Advertisement

Recent Developments in Supported Polyolefin Catalysts: A Review

  • John R. SevernEmail author
Chapter

Abstract

Over the last 60 years the ability to reduce olefinic refinery gases or liquids into a metastable solid in a controlled manner has created the colossal business of polyolefin materials. Their continued success is thanks to a deep understanding of how to meet and predict a customer’s needs in terms of a price/performance package and translate that back through the chain of knowledge (Fig. 1.1). This demand has led to constant evolutions within all areas of the business, punctuated by more than its fair share of revolutionary breakthroughs in the areas of catalyst, polymerization process, and polymer processing technology.

Keywords

Catalysis Support Magnesium chloride Silica Shape Fragmentation Growth Ziegler–Natta Metallocene Chromium Porosity Surface area Particle size Phillips catalysts Morphology Particle size distribution Pore size Activity Replication phenomenon MAO 

Notes

Acknowledgements

The author is grateful to DSM and his family for giving him the time to write this chapter and to Ines Mingozzi (LyondellBasell), Nicolaas Friederichs (SABIC), John F. Walzer (ExxonMobil), and John C. Chadwick for providing advice and support during the preparation of this chapter.

References

  1. 1.
    Resconi, L., Chadwick, J. C., & Cavallo, L. (2007). In D. M. P. Mingos & R. Crabtree (Eds.), Comprehensive, organometallic chemistry III. New York: Elsevier.Google Scholar
  2. 2.
    Kaminsky, W. (Ed.). (2013). Polyolefins: 50 years after Ziegler and Natta I: Polyethylene and Polypropylene. Advances in Polymer Science (Vol. 257). Berlin: Springer.Google Scholar
  3. 3.
    Kaminsky, W. (Ed.). (2013). Polyolefins: 50 years after Ziegler and Natta II: Polyolefins by metallocenes and other single-site catalysts. Advances in Polymer Science (Vol. 257). Berlin: Springer.Google Scholar
  4. 4.
    Baier, M. C., Zuideveld, M. A., & Mecking, S. (2014). Angewandte Chemie International Edition, 53, 9722.CrossRefGoogle Scholar
  5. 5.
    Scheirs, J., & Kaminsky, W. (Eds.). (2000). Metallocene-based polyolefins, preparation, properties and techniques. New York: Wiley.Google Scholar
  6. 6.
    Benedikt, G. M. (Ed.). (1998). Metallocene technology and modern methods in commercial applications catalyzed polymers. New York: William Andrew Publishing.Google Scholar
  7. 7.
    Reiger, B., & Saunders, L. (2003). In S. Bauch, S. Kacker, S. Striegler (Eds.), Late transition metal polymerization catalysts. Weinheim: Wiley.Google Scholar
  8. 8.
    Soga, K., & Terano, M. (Eds.). (1994). Catalyst design for Taylor – Made polyolefins. Studies in surface science and catalysis (Vol. 89, p. 277). Amsterdam: Elsevier.Google Scholar
  9. 9.
    Patil, A. O., & Hlatky, G. G. (Eds.). (2004). Beyond Metallocenes: Next-generation polymerization catalysts. ACS Symposium Series 857. Oxford University Press.Google Scholar
  10. 10.
    Hlatky, G. G. (1999). Metallocene catalysts for olefin polymerization: Annual review for 1996. Coordination Chemistry Reviews, 181, 243.CrossRefGoogle Scholar
  11. 11.
    Shapiro, P. J. (2002). Coordination Chemistry Reviews, 231, 67.CrossRefGoogle Scholar
  12. 12.
    Bochmann, M. (2004). Journal of Organometallic Chemistry, 689, 3982.CrossRefGoogle Scholar
  13. 13.
    Pédeutour, J.-N., Radhakrisknan, K., Cramail, H., & Deffieux, A. (2001). Macromolecular Rapid Communications, 22, 1095.CrossRefGoogle Scholar
  14. 14.
    Gibson, V. C., & Spitzmesser, S. K. (2003). Chemical Reviews, 103, 283–315.CrossRefGoogle Scholar
  15. 15.
    Nomura, K., Liu, J., Padmanabhan, S., & Kitiyanan, B. (2007). Journal of Molecular Catalysis A: Chemical, 267, 1.CrossRefGoogle Scholar
  16. 16.
    Porri, L. (2004). Macromolecular Symposia, 213, 1.Google Scholar
  17. 17.
    Albizzati, E., Cecchin, G., Chadwick, J. C., Collina, G., Giannini, U., Morini, G., et al. (2005). In N. Pasquini (Ed.), Polypropylene handbook (2nd ed., p. 15). Munich: Hanser Publishers.Google Scholar
  18. 18.
    Busico, V. (2013). In W. Kaminsky (Ed.), Polyolefins: 50 years after Ziegler and Natta I: Polyethylene and Polypropylene. Advances in Polymer Science (Vol. 257, p. 37). Berlin: Springer.Google Scholar
  19. 19.
    Natta, G., Corradini, P., & Allegra, G. (1961). Journal of Polymer Science, 51, 399.CrossRefGoogle Scholar
  20. 20.
    Boor, J. (1979). Ziegler-Natta catalysts and polymerizations. New York: Academic Press.Google Scholar
  21. 21.
    Giannini, U. (1981). Die Makromolekulare Chemie, 5, 216.Google Scholar
  22. 22.
    Hermans, J. P., & Henrioulle, P. (1972). US Patent No. 4,210,738.Google Scholar
  23. 23.
    Goodall, B. L. (1990). In van der S. Ven (Ed.), Polypropylene and other polyolefins. polymerization and characterization (p. 1). Amsterdam: Elsevier.Google Scholar
  24. 24.
    Bernard, A., & Fiasse, P. (1990). In T. Keii & K. Soga (Eds.), Catalytic olefin polymerization (p. 405). Amsterdam: Elsevier.Google Scholar
  25. 25.
    De Smet, E., Hendrickx, L., Verwimp, W., Verheijen, M., Allemeersch, P., Vanzeir, E., et al. (2014). US Patent Appl. 2014/0171606.Google Scholar
  26. 26.
    Tsunori, R., Otsuki, Y., Onodera, T., Ikeda, S., & Shinohara, M. (2010). US Patent No. 7,732,532.Google Scholar
  27. 27.
    Kashiwa, N. (2004). Journal of Polymer Science, Part A: Polymer Chemistry, 42, 1.Google Scholar
  28. 28.
    Kuran, W. (2001). Principles of coordination polymerisation (p. 43). New York: John Wiley and Sons.Google Scholar
  29. 29.
    Galli, P., Luciani, L., & Cecchin, G. (1981). Angewandte Makromolekulare Chemie, 94, 63.CrossRefGoogle Scholar
  30. 30.
    Galli, P., Barbè, P. C., Guidetti, G. P., Zannetti, R., Martorana, A., Marigo, A., et al. (1983). European Polymer Journal, 19, 19.CrossRefGoogle Scholar
  31. 31.
    Sacchi, M. C., Tritto, I., Shan, C., Mendichi, R., & Noristi, L. (1991). Macromolecules, 24, 6823.CrossRefGoogle Scholar
  32. 32.
    Scata, U., Luciani, L., & Barbè, P. C. (1982). US Patent No. 4,315,835.Google Scholar
  33. 33.
    Noristi, L., Barbè, P. C., & Baruzzi, G. (1991). Die Makromolekulare Chemie, 192, 1115.CrossRefGoogle Scholar
  34. 34.
    Parodi, S., Nocci, R., Giannini, U., Barbè, P. C., & Scatà, U. (1981). European Patent No. 45977.Google Scholar
  35. 35.
    Albizzati, E., Giannini, U., Morini, G., Smith, C. A., & Ziegler, R. (1995). In G. Fink, R. Mülhaupt, & H.-H. Brintzinger (Eds.), Ziegler catalysts. Recent scientific innovations and technological improvements (p. 413). Berlin: Springer.Google Scholar
  36. 36.
    Albizzati, E., Barbè, P. C., Noristi, L., Scordamaglia, R., Barino, L., Giannini, U., et al. (1989). European Patent No. 0,361,494.Google Scholar
  37. 37.
    Morini, G., & Cristofori, A. (1996). European Patent No. 0,728,724.Google Scholar
  38. 38.
