Multimodal Polymers with Supported Catalysts pp 81-114 | Cite as
Fragmentation, Particle Growth and Single Particle Modelling
Abstract
In processes that rely on the use of heterogeneous catalysis as the major means of production, it should be quite obvious that understanding how the catalyst particles evolve will play an important role in many aspects related to quality and reactor performance. At the risk of oversimplifying things, the principal roles of the heterogeneous catalyst particles used in olefin polymerisation can be seen as being (1) to carry the active sites upon which the polymer is formed; and (2) to provide a structure for creating “solid” particles that can be easily transported, recovered and processed. It is therefore important for us to understand how the process used to make the polymer impacts the particle and the active sites (and vice versa!). From the schema in Fig. 3.1, where these concepts are applied to a heterogeneously catalysed olefin polymerisation process, it can be seen that one needs to consider many different length scales, from the reactor which has volumes on the order of several tens of cubic metres, to the catalyst and polymer particles with characteristic diameters on the order of 10−6 to 10−3 m, and finally the active sites with characteristic sizes on the order of Ångströms. The figure also suggests that in many ways one can consider the catalyst and polymer particles as being at the heart of a polymerisation process. This is of course not to over-simplify the technological challenges of correctly operating the reactors, nor to assume that we have totally mastered the behaviour of the active sites either. However, as we shall see below, the very fact that we are using heterogeneous catalysts implies that mass transfer limitations can eventually limit the concentrations of active species at the active sites, or that the quality of the polymer (sticky/hard, brittle/flexible) can have a major impact on reactor behaviour. For these, and many other related reasons it is therefore of importance to understand what happens to the particles injected into the reactor during the polymerisation.
References
- 1.McKenna, T. F. L., Tioni, E., Ranieri, M. M., Alizadeh, A., Boisson, C., & Monteil, V. (2013). Catalytic olefin polymerisation at short times: Studies using specially adapted reactors. Canadian Journal of Chemical Engineering, 91, 669–686.CrossRefGoogle Scholar
- 2.Nagel, E. J., Kirillov, V. A., & Ray, W. H. (1980). Prediction of molecular weight distributions for high-density polyolefins. Industrial and Engineering Chemistry Product Research and Development, 19, 372–379.CrossRefGoogle Scholar
- 3.Tioni, E., Monteil, V., & McKenna, T. (2013). Morphological interpretation of the evolution of the thermal properties of polyethylene during the fragmentation of silica supported metallocene catalysts. Macromolecules, 46, 335–343.CrossRefGoogle Scholar
- 4.McDaniel, M. P. (2010). In C. G. A. H. Bruce (Ed.), Advances in catalysis. Cambridge, MA: Academic Press.Google Scholar
- 5.Abboud, M., Denifl, P., & Reichert, K. H. (2005). Advantages of an emulsion-produced Ziegler-Natta catalyst over a conventional Ziegler-Natta catalyst. Macromolecular Materials and Engineering, 290, 1220–1226.CrossRefGoogle Scholar
- 6.Abboud, M., Denifl, P., & Reichert, K. H. (2005). Study of the morphology and kinetics of novel Ziegler-Natta catalysts for propylene polymerization. Journal of Applied Polymer Science, 98, 2191–2200.CrossRefGoogle Scholar
- 7.Bartke, M., Oksman, M., Mustonen, M., & Denifl, P. (2005). A new heterogenization technique for single-site polymerization catalysts. Macromolecular Materials and Engineering, 290, 250–255.CrossRefGoogle Scholar
- 8.Kittilsen, P., Svendsen, H. F., & McKenna, T. F. (2003). Viscoelastic model for particle fragmentation in olefin polymerization. AICHE Journal, 49, 1495–1507.CrossRefGoogle Scholar
- 9.Grof, Z., Kosek, J., & Marek, M. (2005). Principles of the morphogenesis of polyolefin particles. Industrial and Engineering Chemistry Research, 44, 2389–2404.CrossRefGoogle Scholar
