chemical EngineeringAristotle University of ThessalonikiThessalonikiGreece
  3. 3.Centre for Research and Technology Hellas, Chemical Process and Energy Resources InstituteThessalonikiGreece

Personalised recommendations