Support Designed for Polymerization Processes

  • Jonas Alves FernandesEmail author
  • Anne-Lise Girard


This chapter aims to discuss some important technical aspects of the commercial support related to each catalyst technology toward the production of different polyolefin grades. It approaches several industrial factors that are defined by the fine tuning between support and catalyst preparation, such as the catalyst fragmentation, the control of the final particle morphology and the morphological replication phenomena, the heat and mass transfer limitations during the polymerization reaction, and the uses of prepolymerization stage. The understanding of these parameters and the limits of the polymerization processes are the first step for designing a suitable support for a heterogeneous catalyst. Aspects such as chemical composition of the support, its surface characteristics, morphology (surface area, particle size, particle size distribution, and porosity), mechanical strength, and other characteristics of relevance for the two most common supports in the polyolefin industry—MgCl2 and SiO2—are discussed as well.


  1. 1.
    Galli, P., Barbè, P., Guidetti, G., Zannetti, R., Martorana, A., Marigo, A., Bergozza, M., & Fichera, A. (1983). The activation of MgCl2-supported Ziegler-Natta catalysts: A structural investigation. European Polymer Journal, 19, 19–24.CrossRefGoogle Scholar
  2. 2.
    Spitz, R., Duramel, L., & Guyot, A. (1988). Supported Ziegler-Natta catalyst for propene polymerization: Grinding and co-grinding effects on catalyst improvement. Makromolekulare Chemie, 189, 549–558.CrossRefGoogle Scholar
  3. 3.
    Gerbasi, R., Marigo, A., Martorana, A., Zannetti, R., Guidetti, G. P., & Baruzzi, G. (1984). The activation of MgCl2-supported Ziegler-Natta catalyst-II correlation between activity and structural disorder. European Polymer Journal, 20, 967–970.CrossRefGoogle Scholar
  4. 4.
    Albizzati, E., Giannini, U., Collina, G., Noristi, L., & Resconi, L. (1996). Catalysts and polymerizations. In E. P. Moore Jr. (Ed.), Polypropylene handbook (pp. 11–111). New York: Hanser Publishers.Google Scholar
  5. 5.
    Ye, Z.-Y., Wang, L., Feng, L.-F., Gu, X.-P., Chen, H.-H., Zhang, P.-Y., Pan, J., Jiang, S., & Feng, L.-X. (2002). Novel spherical Ziegler–Natta catalyst for polymerization and copolymerization. I. Spherical MgCl2 support. Journal of Polymer Science Part A: Polymer Chemistry, 40, 3112–3119.CrossRefGoogle Scholar
  6. 6.
    Ferraris, M., Rosati, F., Parodi, S., Gianneti, E., Motroni, G., & Albizzati, E. (1983). Catalyst components and catalyst for the polymerization of alpha-olefins. US Patent 4-399-054.Google Scholar
  7. 7.
    Dil, E. J., Pourmahdian, S., Vatankhah, M., & Taromi, F. A. (2010). Effect of dealcoholation of support in MgCl2-supported Ziegler-Natta catalyst on catalyst activity and propylene powder morphology. Polymer Bulletin, 64, 445–457.CrossRefGoogle Scholar
  8. 8.
    Govoni, G., Ciarrocchi, A., & Sacchetti, M. (1993). Crystalline olefin and copolymers in the form of spherical particles at high porosity. US Patent 5-231-119.Google Scholar
  9. 9.
    Forte, M. C., & Coutinho, F. M. B. (1996). Highly active magnesium chloride supported Ziegler-Natta catalyst with controlled morphology. European Polymer Journal, 32, 223–231.CrossRefGoogle Scholar
  10. 10.
    Martin, J. L. (1996). Process to make small, discrete, spherical adducts. US Patent 5-500-396.Google Scholar
  11. 11.
    Ishimaru, N., Kioka, M., & Toyota, A. (1991). Process for polymerizing olefins and polymerization catalyst therefor. US Patent 4-990-479.Google Scholar
  12. 12.
    Leinonem, T., & Denifl, P. (2006). Preparation of olefin polymerization catalyst component. European Patent 1273595.Google Scholar
  13. 13.
    Abboud, M., Denifl, P., & Reichert, K.-H. (2005). Study of the morphology and kinetics of novel Ziegler-Natta catalyst for propylene. Journal of Applied Polymer Science, 98, 2191–2200.CrossRefGoogle Scholar
  14. 14.
    Hamer, A. D., & Karol, F. J. (1983). Spheroidal polymerization catalyst, process of preparing, and use for ethylene polymerization. US Patent 4-376-062.Google Scholar
  15. 15.