- 10.Grof, Z., osek, J., & arek, M. (2005). Modeling of morphogenesis of growing polyolefin particles. AICHE Journal, 51, 2048–2067.CrossRefGoogle Scholar
- 11.Llinas, J. R., & Selo, J. L. (2010). Method for reducing sheeting and agglomerates during olefin polymerisation. US20030144432A1.Google Scholar
- 12.Di Martino, A., Weickert, G., Sidoroff, F., & McKenna, T. F. L. (2007). Modelling induced tension in a growing catalyst/polyolefin particle: A multi-scale approach for simplified morphology modelling. Macromolecular Reaction Engineering, 1, 338–352.CrossRefGoogle Scholar
- 13.Yermakov, Y. I., Mikhalchenko, V. G., Beskov, V. S., Grabovskii, Y. P., & Emirova, I. V. (1970). The role of transfer processes in gaseous phase polymerization of ethylene. Plasticheskie Massy, 9, 7–10.Google Scholar
- 14.Laurence, R. L., & Chiovetta, M. G. (1983). In K. H. Reichert & W. Geisler (Eds.), Polymer reaction engineering: Influence of reaction engineering on polymer properties. Munich: Hanser.Google Scholar
- 15.McKenna, T. F., & Soares, J. B. P. (2001). Single particle modelling for olefin polymerization on supported catalysts: A review and proposals for future developments. Chemical Engineering Science, 56, 3931–3949.CrossRefGoogle Scholar
- 16.Parasu Veera, U., Weickert, G., & Agarwal, U. S. (2002). Modeling monomer transport by convection during olefin polymerization. AICHE Journal, 48, 1062–1070.CrossRefGoogle Scholar
- 17.Parasu Veera, U. (2003). Mass transport models for a single particle in gas-phase propylene polymerisation. Chemical Engineering Science, 58, 1765–1775.CrossRefGoogle Scholar
- 18.Soares, J. B. P., & McKenna, T. F. L. (2012). Polyolefin reaction engineering. Weinheim: Wiley.CrossRefGoogle Scholar
- 19.Jin, H. J., Kim, S., & Yoon, J. S. (2002). Solubility of 1-hexene in LLDPE synthesized by (2-MeInd)2ZrCl2/MAO and by Mg(OEt)2/DIBP/TiCl4-TEA. Journal of Applied Polymer Science, 84, 1566–1571.CrossRefGoogle Scholar
- 20.Kiparissides, C., Dimos, V., Boultouka, T., Anastasiadis, A., & Chasiotis, A. (2003). Experimental and theoretical investigation of solubility and diffusion of ethylene in semicrystalline PE at elevated pressures and temperatures. Journal of Applied Polymer Science, 87, 953–966.CrossRefGoogle Scholar
- 21.Maloney, D. P., & Prausnitz, J. M. (1976). Solubility of ethylene in liquid, low-density polyethylene at industrial-separation pressures. Industrial and Engineering Chemistry Process Design and Development, 15, 216–220.CrossRefGoogle Scholar
- 22.Moore, S. J., & Wanke, S. E. (2001). Solubility of ethylene, 1-butene and 1-hexene in polyethylenes. Chemical Engineering Science, 56, 4121–4129.CrossRefGoogle Scholar
- 23.Yoon, J. S., Yoo, H. S., & Kang, K. S. (1996). Solubility of a-olefins in linear low density polyethylenes. European Polymer Journal, 32, 1333–1336.CrossRefGoogle Scholar
- 24.Bashir, M. A., Al-haj Ali, M., Kanellopoulos, V., & Seppala, J. (2013). Modelling of multicomponent olefins solubility in polyolefins using Sanchez-Lacombe equation of state. Fluid Phase Equilibria, 358, 83–90.CrossRefGoogle Scholar
- 25.Yiagopoulos, A., Yiannoulakis, H., Dimos, V., & Kiparissides, C. (2001). Heat and mass transfer phenomena during the early growth of a catalyst particle in gas-phase olefin polymerization: The effect of prepolymerization temperature and time. Chemical Engineering Science, 56, 3979–3995.CrossRefGoogle Scholar
- 26.Khare, N. P., Lucas, B., Seavey, K. C., Liu, Y. A., Sirohi, A., Ramanathan, S., Lingard, S., Song, Y., & Chen, C. C. (2004). Steady-state and dynamic modeling of gas-phase polypropylene processes using stirred-bed reactors. Industrial and Engineering Chemistry Research, 43, 884–900.CrossRefGoogle Scholar
- 27.Novak, A., Bobak, M., Kosek, J., Banaszak, B. J., Lo, D., Widya, T., Harmon Ray, W., & de Pablo, J. J. (2006). Ethylene and 1-hexene sorption in LLDPE under typical gas-phase reactor conditions: Experiments. Journal of Applied Polymer Science, 100, 1124–1136.CrossRefGoogle Scholar