    Albizzati, E., Giannini, U., Morini, G., Galimberti, M., Barino, L., & Scordamaglia, R. (1995). Macromolecular Symposia, 89, 73.CrossRefGoogle Scholar
  39. 39.
    Barino, L., & Scordamaglia, R. (1995) Macromolecular Symposia, 89, 101.CrossRefGoogle Scholar
  40. 40.
    Cui, N., Ke, Y., Li, H., Zhang, Z., & Guo, Z. (2006). Journal of Applied Polymer Science, 99, 1399.Google Scholar
  41. 41.
    Chadwick, J. C., Morini, G., Albizzati, E., Balbontin, G., Mingozzi, I., Cristofori, A., et al. (1996). Macromolecular Chemistry and Physics, 197, 2501.CrossRefGoogle Scholar
  42. 42.
    Chadwick, J. C., van der Burgt, F. P. T. J., Rastogi, S., Busico, V., Cipullo, R., Talarico, G., et al. (2004). Macromolecules, 37, 9722.CrossRefGoogle Scholar
  43. 43.
    Scordamaglia, R., & Barino, L. (1998). Macromolecular Theory and Simulations, 7, 399.CrossRefGoogle Scholar
  44. 44.
    Toto, M., Morini, G., Guerra, G., Corradini, P., & Cavallo, L. (2000). Macromolecules, 33, 1134.CrossRefGoogle Scholar
  45. 45.
    Sacchi, M. C., Forlini, F., Tritto, I., Locatelli, P., Morini, G., Noristi, L., et al. (1996). Macromolecules, 29, 3341.CrossRefGoogle Scholar
  46. 46.
    Chadwick, J. C., Morini, G., Balbontin, G., Mingozzi, I., & Albizzati, E. (1997). Macromolecular Chemistry and Physics, 198, 1181.CrossRefGoogle Scholar
  47. 47.
    Morini, G., Balbontin, G., Gulevich, Y., Duijghuisen, H., Kelder, R., Klusener, P. A., et al. (2004). US Patent No. 6,818,583.Google Scholar
  48. 48.
    Cecchin, G., Morini, G., Pelliconi, A. (2001). Macromolecular Symposia, 173, 195.CrossRefGoogle Scholar
  49. 49.
    Gao, M., Lui, H., Li, Z., Wang, J., Yang, J., Li, T., et al. (2008). US Patent No. 7,388,061.Google Scholar
  50. 50.
    Gao, M., Liu, H., Wang, J., Li, C., Ma, J., & Wie, G. (2004). Polymer, 45, 2175.CrossRefGoogle Scholar
  51. 51.
    Haikarainen, A., Denifl, P., & Leinonen, T. (2014). US Patent No. 8,901,261.Google Scholar
  52. 52.
    Chen, L., Leung, T. W., & Tao, T. (2012). US Patent No. 8,088,872.Google Scholar
  53. 53.
    Chen, L., Leung, T. W., Tao, T., Gao, K. & Huang, X. (2013). US Patent No. 8,466,081.Google Scholar
  54. 54.
    Kim, S. Y., Lee, J. W., Kim, E. I., & Park, J. R. (2015). US Patent No. 9,045,572.Google Scholar
  55. 55.
    Ernst, A. B., Streeky, J. A., & Oliver, W. L. (2014). US Patent No. 8,716,514.Google Scholar
  56. 56.
    Coalter, J. N. III, Leung, T. W., Tao, T., & Gao, K. (2012). US Patent No. 8,263,520.Google Scholar
  57. 57.
    Chen, L., Leung, T. W., & Tao, T. (2013). US Patent No. 8,536,290.Google Scholar
  58. 58.
    Coalter, J. N. III, Leung, T. W., Tao, T., & Gao, K. (2012). US Patent No. 8,633,126.Google Scholar
  59. 59.
    Matsunaga, K., Tsuru, K., Kawakita, K., Jinnai, T., & Shinozaki, T. (2014). US Patent No. 8,822,366.Google Scholar
  60. 60.
    Matsunaga, K., Tsuru, K., & Shinozaki, T. (2009). US Patent Appl. 2009/0203855.Google Scholar
  61. 61.
    Fujiwara, Y., Hirahata, W., & Hamaki, H. (2012). US Patent No. 8,288,488.Google Scholar
  62. 62.
    Mignogna, A., Guidotti, S., Morini, G., & Pater, J. T. M. (2015). US Patent Appl. 2015/0158957.Google Scholar
  63. 63.
    Mignogna, A., Guidotti, S., Morini, G., & Pater, J. T. M. (2015). US Patent Appl. 2015/133289.Google Scholar
  64. 64.
    Mignogna, A., Guidotti, S., Morini, G., Pater, J. T. M., Balboni, D., & Cristofori, A. (2015). US Patent No. 9,034,783.Google Scholar
  65. 65.
    Nifant’ev, I., Mignogna, A., Bagrov, V., Esposito, S., Guidotti, S., Morini, G., et al. (2014). US Patent Appl. 2014/0243489.Google Scholar
  66. 66.
    Siddiqui, I. H., Al-Bahiyl, K. A., & Al-Gahtani, K. M. (2015). PCT Int. Appl. 2015/091984.Google Scholar
  67. 67.
    Taftaf, M. I., Ghalit, N., Bukatov, G. D., Sergeev, S. A., Zakharov, V. A., Sainani, J. B., et al. (2015). US Patent Appl. 2015/0038660.Google Scholar
  68. 68.
    Son, K. C., Koh, H. L., Ahn, J. K., & Lee, S. H. (2014). US Patent No. 8,652,986.Google Scholar
  69. 69.
    Yi, J., Cui, C., Li, H., Yin, B., Zhang, Y., Lang, X., et al. (2013). US Patent No. 8,404,789.Google Scholar
  70. 70.
    Bantu, B., Singh, G., Kaur, S., Kumar, N., Kapur, G. S., Kant, S., et al. (2015). US Patent Appl. 2015/0152199.Google Scholar
  71. 71.
    Guidotti, S., Morini, G., Esposito, S., Mignogna, A., Pater, J. T. M., Fabrizio Piemontesi, F., et al. (2014). US Patent Appl. 2014/0046010.Google Scholar
  72. 72.
    Guidotti, S., Piemontesi, F., Pater, J. T. M., & Morini, G. (2014). US Patent No. 8,829,126.Google Scholar
  73. 73.
    Chen, L., Leung, T. W., & Tao, T. (2012). US Patent No. 8,288,585.Google Scholar
  74. 74.
    van Egmond, J. W. (2015). PCT. Int. Pat. Appl. 2015/081254.Google Scholar
  75. 75.
    Chen, L., Leung, T. W., Roth, G. A., Tao, T., & Gao, K. (2013). US Patent No. 8,507,717.Google Scholar
  76. 76.
    Gullo, M. F., Roth, G. A., Leung, T. W., & Williams, C. C. (2013). US Patent Appl. 2013/0053525.Google Scholar
  77. 77.
    Coalter, J. N. III, Chen, L., & Williams, C. C. (2013). US Patent Appl. 2013/0338321.Google Scholar
  78. 78.
    Spaether, W., Lynch, J., Rösch, J., & Hemmerich, R. (2007). US Patent No. 7,232,785.Google Scholar
  79. 79.
    Spaether, W., & Calderone, A. T. (2004). PCT Int. Appl. WO2004/016660.Google Scholar
  80. 80.
    Kerth, J., Zolk, R., & Hemmerich, R. (1992). US Patent No. 5,162,465.Google Scholar
  81. 81.
    Zolk, R., Kerth, J., & Hemmerich, R. (1991). US Patent No. 5,006,620.Google Scholar
  82. 82.
    Ferraris, M., Rosati, F., Parodi, S., Giannetti, E., Motroni, G., & Albizzati, E. (1983). US Patent No. 4,399,054.Google Scholar
  83. 83.
    Evangelisti, D., & Collina G. (2006). US Patent No. 7,060,763.Google Scholar
  84. 84.
    Collina, G., Evangelisti, D., Morini, G., & Ferrara, G. (2009). PCT Int. Appl. WO2009080568.Google Scholar
  85. 85.
    Gaddi, B., Collina, G., & Evangelisti, D. (2014). PCT Int. Appl. WO2014/095523.Google Scholar
  86. 86.
    Mao, B., Yang, X., Li, Z., & Yang, A. (1994). Chin. Pat. CN 1091748C.Google Scholar
  87. 87.