    Jorgensen, R. J., Spriggs, T. E., Turner, M. D., & Lacks, D. J. (2011). Robust spray-dried Ziegler-Natta procatalyst and polymerization process employing the same. PCT/US2005/028238.Google Scholar
  16. 16.
    Karpinski, P. H., & Wey, J. S. (2002). Precipitation processes. In A. S. Myerson (Ed.), Handbook of industrial polymerization (pp. 141–160). Woburn: Butterworth-Heinemann.CrossRefGoogle Scholar
  17. 17.
    Pikturna, J. T. (2004). Particle size prediction in reactive precipitation processes (PhD Thesis). Iowa State University, Ames.Google Scholar
  18. 18.
    Chang, M., Liu, X., Nelson, P. J., Munzing, G. R., Gegan, T. A., & Kissin, Y. V. (2006). Ziegler-Natta catalyst for propylene polymerization: Morphology and crystal structure of a fourth-generation catalyst. Journal of Catalysis, 239, 347–353.CrossRefGoogle Scholar
  19. 19.
    Choi, Y., & Soares, J. B. P. (2012). Supported single–site catalysts for slurry and gas–phase olefin polymerisation. Canadian Journal of Chemical Engineering, 90, 646–671.CrossRefGoogle Scholar
  20. 20.
    Fink, G., Steinmetz, B., Zechlin, J., Przybyla, C., & Tesche, B. (2000). Propene polymerization with silica-supported Metallocene/MAO catalysts. Chemical Reviews, 100, 1377.CrossRefGoogle Scholar
  21. 21.
    Iler, R. K. (Ed.). (1955). Colloid chemistry of silica and silicates. Ithaca, NY: Cornell University Press.Google Scholar
  22. 22.
    Iler, R. K. (1979). The chemistry of silica. New York: Wiley.Google Scholar
  23. 23.
    Severn, J. R. (2008). Methylaluminoxane (MAO), silica and complex: The “Holy Trinity” of supported single-site catalyst. In J. R. Severn & J. C. Chadwick (Eds.), Tailor-made polymers (1st ed., pp. 95–138). Weinheim: Wiley.CrossRefGoogle Scholar
  24. 24.
    McDaniel, M. P. (2010). Supported chromium catalyst and its commercial use for ethylene polymerization. Advances in Catalysis, 53, 123–606.Google Scholar
  25. 25.
    Ellsworth, G. A. (1970). Process for increasing pore volume of intermediate density silica gel. US Patent 3-526-603.Google Scholar
  26. 26.
    Ito, Y., Higashiogawa, T., Matsuura, M., Orii, K., & Yamaguchi, Y. (1991, July 2). US Patent 5-028-360.Google Scholar
  27. 27.
    Fink, G., Steinmetz, B., Zechlin, J., Przyblya, C., & Tesche, B. (2000). Propene polymerization with silica-supported Metallocene/MAO catalyst. Chemical Reviews, 100, 1377–1390.CrossRefGoogle Scholar
  28. 28.
    Trébosc, J., Wiench, J. W., Huh, S., Lin, V. S.-Y., & Pruski, M. (2005). Solid-state NMR study of MCM-41-type mesoporous silica nanoparticles. Journal of the American Chemical Society, 127, 3057.CrossRefGoogle Scholar
  29. 29.
    McKenna, T. E., & Soares, J. B. P. (2001). Single particle modelling for olefin polymerization on supported catalysts: A review and proposals for future developments. Chemical Engineering Science, 56, 3931–3949.CrossRefGoogle Scholar
  30. 30.
    Duchateau, R. (2002). Incompletely condensed Silsesquioxanes: Versatile tools in developing silica-supported olefin polymerization catalysts. Chemical Reviews, 102, 3525–3542.CrossRefGoogle Scholar
  31. 31.
    Merquior, D. M., Lima, E. L., & Pinto, J. C. (2003). Modeling of particle fragmentation in heterogeneous olefin polymerization reactions. Polymer Reaction Engineering, 11, 133–154.CrossRefGoogle Scholar
  32. 32.
    Merquior, D. M., Lima, E. L., & Pinto, J. C. (2005). Modeling of particle fragmentation in heterogeneous olefin polymerization reactions. Macromolecular Materials and Engineering, 290, 511–524.CrossRefGoogle Scholar
  33. 33.
    Böhm, L., Bilda, D., Breuers, W., Enderle, H. F., & Lecht, R. (1995). The microreactor model-guideline for PE-HD process and product development. In G. Fink, R. Mülhaupt, & H. H. Brintzinger (Eds.), Ziegler catalysts (pp. 387–400). Berlin: Springer.CrossRefGoogle Scholar
  34. 34.