- 28.Serna, L. V., Becker, J. L., Galdímez, J. R., Danner, R. P., & Duda, J. L. (2008). Elastic effects on solubility in semicrystalline polymers. Journal of Applied Polymer Science, 107, 138–146.CrossRefGoogle Scholar
- 29.Bashir, M. A., Al-haj Ali, M., Kanellopoulos, V., Seppala, J., Kokko, E., & Vijay, S. (2013). The effect of pure component characteristic parameters on Sanchez-Lacombe equation-of-state predictive capabilities. Macromolecular Reaction Engineering, 7, 193–204.CrossRefGoogle Scholar
- 30.Kanellopoulos, V., Dompazis, G., Gustafsson, B., & Kiparissides, C. (2004). Comprehensive analysis of single-particle growth in heterogeneous olefin polymerization: The random-pore polymeric flow model. Industrial and Engineering Chemistry Research, 43, 5166–5180.CrossRefGoogle Scholar
- 31.Banaszak, B. J., Lo, D., Widya, T., Ray, W. H., de Pablo, J. J., Novak, A., & Kosek, J. (2004). Ethylene and 1-hexene sorption in LLDPE under typical gas phase reactor conditions: A priori simulation and modeling for prediction of experimental observations. Macromolecules, 37, 9139–9150.CrossRefGoogle Scholar
- 32.Bashir, M. A., Ali, M. A., Kanellopoulos, V., & Seppala, J. (2015). Combined EoS and elastic constraints models to predict thermodynamic properties for systems involving semi-crystalline polyolefins. Fluid Phase Equilibria, 388, 107–117.CrossRefGoogle Scholar
- 33.Michaels, A. S., & Hausslein, R. W. (1965). Elastic constraints in solvent swollen polyethylene. Journal of Polymer Science, Part B: Polymer Letters, 3, 61–62.CrossRefGoogle Scholar
- 34.Yao, W., Hu, X., & Yang, Y. (2007). Modeling the solubility of ternary mixtures of ethylene, iso-pentane, n-hexane in semicrystalline polyethylene. Journal of Applied Polymer Science, 104, 3654–3662.CrossRefGoogle Scholar
- 35.Desilets, M., Proulx, P., & Soucy, G. (1997). Modeling of multicomponent diffusion in high temperature flows. International Journal of Heat and Mass Transfer, 40, 4273–4278.CrossRefGoogle Scholar
- 36.Cussler, E. L. (1997). Diffusion mass transfer in fluid systems. Cambridge, UK: Cambridge University Press.Google Scholar
- 37.Fujita, H. (1961). Fortschritte Der Hochpolymeren-Forschung. Berlin Heidelberg: Springer.Google Scholar
- 38.Michaels, A. S., & Bixler, H. J. (1961). Flow of gases through polyethylene. Journal of Polymer Science, 50, 413–439.CrossRefGoogle Scholar
- 39.Michaels, A. S., & Bixler, H. J. (1961). Solubility of gases in polyethylene. Journal of Polymer Science, 50, 393–412.CrossRefGoogle Scholar
- 40.Doong, S. J., & Ho, W. S. W. (1992). Diffusion of hydrocarbons in polyethylene. Industrial and Engineering Chemistry Research, 31, 1050–1060.CrossRefGoogle Scholar
- 41.Vrentas, J. S., Duda, J. L., & Ling, H. C. (1985). Free-volume theories for self-diffusion in polymer GÇô solvent systems. I. Conceptual differences in theories. Journal of Polymer Science Polymer Physics Edition, 23, 275–288.CrossRefGoogle Scholar
- 42.Vrentas, J. S., Duda, J. L., Ling, H. C., & Hou, A. C. (1985). Free-volume theories for self-diffusion in polymer-solvent systems. II. Predictive capabilities. Journal of Polymer Science Polymer Physics Edition, 23, 289–304.CrossRefGoogle Scholar
- 43.Pace, R. J., & Datyner, A. (1979). Statistical mechanical model for diffusion of simple penetrants in polymers. I. Theory. Journal of Polymer Science Polymer Physics Edition, 17, 437–451.CrossRefGoogle Scholar
- 44.Chiovetta, M. G., & Estenoz, D. A. (2004). Behavior of active sites in a changing, supported metallocene catalyst particle: Modeling monomer transport and kinetics. Macromolecular Materials and Engineering, 289, 1012–1026.CrossRefGoogle Scholar
- 45.Estenoz, D. A., & Chiovetta, M. G. (2001). Olefin polymerization using supported metallocene catalysts: Process representation scheme and mathematical model. Journal of Applied Polymer Science, 81, 285–311.CrossRefGoogle Scholar