    Sozzani, P., Bracco, S., Comotti, A., Simonutti, R., & Camurati, I. (2003). Journal of the American Chemical Society, 125, 12881.CrossRefGoogle Scholar
  88. 88.
    Auriemma, F., & De Rosa, C. (2007). Chemistry of Materials, 173, 195.Google Scholar
  89. 89.
    Sacchetti, M., Govoni, G., & Clarrocci, A. (1993). US Patent No. 5,221,651.Google Scholar
  90. 90.
    Govoni, G., Clarrocci, A., & Sacchetti, M. (1993). US Patent No. 5,231,119.Google Scholar
  91. 91.
    Cecchin, G., Guglielmi, F., Pellicani, A., & Burgin, E. (1994). US Patent No. 5,286,564.Google Scholar
  92. 92.
    Invernizzi, R., & Ligorati, F. (1985). US Patent No. 4,506,027.Google Scholar
  93. 93.
    Iiskola, E., & Koskinen, J. (1989). US Patent No. 4,829,034.Google Scholar
  94. 94.
    Karbasi, A. K., Leinonen, T., & Sormunen, P. (1994). European Patent Appl. 0,627,449 A1.Google Scholar
  95. 95.
    Koskinen, J., & Jokinen, P. (2013). P.C.T. Appl. 93/19100.Google Scholar
  96. 96.
    Garoff, T., Leinonen, T., & Iiskola, E. (1997). European Patent No. 0,586,390.Google Scholar
  97. 97.
    Klendworth, D. D., Johnson, K. W., Winter, A., & Langhauser, F. (2010). US Patent Appl. 2010/0069586.Google Scholar
  98. 98.
    Zhu, B., Jia, J., Zhao, X., Kersting, M., Gückel, C., Wei, C., et al. (2012). European Patent No. 2,194,070.Google Scholar
  99. 99.
    Kioka, M., & Kashiwa, N. (1990). US Patent No. 4,952,649.Google Scholar
  100. 100.
    Kusumoto, T., Sugimoto, Y., & Fujisawa, M. (2015). US Patent No. 8,975,354.Google Scholar
  101. 101.
    Tan, N., & Tamura, S. (2012). US Patent Appl. 2012/0010318.Google Scholar
  102. 102.
    Mao, B., Yang, A., Zheng, Y., Yang, J., & Li, Z. (1992). European Patent No. 0,258,485.Google Scholar
  103. 103.
    Marin, V. P., Hintolay, A., & Spencer, M. D. (2014). US Patent Appl. 2014/0128556.Google Scholar
  104. 104.
    Spencer, M. D., & O’Reilly, N. (2014). US Patent No. 8,685,879.Google Scholar
  105. 105.
    Spencer, M. D. (2013). US Patent No. 8,344,079.Google Scholar
  106. 106.
    Goodall, B. L., van der Nat, A. A., & Sjardijn, W. (1982). US Patent No. 4,329,253.Google Scholar
  107. 107.
    Goodall, B. L., van der Nat, A. A., & Sjardijn, W. (1983). US Patent No. 4,393,182.Google Scholar
  108. 108.
    Goodall, B. L., van der Nat, A. A., & Sjardijn, W. (1983). US Patent No. 4,400,302.Google Scholar
  109. 109.
    Goodall, B. L., van der Nat, A. A., & Sjardijn, W. (1983). US Patent No. 4,414,132.Google Scholar
  110. 110.
    Job, R. C. (1991). US Patent No. 5,077,357.Google Scholar
  111. 111.
    Job, R. C. (1992). US Patent No. 5,082,907.Google Scholar
  112. 112.
    Job, R. C. (1992). US Patent No. 5,124,298.Google Scholar
  113. 113.
    Kilty, P. A., & Cuthbert, T. R. (2004). US Patent No. 6,825,146.Google Scholar
  114. 114.
    Morini, G., Cristofori, A., Gaddi, B., Liguori, D., Pater, J. T. M., & Vitale, G. (2011). US Patent No. 8,062,989.Google Scholar
  115. 115.
    Terano, M., Murai, A., Inoue, M., & Miyoshi, K. (1989). US Patent No. 4,816,433.Google Scholar
  116. 116.
    Terano, M., Soga, H., & Kimura, K. (1989). US Patent No. 4,829,037.Google Scholar
  117. 117.
    Murai, A., Terano, M., Kimura, K., & Inoue, M. (1989). US Patent No. 4,839,321.Google Scholar
  118. 118.
    Wagner, B. E., Zilker, D. P., & Jorgensen, R. J. (1997). US Patent No. 5,604,172.Google Scholar
  119. 119.
    Arzoumanidis, G. G., Karayannis, N. M., Khelghatian, H. M., Lee, S. S., & Johnson, B. V. (1989). US Patent No. 4,866,022.Google Scholar
  120. 120.
    Arzoumanidis, G. G., Karayannis, N. M., Khelghatian, H. M., Lee, S. S., & Johnson, B. V. (1991). US Patent No. 4,988,656.Google Scholar
  121. 121.
    Streeky, J. A., Bersted, B. H., Blake, J. W., Feng, D., Hoppin, C. R., & Tovrog, B. S. (2001). US Patent No. 6,201,079.Google Scholar
  122. 122.
    Smith, G. M., Amata, R. J., Tirendi, C. F., & Band, E. I. (1993). US Patent No. 5,262,573.Google Scholar
  123. 123.
    Epstein, R. A., & Wallack, W. T. (2009). US Patent No. 7,504,352.Google Scholar
  124. 124.
    Ramjoie, Y. J. E., Sergeev, S. A., Vlaar, M., Zakharov, V. A., & Bukatov, G. D. (2011). US Patent No. 7,947,788.Google Scholar
  125. 125.
    Zuideveld, M. A., Sainani, J. B., & Vimalkumar, M. P. (2015). European Patent Appl. 2,837,634.Google Scholar
  126. 126.
    Leinonen, T., & Denifl, P. (2003). European Patent No. 1,273,595.Google Scholar
  127. 127.
    Abboud, M., Denifl, P., & Reichert, K.-H. (2005). Macromolecular Materials and Engineering, 290, 1220.CrossRefGoogle Scholar
  128. 128.
    Denifl, P., Jääskeläinen, P., Leinonen, T., Malm, B., Nymark, A. E., & Vestberg, T. (2015). European Patent No. 2,565,221.Google Scholar
  129. 129.
    Vestberg, T. (2007). ACS advances in polyolefins. Santa Rosa.Google Scholar
  130. 130.
    Härkönen, M., Seppälä, J. V., & Väänänen, T. (1990). In T. Keii & K. Soga (Eds.), Catalytic olefin polymerization (p. 87). Amsterdam: Elsevier.Google Scholar
  131. 131.
    Proto, A., Oliva, L., Pellecchia, C., Sivak, A. J., & Cullo, L. A. (1990). Macromolecules, 23, 2904.CrossRefGoogle Scholar
  132. 132.
    Okano, T., Chida, K., Furuhashi, H., Nakano, A., & Ukei, S. (1990). In T. Keii & K. Soga (Eds.), Catalytic olefin polymerization (p. 177). Amsterdam: Elsevier.Google Scholar
  133. 133.
    Härkönen, M., & Seppala, J. V. (1989). Macromolecular Chemistry, 160, 2535.Google Scholar
  134. 134.
    Härkönen, M., & Seppala, J. V. (1990). Studies in Surface Science, 56, 87.Google Scholar
  135. 135.
    Härkönen, M., & Seppala, J. V. (1991). Macromolecular Chemistry, 192, 721.Google Scholar
  136. 136.
    Härkönen, M., & Seppala, J. V. (1992). Macromolecular Chemistry, 193, 1413.Google Scholar
  137. 137.
    Härkönen, M., Seppala, J. V., & Salminen, H. (1995). Polymer Journal, 27, 256.CrossRefGoogle Scholar
  138. 138.
    Härkönen, M., Seppala, J. V., Chûjô, R., & Kogure, Y. (1995). Polymer, 36, 1499.CrossRefGoogle Scholar
  139. 139.
    Kakugo, M., Miyatake, T., Naito, Y., & Mizunuma, K. (1988). Macromolecules, 21, 314.CrossRefGoogle Scholar
  140. 140.
    Sacchi, M. C., Forlini, F., Tritto, I., Mendichi, R., Zannoni, G., & Noristi, L. (1992). Macromolecules, 25, 5914.CrossRefGoogle Scholar
  141. 141.