    Boor Jr., J. (1979). Ziegler-Natta catalysts and polymerizations. New York: Academic Press.Google Scholar
  35. 35.
    Zheng, X., Smit, M., Chadwick, J. C., & Loos, J. (2005). Fragmentation behavior of silica-supported metallocene/MAO catalystin the early stages of olefin polymerization. Macromolecules, 38, 4673–4678.CrossRefGoogle Scholar
  36. 36.
    Ferrero, M. A., Koffi, E., Sommer, R., & Conner, W. C. (1992). Characterization of the changes in the initial morphology for MgCl2-supported Ziegler-Natta polymerization catalysts. Journal of Polymer Science, 30, 2131–2141.Google Scholar
  37. 37.
    Rönkkö, H. L., Korpela, T., Knuuttila, H., Pakkanen, T. T., Denifl, P., Leinonen, T., Kemell, M., & Leskelä, M. (2009). Particle growth and fragmentation of solid self-supported Ziegler–Natta-type catalysts in propylene polymerization. Journal of Molecular Catalysis Chemical, 309, 40–49.CrossRefGoogle Scholar
  38. 38.
    Martin, C., & Mckenna, T. F. (2002). Particle morphology and transport phenomena in olefin polymerisation. Chemical Engineering Journal, 87, 89–99.CrossRefGoogle Scholar
  39. 39.
    Klapper, M., Joe, D., Nietzel, S., Krumpfer, J. W., & Müllen, K. (2014). Olefin polymerization with supported catalysts as an exercise in nanotechnology. Chemistry of Materials, 26, 802–819.CrossRefGoogle Scholar
  40. 40.
    McKenna, T. F., & Mattioli, V. (2001). Progress in describing particle growth for polyolefins: A look at particle morphology. Macromolecular Symposia, 173, 149–162.CrossRefGoogle Scholar
  41. 41.
    Noristi, L., Marchetti, E., Baruzzi, G., & Sgarzi, P. (1994). Investigation on the particle growth mechanism in propylene polymerization with MgCl2-supported Ziegler–Natta catalysts. Journal of Polymer Science, Part A: Polymer Chemistry, 32, 3047–3059.CrossRefGoogle Scholar
  42. 42.
    Pater, J. T. M., Weickert, G., Loos, J., & van Swaaij, W. P. M. (2001). High precision prepolymerization of propylene at extremely low reaction rates—kinetics and morphology. Chemical Engineering Science, 56, 4107–4120.CrossRefGoogle Scholar
  43. 43.
    Cecchin, G., Marchetti, E., & Baruzzi, G. (2001). On the mechanism of polypropene growth over MgCl2/TiCl4 catalyst systems. Macromolecular Chemistry and Physics, 202, 1987–1994.CrossRefGoogle Scholar
  44. 44.
    Ashri, A. Y. (2012, April). The effects of silica support on kinetic behavior and polymer properties of heterogonous metallocene catalyst. Thesis dissertation, Department of Chemical Engineering, Queens University, Kingston, ON.Google Scholar
  45. 45.
    Webb, S. W., Weist, E. L., Chiovetta, M. G., Laurence, R. I., & Conner, W. C. (1991). Morphological influences in the gas phase polymerization of ethylene by silica supported chromium oxide catalysts. The Canadian Journal of Chemical Engineering, 69, 665–681.CrossRefGoogle Scholar
  46. 46.
    Galli, P. J. (1999). The reactor granule technology: The ultimate expansion of polypropylene properties? Journal of Macromolecular Science Part A: Pure and Applied Chemistry, 36, 1561–1586.CrossRefGoogle Scholar
  47. 47.
    Floyd, S., Heiskanen, T., Taylor, T. W., Mann, M. G., & Ray, W. H. (1987). Polymerization of olefins through heterogeneous catalysis. VI. Effect of particle heat and mass transfer on polymerization behavior and polymer properties. Journal of Applied Polymer Science, 33, 1021–1065.CrossRefGoogle Scholar
  48. 48.
    Mülhaupt, R. (2003). Catalytic polymerization and post polymerization catalysis fifty years after the discovery of Ziegler’s catalysts. Macromolecular Chemistry and Physics, 204, 289–327.CrossRefGoogle Scholar
  49. 49.
    Hutchinson, R. A., & Ray, W. H. (1987). Polymerization of olefins through heterogeneous catalysis. VII. Particle ignition and extinction phenomena. Journal of Applied Polymer Science, 34, 657–676.CrossRefGoogle Scholar
  50. 50.