- 46.Kittilsen, P., McKenna, T. F., Svendsen, H., Jakobsen, H. A., & Fredriksen, S. B. (2001). The interaction between mass transfer effects and morphology in heterogeneous olefin polymerization. Chemical Engineering Science, 56, 4015–4028.CrossRefGoogle Scholar
- 47.Ferrero, M. A., & Chiovetta, M. G. (1991). Catalyst fragmentation during propylene polymerization. III: Bulk polymerization process simulation. Polymer Engineering and Science, 31, 886–903.CrossRefGoogle Scholar
- 48.Ferrero, M. A., & Chiovetta, M. G. (1987). Catalyst fragmentation during propylene polymerization: Part II. Microparticle diffusion and reaction effects. Polymer Engineering and Science, 27, 1448–1460.CrossRefGoogle Scholar
- 49.McKenna, T. F., Dupuy, J., & Spitz, R. (1995). Modeling of transfer phenomena on heterogeneous Ziegler catalysts: Differences between theory and experiment in olefin polymerization (an introduction). Journal of Applied Polymer Science, 57, 371–384.CrossRefGoogle Scholar
- 50.Van Krevelen, D. W. (1997). Properties of polymers. Amsterdam: Elsevier.CrossRefGoogle Scholar
- 51.Floyd, S., Choi, K. Y., Taylor, T. W., & Ray, W. H. (1986). Polymerization of olefins through heterogeneous catalysis IV. Modeling of heat and mass transfer resistance in the polymer particle boundary layer. Journal of Applied Polymer Science, 31, 2231–2265.CrossRefGoogle Scholar
- 52.Constantinides, A., & Mostoufi, N. (1999). Numerical methods for chemical engineers with MATLAB applications. Upper Saddle River, NJ: Prentice Hall.Google Scholar
- 53.Villadsen, J., & Michelsen, L. (1978). Solution of differential equation models by polynomial approximation. Upper Saddle River, NJ: Prentice-Hall.Google Scholar
- 54.Galvan, R., & Tirrell, M. (1986). Orthogonal collocation applied to analysis of heterogeneous Ziegler-Natta polymerization. Computers and Chemical Engineering, 10, 77–85.CrossRefGoogle Scholar
- 55.Floyd, S., Choi, K. Y., Taylor, T. W., & Ray, W. H. (1986). Polymerization of olefins through heterogeneous catalysis. III. Polymer particle modelling with an analysis of intraparticle heat and mass transfer effects. Journal of Applied Polymer Science, 32, 2935–2960.CrossRefGoogle Scholar
- 56.Hutchinson, R. A., Chen, C. M., & Ray, W. H. (1992). Polymerization of olefins through heterogeneous catalysis X: Modeling of particle growth and morphology. Journal of Applied Polymer Science, 44, 1389–1414.CrossRefGoogle Scholar
- 57.Ferrero, M. A., & Chiovetta, M. G. (1987). Catalyst fragmentation during propylene polymerization: Part I. The effects of grain size and structure. Polymer Engineering and Science, 27, 1436–1447.CrossRefGoogle Scholar
- 58.Sarkar, P., & Gupta, S. K. (1991). Modelling of propylene polymerization in an isothermal slurry reactor. Polymer, 32, 2842–2852.CrossRefGoogle Scholar
- 59.Nicolella, C., van Loosdrecht, M. C. M., & Heijnen, J. J. (1998). Mass transfer and reaction in a biofilm airlift suspension reactor. Chemical Engineering Science, 53, 2743–2753.CrossRefGoogle Scholar
- 60.Beers, K. J. (2007). Numerical methods for chemical engineering: Applications in MATLAB. Cambridge, UK: Cambridge University Press.Google Scholar
- 61.Sarkar, P., & Gupta, S. K. (1992). Simulation of propylene polymerization: An efficient algorithm. Polymer, 33, 1477–1485.CrossRefGoogle Scholar
- 62.Bhagwat, M. S., Bhagwat, S. S., & Sharma, M. M. (1994). Mathematical modeling of the slurry polymerization of ethylene: Gas-liquid mass transfer limitations. Industrial and Engineering Chemistry Research, 33, 2322–2330.CrossRefGoogle Scholar
- 63.Schmeal, W. R., & Street, J. R. (1971). Polymerization in expanding catalyst particles. AICHE Journal, 17, 1188–1197.CrossRefGoogle Scholar
- 64.Singh, D., & Merrill, R. P. (1971). Molecular weight distribution of polyethylene produced by Ziegler-Natta catalysts. Macromolecules, 4, 599–604.CrossRefGoogle Scholar
- 65.Hoel, E. L., Cozewith, C., & Byrne, G. D. (1994). Effect of diffusion on heterogeneous ethylene propylene copolymerization. AICHE Journal, 40, 1669–1684.CrossRefGoogle Scholar