    Taniike, T., & Terano, M. (2013). In W. Kaminsky (Ed.), Polyolefins: 50 years after Ziegler and Natta I: Polyethylene and Polypropylene. Advances in Polymer Science (Vol. 257, p. 81). Berlin: Springer-Verlag.Google Scholar
  142. 142.
    Ishimaru, Kioka, M., & Toyota, A. (1989). European Patent No. 0,350,170.Google Scholar
  143. 143.
    Chadwick, J. C., van Kessel, G. M. M., & Sudmeijer, O. (1995) Macromolecular Chemistry and Physics, 196, 1431.CrossRefGoogle Scholar
  144. 144.
    Chadwick, J. C. (2001). Macromolecular Symposia, 173, 21.Google Scholar
  145. 145.
    Yoshikiyo, M., Fukunaga, T., Sato, H., Machida, T., Ikeuchi, H., Yano, T., et al. (2007). US Patent No. 7,238,758.Google Scholar
  146. 146.
    Stewart, C. A. (1991). European Patent Appl. 0,410,443.Google Scholar
  147. 147.
    Yao, S., & Tanaka, Y. (2001). Macromolecular Theory and Simulations, 10, 850.CrossRefGoogle Scholar
  148. 148.
    Ikeuchi, H., Yano, T., Ikai, S., Sato, H., & Yamashita, J. (2003). Journal of Molecular Catalysis A: Chemical, 193, 207.CrossRefGoogle Scholar
  149. 149.
    Tanaka, Y., Sato, H., & Fujita, H. (2006). Studies in Surface Science and Catalysis, 172, 527.Google Scholar
  150. 150.
    Yano, T., Hosaka, M., Sato, M., & Kimura, K. (2012). US Patent No. 8,247,504.Google Scholar
  151. 151.
    Ishimaru, N., Kioka, M., & Toyota, A. (1990). European Patent No. 0,385,765.Google Scholar
  152. 152.
    Miro, N. D., & Ohkura, M. (1999). European Patent No. 1,080,122.Google Scholar
  153. 153.
    Shamshoum, E., Rauscher, D., & Burmaster, D. (2001). European Patent No. 0,676,419.Google Scholar
  154. 154.
    Miro, N. D., Georgellis, G. B., & Swei, H. (1998). European Patent No. 0,743,960.Google Scholar
  155. 155.
    Chen, L., & Nemzek, T. L. (2006). US Patent No. 7,141,635.Google Scholar
  156. 156.
    Meka, P., Abubakar, S. M., Chen, S. Y., & Edwards, T. S. (2014). PCT Int. Appl. 2014/070386.Google Scholar
  157. 157.
    Song, W., Guo, M., Zhang, S., Wei, W., Huang, H., Yu, L., et al. (2015). US Patent No. 9,068,030.Google Scholar
  158. 158.
    Li, R. T., Lawson, K. W., Mehta, A. K., & Meka, P. (2007). US Patent No. 7,183,234.Google Scholar
  159. 159.
    Peil, K. P., Neithamer, D. R., Patrick, D. W., Wilson, B. E., & Tucker, C. J. (2004). Macromolecular Rapid Communications, 25, 119.CrossRefGoogle Scholar
  160. 160.
    Chen, L. (2008). US Patent No. 7,420,021.Google Scholar
  161. 161.
    Campbell, R. E., & Chen, L. (2008). US Patent No. 7,381,779.Google Scholar
  162. 162.
    Cai, P., Van Egmond, J. W., Fedec, M. J., Goad, J. D., Brady, R. C. III, & Chen, L. (2013). US Patent Appl. 2013/0005923.Google Scholar
  163. 163.
    Alt, F. P., Böhm, L. L., Enderle, H. F., & Berthold, J. (2001). Macromolecular Symposia, 163, 135.CrossRefGoogle Scholar
  164. 164.
    Nowlin, T. E., Mink, R. I., & Kissin, Y. V. (2010). In R. Hoff & R. T. Mathers (Eds.), Handbook of transition metal polymerization catalysts (p. 131). New York: John Wiley and Sons.Google Scholar
  165. 165.
    Wu, L., & Wanke, S. E. (2010). In R. Hoff & R. T. Mathers (Eds.), Handbook of transition metal polymerization catalysts (p. 231). New York: John Wiley and Sons.Google Scholar
  166. 166.
    Krentsel, B. A., Kissin, Y. V., Kleiner, V. J., & Stotskaya, L. L. (1997). Polymers and copolymers of higher α-Olefins. Munich: Carl Hanser Verlag.Google Scholar
  167. 167.
    Böhm, L. L. (2003). Angewandte Chemie International Edition, 42, 5010.CrossRefGoogle Scholar
  168. 168.
    Böhm, L. L. (2013). In W. Kaminsky (Ed.), Polyolefins: 50 years after Ziegler and Natta I: Polyethylene and Polypropylene. Advances in Polymer Science (Vol. 257, p. 37). Berlin: Springer.Google Scholar
  169. 169.
    Karol, F. J., Goeke, G. L., Wagner, B. E., Fraser, W. A., Jorgensen, R. J., & Friis, N. (1981). US Patent No. 4,302,566.Google Scholar
  170. 170.
    Hartshorn, A. J., & Jones, E. (1982). US Patent No. 4,324,691.Google Scholar
  171. 171.
    Hagerty, R. O., Mohring, R. O., & Allen, L. M. (1995). European Patent No. 0,231,102.Google Scholar
  172. 172.
    Nowlin, T. E., & Mink, R. I. (1997). European Patent No. 0,612,327.Google Scholar
  173. 173.
    Nowlin, T. E., & Mink, R. I. (1999). European Patent No. 0,729,478.Google Scholar
  174. 174.
    Nowlin, T. E., & Mink, R. I. (1999). European Patent No. 0,701,575.Google Scholar
  175. 175.
    Nowlin, T. E., & Mink, R. I. (1995). PCT Int. Appl. 9513873.Google Scholar
  176. 176.
    Apecetche, M. A., Cao, P. A., Awe, M. D., Schoed-Wolters, A. D., & Impleman, R. W. (2008). US Patent No. 7,381,780.Google Scholar
  177. 177.
    Spencer, L., & Springs, M. C. (1997). US Patent No. 5,633,419.Google Scholar
  178. 178.
    Mavridis, H., Reinking, M. K., Shroff, R. N., Mutchler, J. A., Holland, C. S., Lindstrom, K. M., et al. (2001). US Patent No. 6,171,993.Google Scholar
  179. 179.
    Reinking, M. K. (2006). US Patent No. 7,151,145.Google Scholar
  180. 180.
    Sillantaka, L., Plamqvist, U., Iiskola, E., & Koavujäri, S. (2000). US Patent No. 6,043,326.Google Scholar
  181. 181.
    Ala-Huikku, S., & Lommi, M. (1996). European Patent No. 0,573,633.Google Scholar
  182. 182.
    Dombro, R. A. (1982). US Patent No. 4,335,016.Google Scholar
  183. 183.
    Pullukat, T. J., & Hoff, R. E. (1983). US Patent No. 4,374,753.Google Scholar
  184. 184.
    Brun, C., Cheux, A., & Barthel, E. (1992). European Patent No. 0,296,021.Google Scholar
  185. 185.
    Lalange-Magne, C., & Royer-Mladenov, C. (2006). European Patent No. 1,490,415.Google Scholar
  186. 186.
    BP Lavera SNC. (2005). European Patent Appl. 1,502,924.Google Scholar
  187. 187.
    Kioka, M., Kawakita, K., & Toyota, A. (1989). European Patent No. 0,494,084.Google Scholar
  188. 188.
    Kioka, M., Kawakita, K., & Toyota, A. (1991). European Patent Appl. 408,750.Google Scholar
  189. 189.
    Hagerty, R. O., Petsche, I. B., & Schurzky, K. G. (1985). US Patent No. 4,562,169.Google Scholar
  190. 190.
    Karol, F. J., Levine, I. J., & George, F. C. (1987). European Patent No. 0,120,503.Google Scholar
  191. 191.
    Levine, I. J., & Karol, F. J. (1988). US Patent No. 4,719,193.Google Scholar
  192. 192.
    Allen, L. M., Hagerty, R. O., & Mohring, R. O. (1988). US Patent No. 4,732,882.Google Scholar
  193. 193.
    Cook, P. J., Hagerty, R. O., Husby, P. K., & Nowlin, T. E. (1992). US Patent No. 5,139,986.Google Scholar
  194. 194.