    Hutchinson, R. A., & Ray, W. H. (1990). Polymerization of olefins through heterogeneous catalysis. VIII. Monomer sorption effects. Journal of Applied Polymer Science, 41, 51–81.CrossRefGoogle Scholar
  51. 51.
    Kittilsen, P., Svendsen, H., & Mckenna, T. F. (2001). Modeling of transfer phenomena on heterogeneous Ziegler catalysts. IV. Convection effects in gas phase processes. Chemical Engineering Science, 56, 3997–4005.CrossRefGoogle Scholar
  52. 52.
    Zacca, J. J., & Debling, J. A. (2001). Particle population overheating phenomena in olefin polymerization reactors. Chemical Engineering Science, 56, 4029–4042.CrossRefGoogle Scholar
  53. 53.
    Gahleitner, M., & Severn, J. R. (2008). Designing polymer properties. In J. R. Severn & J. C. Chadwick (Eds.), Tailor-made polymers (pp. 1–39). Weinheim: Wiley.Google Scholar
  54. 54.
    Galli, P., Barbè, P. C., & Noristi, L. (1984). High yield catalysts in olefin polymerization. General outlook on theoretical aspects and industrial uses. Angewandte Makromolekulare Chemie, 120, 73–90.CrossRefGoogle Scholar
  55. 55.
    Tait, P. J. T., Zohuri, G. H., Kells, A. M., & McKenzie, I. D. (1995). Kinetic studies on propene polymerization using magnesium dichloride supported Ziegler-Natta catalyst. In G. Fink, R. Mülhaupt, & H. H. Brintzinger (Eds.), Ziegler catalyst (pp. 343–362). Berlin: Springer.CrossRefGoogle Scholar
  56. 56.
    Zechlin, J., Steinmetz, B., Tesche, B., & Fink, G. H. (2000). Development of a refined poly(propylene) growth model for silica supported metallocene catalyst systems. Macromolecular Chemistry and Physics, 201, 515–524.CrossRefGoogle Scholar
  57. 57.
    Zechlin, J., Hauschild, K., & Fink, G. (2000). Silica supported metallocene/MAO-systems: Comparison of the polypropylene growth during bulk phase polymerization with slurry phase experiments. Macromolecular Chemistry and Physics, 201, 597–603.CrossRefGoogle Scholar
  58. 58.
    Alexiadis, A., Andes, C., Ferrari, D., Korber, F., Hauschild, K., Bochmann, M., & Fink, G. (2004). Mathematical modeling of homopolymerization on supported metallocene catalysts. Macromolecular Materials and Engineering, 289, 457–466.CrossRefGoogle Scholar
  59. 59.
    McDaniel, M. P. (1985). Supported chromium catalyst for ethylene polymerization. Advances in Catalysis, 33, 47–98.Google Scholar
  60. 60.
    Groppo, E., Estephane, J., Lamberti, C., Spoto, G., & Zecchina, A. (2007). Ethylene, propylene and ethylene oxide in situ polymerization on the Cr(II)/SiO2 system: A temperature- and pressure-dependent. Catalysis Today, 126, 228–234.CrossRefGoogle Scholar
  61. 61.
    Cecchin, G., Morini, G., & Pelliconi, A. (2001). Polypropylene product innovation by reactor granule technology. Macromolecular Symposia, 173, 195–209.CrossRefGoogle Scholar
  62. 62.
    Zhang, X., Zhang, D., & Liu, T. (2012). Influence of nucleating agent on properties of isotactic polypropylene. Energy Procedia, 17, 1829–1835.CrossRefGoogle Scholar
  63. 63.
    Cecchin, G., Morini, G., & Pelliconi, A. (2001). Propylene product innovation by reactor granule technology. Macromolecular Symposia, 173, 195–209.CrossRefGoogle Scholar
  64. 64.
    Debling, J. A., Zacca, J. J., & Ray, W. H. (1997). Reactor residence-time distribution effects on the multistage polymerization of olefins-III. Multi-layered products: Impact polypropylene. Chemical Engineering Science, 52, 1969–2001.CrossRefGoogle Scholar
  65. 65.
    Vestberg, T., Denifl, P., & Wilén, C.-E. (2013). Increased rubber content in high impact polypropylene via a Sirius Ziegler-Natta catalyst containing nanoparticles. Journal of Polymer Science, Part A: Polymer Chemistry, 51, 2040–2048.CrossRefGoogle Scholar
  66. 66.
    Tan, H., Li, L., Chen, Z., Song, Y., & Zheng, Q. (2005). Phase morphology and impact toughness of impact polypropylene copolymer. Polymer, 46, 3522–3527.CrossRefGoogle Scholar
  67. 67.