    Kelly, M., Jeremic, D., Ker, V., & Russell, C. (2000). US Patent No. 6,140,264.Google Scholar
  195. 195.
    Kelly, M., Goyal, S. K., Ker, V., Montyn de Wit, P., Kimberley, B. S., & Hoang, P. P. M. (2007). US Patent No. 7,211,535.Google Scholar
  196. 196.
    Goyal, S. K., Wiwchar, T. W., Ker, V., & Kelly, M. (2004). US Patent No. 6,825,293.Google Scholar
  197. 197.
    Kelly, M., & Kimberley, B. S. (2010). US Patent No. 7,671,149.Google Scholar
  198. 198.
    Garoff, T., Johansson, S., Palmqvist, U., Lindgren, D., Sutela, M., Waldvogel, P., et al. (2000). US Patent No. 6,034,026.Google Scholar
  199. 199.
    Lindroos, J., Johansson, S., & Waldvogel, P. (2005). US Patent No. 6,924,343.Google Scholar
  200. 200.
    Hamer, A. D., & Karol, F. J. (1981). US Patent No. 4,293,673.Google Scholar
  201. 201.
    Karol, F. J., Goeke, G. L., Wagner, E. B., Frazer, A., & Jorgensen, R. J. (1981). US Patent No. 4,302,566.Google Scholar
  202. 202.
    Schouterden, P. J. C., Nicasy, R. A. J., Munjal, S., Jorgensen, R. J., & Wagner, B. E. (2014). US Patent No. 8,916,649.Google Scholar
  203. 203.
    Wagner, B. E., & Jorgensen, R. J. (2006). US Patent No. 6,982,237.Google Scholar
  204. 204.
    Jorgensen, R. J., Kapur, M., Michie, W. J., & Wagner, B. E. (2009). PCT Int. Appl. 2009/085922.Google Scholar
  205. 205.
    Zoeckler, M. T., Wagner, B. E., & Kao, S.-C. (2008). US Patent No. 7,348,383.Google Scholar
  206. 206.
    Spriggs, T. E., Turner, M. D., Wagner, B. E., Levandovsky, A., & Lacks, D. J. (2006). PCT Int. Appl. 2006/020623.Google Scholar
  207. 207.
    Jorgensen, R. J., Upham, S. M., Madden, J. D., & Michie, W. J. (2001). US Patent No. 6,187,866.Google Scholar
  208. 208.
    Wagner, B. E., Job, R., Schoeb-Wolters, A., & Jorgensen, R. J. (2010). PCT Int. Appl. 2010/017393.Google Scholar
  209. 209.
    Beigzadeh, D., Campbell, R. E., Ewart, S. W., Froese, R. D., Jorgensen, R. J., & Margl, P. M. (2015). US Patent No. 8,993,692.Google Scholar
  210. 210.
    Campbell, R. E., Chen, L., Painter, R. B., Reib, R. N., & Tilston, M. W. (2008). US Patent No. 7,393,910.Google Scholar
  211. 211.
    Berger, E., & Derroitte, J.-L. (1975). US Patent No. 3,901,863.Google Scholar
  212. 212.
    Bienfait, C. (1986). US Patent No. 4,617,360.Google Scholar
  213. 213.
    Bian, J. (2003). US Patent No. 6,545,106.Google Scholar
  214. 214.
    Cermelli, I., Dheur, L. M. G., & Siberdt, F. (2013). PCT Int. Appl. 2013/178673.Google Scholar
  215. 215.
    Ameye, T. F., Frederich, A., & Jan, D. (2013). US Patent No. 8,445,619.Google Scholar
  216. 216.
    Batinas-Geurts, A. A., Friederichs, N. H., Schoffelen, T., Zuidema, E., & Garg, P. (2013). PCT Int. Appl. 2013/087167.Google Scholar
  217. 217.
    Friederichs, N. H. (2010). PCT Int. Appl. 2010/006756.Google Scholar
  218. 218.
    Böhm, L. (1991). PCT Int. Appl. 1991/018934.Google Scholar
  219. 219.
    Lecht, R. (1994). European Patent No. 0,401,776.Google Scholar
  220. 220.
    Berthold, J., Diedrich, B., Franke, R., Hartlapp, J., Schäfer, W., & Strobel, W. (1985). European Patent No. 0,068,257.Google Scholar
  221. 221.
    Dotsch, D., Marczinke, B. L., Meier, G., & Salinas, M. S. (2014). US Patent No. 8,802,768.Google Scholar
  222. 222.
    Berthold, J., Heinicke, L.-G., & Meier, G. (2014). US Patent No. 8,673,437.Google Scholar
  223. 223.
    Berthold, J., Nitz, H., Rothhöft, W., & Vogt, H. (2015). US Patent No. 9,051,458.Google Scholar
  224. 224.
    Berthold, J., Nitz, H., Rothhoeft, W., Schulte, U., & Vogt, H. (2008). PCT Int. Appl. 2008/049551.Google Scholar
  225. 225.
    Chen, H., Coffy, T. J., & Shamshoum, E. S. (2001). US Patent No. 6,174,971.Google Scholar
  226. 226.
    Knoeppel, D. W., Coffy, T. J., Enriquez, H., & Gray, S. D. (2005). US Patent No. 6,864,207.Google Scholar
  227. 227.
    Vizzini, K., Knoeppel, D., Gray, S., Rauscher, D., Coffy, T., & Enriquez, H. (2009). US Patent No. 7,473,664.Google Scholar
  228. 228.
    Enriquez, H., Vizzini, K., & Gray, S. (2010). US Patent No. 7,655,590.Google Scholar
  229. 229.
    Vantomme, A., Siraux, D., Sinoy, A. V., & Gielens, J.-L. (2013). US Patent No. 8,609,792.Google Scholar
  230. 230.
    Coffy, T. J., Guenther, G., & Gray, S. D. (2012). US Patent No. 8,138,264.Google Scholar
  231. 231.
    van den Berg, C. E. P. V. (1979). US Patent No. 4,178,300.Google Scholar
  232. 232.
    Denifl, P., Leinonen, T., & Kipiani, G. (2103). PCT Int. Appl. 2013/098138.Google Scholar
  233. 233.
    Garoff, T., & Waldvogel, P. (2012). US Patent No. 8,143,184.Google Scholar
  234. 234.
    Wang, S., Liu, D., Zhou, J., Lü, X., Zhang, L., Mao, B., et al. (2015). US Patent No. 9,068,025.Google Scholar
  235. 235.
    Yasuda, K., Matsumoto, T., & Mizumoto, K. (2010). US Patent Appl. 2010/0196711.Google Scholar
  236. 236.
    Nakayama, Y., Saito, J., Bando, H., & Fujita, T. (2006). Chemistry: A European Journal, 7546.Google Scholar
  237. 237.
    Tsutsui, T., Yashiki, T., & Funabara, Y. (2004). US Patent No. 6,716,924.Google Scholar
  238. 238.
    Yashiki, T., & Minami, S. (2004). US Patent No. 6,806,222.Google Scholar
  239. 239.
    Matsunaga, K., Yamamoto, H., Yamamoto, K., Shinozaki, T., & Takahashi, K. (2013). US Patent No. 8,383,541.Google Scholar
  240. 240.
    Agrifoglio, G., Diaz-Barrios, A., Liscano, J., Matos, J. O., & Trujillo, M. (2004). European Patent No. 0,810,235.Google Scholar
  241. 241.
    Chang, M., & Garoff, T. (2011). US Patent Appl. 2011/0294970.Google Scholar
  242. 242.
    Zhu, Z., Chang, M., & Aarons, C. J. (2006). US Patent No. 7,153,803.Google Scholar
  243. 243.
    Cuffiani, I., Pennini, G., & Sacchetti, M. (1996). US Patent No. 5,578,541.Google Scholar
  244. 244.
    Morini, G., Dall’Occo, T., Piemontesi, F., Spoto, R., Vincenzi, P., & Vitale, G. (2009). US Patent No. 7,592,286.Google Scholar
  245. 245.
    Fushimi, M., Liguori, D., Dall’occo, T., Morini, G., Pater, J. T. M., & Vitale, G. (2011). PCT Int. Appl. 2011/015553.Google Scholar
  246. 246.
    Fushimi, M., & Schneider, M. (2009). PCT Int. Appl. 2009/027269.Google Scholar
  247. 247.