    Jiang, T., Chen, H., Ning, Y., Kuang, D., & Qu, G. (2006). Study on morphology of high impact propylene prepared by in situ blending. Journal of Applied Polymer Science, 101, 1386–1390.CrossRefGoogle Scholar
  68. 68.
    Böhm, L. L. (2003). The ethylene polymerization with Ziegler catalyst: Fifty years after the discovery. Angewandte Chemie, International Edition, 42, 5010–5030.CrossRefGoogle Scholar
  69. 69.
    Gahleitner, M., Resconi, L., & Doshev, P. (2013). Heterogeneous Ziegler-Natta, metallocene, and post-metallocene catalysis: Success and challenges in industrial application. MRS Bulletin, 28, 229–233.CrossRefGoogle Scholar
  70. 70.
    Malpass, D. B. (2010). An overview of industrial polyethylene processes. In D. B. Malpass (Ed.), Introduction of industrial polyethylene (pp. 85–96). Salem: Scrivener.CrossRefGoogle Scholar
  71. 71.
    Xie, T., McAuley, K. B., Hsu, J. C. C., & Bacon, D. W. (1994). Gas phase ethylene polymerization: Production processes, polymer properties, and reactor modeling. Industrial and Engineering Chemistry Research, 33, 449–479.CrossRefGoogle Scholar
  72. 72.
    Soares JBP, McKenna TFL (2012) Particle growth and single particle modeling. In: Soares JBP, McKenna TFL (eds) Polyolefin reaction engineering modeling. Wiley, Weinheim, 271–309.CrossRefGoogle Scholar
  73. 73.
    Chama, C., & Daire, E. (1992, June 23). Supported polyolefin catalyst for the (co-)polymerization of ethylene in gas phase. US Patent 5-124-296.Google Scholar
  74. 74.
    Hogan, J. P., & Banks, R. L. (1958, March 4). Polymers and production thereof. US Patent 2-825-721.Google Scholar
  75. 75.
    Fouad, N. E. (2000). Formation of Cr(II) species in the H2/CrO3 system. Parameter control. Journal of Thermal Analysis and Calorimetry, 60, 541–547.CrossRefGoogle Scholar
  76. 76.
    McDaniel, M. P., & Collins, K. S. (2008). The influence of porosity on the Phillips Cr/silica catalyst 2. Polyethylene elasticity. Journal of Polymer Science, Part A: Polymer Chemistry, 47, 845–865.CrossRefGoogle Scholar
  77. 77.
    McDaniel, M. P. (2011). Influence of catalyst porosity on ethylene polymerization. ACS Catalysis, 1, 1394–1407.CrossRefGoogle Scholar
  78. 78.
    Groppo, E., Lamberti, C., Bordiga, S., Spoto, G., & Zecchina, A. (2005). The structure of active centers and the ethylene polymerization mechanism on the Cr/SiO2 catalyst: A frontier for the characterization methods. Chemical Reviews, 105, 115–183.CrossRefGoogle Scholar
  79. 79.
    Kim, C. S., Woo, S. I., Jeong, D. J., & Oh, J. S. (1992). Comparison of ethylene polymerization catalyzed over Cr(IV)/silica and Cr(II)/silica catalysts. Polymer Bulletin, 29, 205–212.CrossRefGoogle Scholar
  80. 80.
    Atiqullah, M., Akhtar, M. N., Moman, A. A., Abu-Raqabah, A. H., Palackal, S. J., Al-Muallem, H. A., & Hamed, O. M. (2007). Influence of silica calcination temperature on the performance of supported catalyst SiO2nBuSnCl3/MAO/(nBuCp)2ZrCl2 polymerizing ethylene without separately feeding the MAO cocatalyst. Applied Catalysis. A, General, 320, 134–143.CrossRefGoogle Scholar
  81. 81.
    Thüne, P. C., Loos, J., Wouters, D., Lemstra, P. J., & Niemantsverdriet, J. W. (2001). The CrOx/SiO2/Si(100) catalyst – A surface science approach to supported olefin polymerization catalysis. Macromolecular Symposia, 173, 37–52.CrossRefGoogle Scholar
  82. 82.
    McDaniel, M. P. (2008). Influence of porosity on PE molecular weight from the Phillips Cr/silica catalyst. Journal of Catalysis, 261, 34–49.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Catalysis Research Group, Braskem America Inc.PittsburghUSA
  2. 2.Department of ScienceRobert Morris UniversityPittsburghUSA

Personalised recommendations