    Fushimi, M., Schneider, M., & Morini, G. (2009). PCT Int. Appl. 2009/098177.Google Scholar
  248. 248.
    Fushimi, M., Schneider, M., & Morini, G. (2009). PCT Int. Appl. 2009/027266.Google Scholar
  249. 249.
    Fushimi, M. (2009). PCT Int. Appl. 2009/098198.Google Scholar
  250. 250.
    Gelus, E. (2002). European Patent No. 0,703,246.Google Scholar
  251. 251.
    Berardi, A., Frederich, A., Jan, D., Kuhlburger, J.-J., Sgard, A., & Van Daele, A. (2012). US Patent No. 8,293,857.Google Scholar
  252. 252.
    Ford, R. R., & Stuart, R. K. (2001). US Patent No. 6,291,613.Google Scholar
  253. 253.
    Ford, R. R., & Stuart, R. K. (2001). US Patent No. 7,652,113.Google Scholar
  254. 254.
    Tsubaki, K., Morinaga, H., Iwabuchi, T., & Kawahara, M. (1980). US Patent No. 4,223,118.Google Scholar
  255. 255.
    Iizuka, T., Yamamoto, S., Kawahara, M., Takemori, T., Iida, M., & Nishitani, K. (2004). US Patent No. 6,743,863.Google Scholar
  256. 256.
    Tsubaki, K., Morinaga, H., Matsuo, Y., & Iwabuchi, T. (1982). US Patent No. 4,357,448.Google Scholar
  257. 257.
    Mavridis, H., Mehta, S. D., Mack, M. P., Garrison, P. J., & Lynch, M. W. (2007). US Patent No. 7,230,054.Google Scholar
  258. 258.
    Mehta, S. D., Reinking, M. K., Joseph, S., Garrison, P. J., Lewis, E. O., Schwab, T. J., et al. (2009). US Patent Appl. 2009/0304966.Google Scholar
  259. 259.
    Kamiyama, S., Kawahara, M., Inamatsu, K., Kase, K., Mizokami, K., & Matsumoto, T. (1995). US Patent No. 5,422,400.Google Scholar
  260. 260.
    Okada, M., & Hirahata, W. (2012). US Patent No. 8,105,970.Google Scholar
  261. 261.
    Spaleck, W., Antberg, M., Rohrmann, J., Winter, A., Bachmann, B., Kiprof, P., et al. (1992). Angewandte Chemie International Edition, 31, 1347.Google Scholar
  262. 262.
    Okumura, Y., Seidel, N., & Kölling, L. (2009). European Patent No. 1,636,245.Google Scholar
  263. 263.
    Burkhardt, T. J., Haygood, W. T., Li, R. T., Vizzini, J. C., Kuchta, M. C., Stehling, U. D., et al. (2002). US Patent No. 6,414,095.Google Scholar
  264. 264.
    Paczkowski, N., Winter, A., & Langhauser, F. (2006). PCT Int. Appl. 2006/060544.Google Scholar
  265. 265.
    Okumura, Y., Nifant’ev, E. I., Michael Elder, M., Ivchenko, P. V., & Bagrov, V. (2005). PCT Int Appl. 2005/058916.Google Scholar
  266. 266.
    Nifant’ev, E. I., Ivchenko, P. V., Okumura, Y., Ciaccia, E., & Resconi, L. (2006). PCT Int. Appl. 2006/097497.Google Scholar
  267. 267.
    Resconi, L., Castro, P., Maaranen, J., Voskoboynikov, A. V., Asachenko, A. F., Tsarev, A. A., et al. (2012). European Patent Appl. 2402353.Google Scholar
  268. 268.
    Resconi, L., Focante, F., Balboni, D., Nifant’ev, E. I., Ivchenko, P. V., & Bagrov, V. (2007). PCT Int. Appl. 2007/116034.Google Scholar
  269. 269.
    Sell, T., Winter, A., Thorn, M. G., Dimeska, A., & Langhauser, F. (2010). PCT Int. Appl. 2010/077230.Google Scholar
  270. 270.
    Castro, P., Izmer, V. V., Konovich, D. S., Resconi, L., & Voskoboynikov, A. Z. (2012). PCT Int. Appl. 2012/084961.Google Scholar
  271. 271.
    Kashimoto, M., Takahashi, T., Naoshi Iwama, N., Nakano, M., & Toshinori Suzuki, T. (2014). PCT Int. Appl. 2014/069391.Google Scholar
  272. 272.
    Nakano, M., Uchino, H., Iwama, N., Kashimoto, M., & Kato, T. (2013). US Patent No. 8,461,365.Google Scholar
  273. 273.
    Hafner, N., Castro, P., Kulyabin, P. V., Izmer, V., Voskoboynikov, A., Resconi, L., et al. (2013). PCT Int. Appl. 2013/007650.Google Scholar
  274. 274.
    Uchino, H., Nakano, H., Toriu, S., Tayano, T., Niwa, H., Ishihama, Y., & Sugano, T. (2004). US Patent No. 6,677,411.Google Scholar
  275. 275.
    Japan Polypropylene. (2012). Japanese Patent No. 5,639,813.Google Scholar
  276. 276.
    Kitade, S., Uchino, H., Shinozaki, J., Takahashi, K., & Masuda, K. (2011). US Patent No. 7,915,359.Google Scholar
  277. 277.
    Bamberger, R. L., German, P. M., Locke, L. K., & Malpass, G. D. (1998) European Patent No. 0,699,219.Google Scholar
  278. 278.
    Lue, C.-T., Merrill, N. A., Muhle, M. E., & Vaughan, G. A. (2001). US Patent No. 6,255,426.Google Scholar
  279. 279.
    Agapiou, A. K., & Russell, K. A. (2005). US Patent No. 6,936,226.Google Scholar
  280. 280.
    Szul, J. F., Farley, J. M., McCullough, L. G., & Impelman, R. W. (2007). US Patent No. 7,179,876.Google Scholar
  281. 281.
    Szul, J. F., & Farley, J. M. (2007). US Patent No. 7,157,531.Google Scholar
  282. 282.
    McCullough, L. G. (2005). US Patent No. 6,884,748.Google Scholar
  283. 283.
    Takahashi, M., Todo, A., Ikeyama, S., Tsutsui, T., Matsunaga, S., & Kaneshige, N. (2005). US Patent No. 6,894,120.Google Scholar
  284. 284.
    Tohi, Y., Yoshitsugu, K., Akiyama, N., Fujita, T., & Chinaka, M. (2013). US Patent No. 8,445,609.Google Scholar
  285. 285.
    Kokko, E., Pakkanen, A., Vahteri, M., Palmlof, M., & Oderkerk, J. (2011). US Patent Appl. 2011/0262670.Google Scholar
  286. 286.
    Helland, I., & Skar, M. (2012). US Patent No. 8,314,187.Google Scholar
  287. 287.
    Pannell, R. B. (2014). US Patent No. 2014/143526.Google Scholar
  288. 288.
    Miserque, O., Michel, J., Dupire, M., Siberdt, F., Costa, J.-L., Bettonville, S., et al. (2005). US Patent No. 6,946,521.Google Scholar
  289. 289.
    Slawinski, M. (2013). US Patent No. 8,445,607.Google Scholar
  290. 290.
    Michel, J., Slawinski, M., & Debras, G. (2012). US Patent No. 8,153,734.Google Scholar
  291. 291.
    Belloir, P., & Bertrand, C. (2014). US Patent No. 8,691,354.Google Scholar
  292. 292.
    Tasaki, T., Akashi, T., Matsubara, S., & Okamoto, M. (2009). US Patent Appl. 2009/0018299.Google Scholar
  293. 293.
    Fukushi, K., Iwamasa, K., & Okamoto, M. (2009). US Patent Appl. 2009/0036584.Google Scholar
  294. 294.
    Jacobsen, G. B., Matsushita, F., Spencer, L., & Wauteraerts, P. L. (2003). US Patent No. 6,506,866.Google Scholar
  295. 295.
    Jacobsen, G. B., Loix, P. H. H., & Stevens, T. J. P. (2001). US Patent No. 6,271,165.Google Scholar
  296. 296.
    Arriola, D. J., Timmers, F. J., Devore, D. D., & Redwine, O. D. (2007). US Patent No. 7,193,024.Google Scholar
  297. 297.
    Chai, C. K. (2011). US Patent No. 7,968,659.Google Scholar
  298. 298.
    Van Dun, J. J., Schouterden, P. J. C., Sehanobish, K., van den Berghen, P. F., Jivraj, N., Vanvoorden, J., et al. (2012). US Patent No. 8,338,538.Google Scholar
  299. 299.
    Lam, P., Ker, V., Carter, C. A. G., Shaw, B. M., Baar, C. R., Kazakov, A., et al. (2012). US Patent No. 8,829,137.Google Scholar
  300. 300.
    McKay, I., Jeremic, D., Jacobsen, G. B., & Mastroianni, S. (2011). US Patent No. 7,863,213.Google Scholar
  301. 301.
    Ker, V., Lam, P., Jiang, Y., Hoang, P. P. M., Carter, C. A. G., & Morrison, D. J. (2014). PCT Int. Appl. 2014/08967.Google Scholar
  302. 302.
    Hoang, P. P. M., Lam, P., Ker, V., Baar, C. R., Carter, C. A. G., Jiang, Y., et al. (2015). US Patent Appl. 2015/099856.Google Scholar
  303. 303.
    Jacobsen, G. B., Jeremic, D., Mastroianni, S., & McKay, I. D. (2013). US Patent No. 8,536,081.Google Scholar
  304. 304.
    Hermel-Davidock, T. J., Demirors, M., Hayne, S. H., & Cong, R. (2014). US Patent No. 8,729,200.Google Scholar
  305. 305.
    Karjala, T. P., Ewart, S. W., Eddy, C. R., Vigil, A. E., Demirors, M., Munjal, S., et al. (2014). US Patent No. 8,722,817.Google Scholar
  306. 306.
    Konze, W. V., Stevens, J. C., & VanderLende, D. D. (2012). US Patent No. 8,202,953.Google Scholar
  307. 307.
    Ewart, S. W., Munjal, S., Vigil, A. E., Karjala, T. P., & Demirors, M. (2015). US Patent No. 9,045,628.Google Scholar
  308. 308.
    Boone, H. W., Iverson, C. N., Konze, W. V., & Vanderlende, D. D. (2007). PCT Int. Appl. 2007/136494.Google Scholar
  309. 309.
    Hustad, P. D., Szuromi, E., Timmers, F. J., Carnahan, E. M., Clark, T. P., Roof, G. R., et al. (2014). US Patent No. 8,907,034.Google Scholar
  310. 310.
    Diamond, G. M., Leclerc, M. K., & Zhu, G. (2014). US Patent No. 8,637,618.Google Scholar
  311. 311.
    Robert, D. R., Hufen, J., Lüdtke, K., & Ehlers, J. (2015). US Patent No. 9,034,999.Google Scholar
  312. 312.
    Carnahan, E. M., Devore, D., Godziela, G., Vosejpka, P., Wagner, B., & Coalter, J. (2014). European Patent No. 1778738.Google Scholar
  313. 313.
    Hlatky, G. G. (2000). Chemical Reviews, 100, 1347.CrossRefGoogle Scholar
  314. 314.
    Severn, J. R., Chadwick, J. C., Duchateau, R., & Friederichs, N. (2005). Chemical Reviews, 105, 4073.CrossRefGoogle Scholar
  315. 315.
    Severn, J. R., & Chadwick, J. C. (Eds.). (2008). Tailor-made polymers. Via immobilization of alpha-olefin polymerization catalysts. Weinheim: Wiley-VCH Verlag GmbH.Google Scholar
  316. 316.
    Luo, L., Sangokoya, S. A., Wu, X., Diefenbach, S. P., & Kneale, B. (2013). US Patent No. 8,354,485.Google Scholar
  317. 317.
    Gao, X., Chisholm, P. S., Donaldson, R. D., & McKay, I. (2004). US Patent No. 6,710,143.Google Scholar
  318. 318.
    Gao, X., Chisholm, P. S., Kowalchuk, M. G., & Donaldson, R. D. (2004). US Patent No. 6,734,266.Google Scholar
  319. 319.
    Gao, X., Santos, B. G., Minh Hoang, P. P. M., Jones, A. M., Shaw, B. M., & Jobe, I. R. (2012). US Patent No. 8,298,978.Google Scholar
  320. 320.
    Speca, A. N. (2002). US Patent No. 6,368,999.Google Scholar
  321. 321.
    Farley, J. M., Adetunji, P. A., Mirams, S. J., & Beckton, G. L. (2014). PCT Int. Appl. 2014/144397.Google Scholar
  322. 322.
    Denifl, P., Van Praet, E., Bartke, M., Oksman, M., Mustonen, M., Garoff, T., et al. (2003). PCT Int. Appl. 2003/051934.Google Scholar
  323. 323.
    Bartke, M., Oksman, M., Marja Mustonen, M., & Denifl, P. (2005). Macromolecular Materials and Engineering, 290, 250.CrossRefGoogle Scholar
  324. 324.
    Tynys, A., Saarinen, T., Bartke, M., & Löfgren, B. (2007). Polymer, 48, 1893.CrossRefGoogle Scholar
  325. 325.
    Heiskanen, H., Denifl, P., Hurme, M., & Pitkänen, P. (2010). Chemical Engineering and Technology, 33, 682.Google Scholar
  326. 326.
    Aumo, J., Matikainenn, P., Bartke, M., Elovirta, T., Vijay, S., Lylykangas, M., et al. (2013). US Patent No. 8,501,881.Google Scholar
  327. 327.
    Kallio, K., Mustonen, M., Huhtanen, L., Severn, J., Castro, P., Virkkunen, V., et al. (2014) European Patent Appl. 2,722,346.Google Scholar
  328. 328.
    Kallio, K., Mustonen, M., Huhtanen, L., Severn, J., Castro, P., Virkkunen, V., et al. (2014). European Patent Appl. 2,722,345.Google Scholar
  329. 329.
    Sangokoya, S. A. (1997). US Patent No. 5,670,682.Google Scholar
  330. 330.
    Sangokoya, S. A. (1999). US Patent No. 5,922,631.Google Scholar
  331. 331.
    Elo, P., Severn, J., Denifl, P., Rautio, S., Mustonen, M., & Hongell, A.-L. (2013). US Patent No. 8,420,562.Google Scholar
  332. 332.
    Kallio, K., Mustonen, M., Elo, P., Severn, J., & Denifl, P. (2014). US Patent No. 8,828,901.Google Scholar
  333. 333.
    Valonen, J., & Mustonen, M. (2014). US Patent No. 8,822,365.Google Scholar
  334. 334.
    Reznichenko, A., Ajellal, N., Castro, P., & Saeed, I. (2015). PCT Int. Appl. 2015/062936.Google Scholar
  335. 335.
    Kaji, E., & Yoshioka, E. (2013). US Patent No. 8,404,880.Google Scholar
  336. 336.
    Kaji, E., & Yoshioka, E. (2015). US Patent Appl. 2015/0057418.Google Scholar
  337. 337.
    McDaniel, M. P. (2008). In J. R. Severn & J. C. Chadwick (Eds.), Tailor-made polymers. Via immobilization of alpha-olefin polymerization catalysts. Weinheim: Wiley-VCH Verlag GmbH.Google Scholar
  338. 338.
    Jensen, M. D., Hawley, G. R., McDaniel, M. P., Crain, T., Benham, E. A., Martin, J. L., et al. (2007). US Patent No. 7,294,599.Google Scholar
  339. 339.
    Benham, E. A., & McDaniel, M. P. (2010). PCT Int. Appl. 2010/151537.Google Scholar
  340. 340.
    Luo, L., Lee, J. Y., Diefenbach, S. P., Sangokoya, S. A., & Bauch, C. G. (2007). PCT Int. Appl. 2007/005676.Google Scholar
  341. 341.
    Luo, L., Wu, K., & Diefenbach, S. P. (2011). US Patent No. 7,928,172.Google Scholar
  342. 342.
    Clarembeau, M., Pannier, G., & Paye, S. (2012). PCT Int Appl. 2012/080314.Google Scholar
  343. 343.
    Bohnen, H., & Fritze, C. (2002). US Patent No. 6,482,902.Google Scholar
  344. 344.
    Richter, B., & Heike, G. (2011). US Patent No. 8,076,259.Google Scholar
  345. 345.
    Seidel, N., Richter, B., & Kratzer, R. (2008). US Patent No. 7,442,667.Google Scholar
  346. 346.
    Holtcamp, M. W., & Cano, D. A. (2004). US Patent No. 6,703,338.Google Scholar
  347. 347.
    Holtcamp, M. W., & Cano, D. A. (2005). US Patent No. 6,858,689.Google Scholar
  348. 348.
    Casty, G. L., & Piland, E. J. (2010). US Patent No. 7,741,417.Google Scholar
  349. 349.
    Goto, T., & Onodera, Y. (2012). US Patent No. 8,101,537.Google Scholar
  350. 350.
    Isobe, E., Maruyama, Y., Shimizu, F., Suga, Y., & Suzuki, T. (1994). 5,308,811.Google Scholar
  351. 351.
    Suga, Y., Uehara, Y., Maruyama, Y., Isobe, E., Ishihama, Y., & Sagae, T. (1999). US Patent No. 5,928,982.Google Scholar
  352. 352.
    Takahashi, K., Ishihama, Y., Akashige, E., Ikehata, F., Uchida, H., & Kawase, M. (2003). US Patent No. 6,632,911.Google Scholar
  353. 353.
    Shih, K.-Y., Carney, M. J., & Denton, D. A. (2002). US Patent No. 6,399,535.Google Scholar
  354. 354.
    Shih, K.-Y. (2004). US Patent No. 6,686,306.Google Scholar
  355. 355.
    Friederichs, F., Ghalit, N., & Xu, W. (2008). In J. R. Severn & J. C. Chadwick (Eds.), Tailor-made polymers. Via immobilization of alpha-olefin polymerization catalysts. Weinheim: Wiley-VCH Verlag GmbH.Google Scholar
  356. 356.
    Mink, R. I., Schurzky, K. G., Shirodkar, P. P., & Santana, R. L. (2006). US Patent No. 6,995,109.Google Scholar
  357. 357.
    Mink, R. I., Nowlin, T. E., Shirodkar, P. P., Diamond, G. M., Barry, D. B., Wang, C., et al. (2006). US Patent No. 7,129,302.Google Scholar
  358. 358.
    Vaughan, G. A., Szul, J. F., McKee, M. G., Farley, J. M., Lue, C.-T., & Kao, S.-C. (2006). US Patent No. 7,141,632.Google Scholar
  359. 359.
    Burkhardt, T. J., Canich, J. A. M., Poirot, E. E., Sagar, V. R., Walzer, J. F., & Welborn, H. C. (1996). PCT Int. Filing 1996/000246.Google Scholar
  360. 360.
    Masino, A. P., Murray, R. E., Yang, Q., Secora, S. J., Jayaratne, K. C., Beaulieu, W. B., et al. (2013). US Patent No. 8,450,436.Google Scholar
  361. 361.
    Jensen, M. D., Elder, M. J., Singleton, A. G., Schmidt, S. R., Kerwin, P. J., Hain, J. H., et al. (2015). US Patent No. 9,045,569.Google Scholar
  362. 362.
    Muruganandam, N., Abichandani, J., Terry, K. A., Patel, H. G., & Rodriguez, G. (2013). US Patent No. 8,563,458.Google Scholar
  363. 363.
    Ewen, J. A., & Welborn, H. C. (1985). US Patent No. 4,530,914.Google Scholar
  364. 364.
    Ewen, J. A., & Welborn, H. C. (1990). US Patent No. 4,937,299.Google Scholar
  365. 365.
    Lue, C.-T., & Crowther, D. J. (2002). US Patent No. 6,492,472.Google Scholar
  366. 366.
    Liu, H.-T., & Mure, C. R. (2013). US Patent No. 8,378,029.Google Scholar
  367. 367.
    Lynn, T. R., Hussein, F. D., Pequeno, R. E., Zilker, D. P., Savatsky, B. J., & Awe, M. D. (2014). PCT Int. Appl. 2014/109832.Google Scholar
  368. 368.
    Mawson, S., Kao, S.-C., Kwalk, T. H., Lynn, T. R., McConville, D. H., McKee, M. G., et al. (2004). US Patent No. 6,689,847.Google Scholar
  369. 369.
    Savatsky, B. J., Oskam, J. H., Blood, M. W., Davis, M. B., Jackson, D. H., Lynn, T. R., et al. (2012). US Patent No. 8,318,872.Google Scholar
  370. 370.
    Pequeno, R. E., Hagerty, R. O., & Savatsky, B. J. (2010). US Patent No. 7,754,834.Google Scholar
  371. 371.
    Rix, F. C., Kao, S.-C., Kolb, R., Li, D., & Garcia-Franco, C. A. (2014). US Patent No. 8,835,577.Google Scholar
  372. 372.
    Kolb, R., Li, D., Rix, F. C., & Garcia-Franco, C. A. (2012). US Patent No. 8,088,704.Google Scholar
  373. 373.
    Kao, S.-C., Rix, F. C., Li, D., Harlan, C. J., & Khokhani, P. A. (2013). US Patent No. 8,435,914.Google Scholar
  374. 374.
    Wagner, J. B., Giesbrecht, G. R., Kao, S.-C., & Jaker, S. P. (2014). PCT Int. Appl. 2014/149360.Google Scholar
  375. 375.
    Jensen, M. D., McDaniel, M. P., Martin, J. L., Benham, E. A., Muninger, R., Jerdee, G., et al. (2006). US Patent No. 7,041,617.Google Scholar
  376. 376.
    Martin, J. L., Benham, E. A., Kertok, M. E., Jensen, M. D., McDaniel, M. P., Hawley, G. R., et al. (2007). US Patent No. 7,199,073.Google Scholar
  377. 377.
    Jayaratne, K. C., Jensen, M. D., & Yang, Q. (2007). US Patent No. 7,226,886.Google Scholar
  378. 378.
    Martin, J. L., Thorn, M. G., McDaniel, M. P., Jensen, M. D., Yang, Q., DesLauriers, P. J., et al. (2007). US Patent No. 7,312,283.Google Scholar
  379. 379.
    Yang, Q., Jayaratne, K. C., Jensen, M. D., McDaniel, M. P., Martin, J. L., Thorn, M. G., et al. (2012). US Patent No. 8,268,944.Google Scholar
  380. 380.
    Yang, Q., McDaniel, M. P., Crain, T. R., Masino, A. P., Cymbaluk, T. H., & Stewart, J. D. (2015). US Patent No. 8,957,168.Google Scholar
  381. 381.
    Bhandarkar, M. B., Benham, E. A., Gonzales, R. A., Kufeld, S. E., Mutchler, J. A., Gill, G. M., et al. (2014) PCT Int. Appl. 2014/093082.Google Scholar
  382. 382.
    Satoh, Y., & Harada, Y. (2013). US Patent No. 2015/0018491.Google Scholar
  383. 383.
    Bando, H., Satoh, Y., Yukita, T., Harada, Y., Sonobe, Y., Tohi, Y., et al. (2014). US Patent No. 8,785,574.Google Scholar
  384. 384.
    Ishihama, Y., Asakawa, R., Sakuragi, T., Fukuda, T., Sakata, K., Aoki, M., et al. (2014). US Patent Appl. 2014/0194277.Google Scholar
  385. 385.
    Mihan, S., Karer, R., Schmitz, H., & Lilge, D. (2011). US Patent No. 8,003,740.Google Scholar
  386. 386.
    Mihan, S., Fraaije, V., & Schmitz, H. (2014). US Patent No. 8,859,451.Google Scholar
  387. 387.
    Fantinel, F., Mannebach, G., Mihan, S., Meier, G., & Vittorias, I. (2015). US Patent No. 8,957,158.Google Scholar
  388. 388.
    Vogt, H., Mihan, S., Mannebach, G., Richter-Lukesova, L., Meierhöfer, M., & Brüning, H. (2015). PCT Int. Appl. 2015/055392.Google Scholar
  389. 389.
    Schmitz, H., & Mihan, S. (2013). US Patent No. 8,435,911.Google Scholar
  390. 390.
    Vega, W. M., & Munoz-Escalona, A. (2003). US Patent No. 6,605,676.Google Scholar
  391. 391.
    Lopez, R. M., Martin, M. C., Prieto, A. O., Sancho, R. J., Campora, P. J., Pilar Palma, R. P., et al. (2008). European Patent No. 2,003,166.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.DSM AheadGeleenThe Netherlands
  2. 2.SFD GroupTechnical University of EindhovenEindhovenThe Netherlands

Personalised recommendations