Advertisement

Statistical Reasoning When Comparing Groups with Software—Frameworks and Their Application to Qualitative Video Data

  • Daniel FrischemeierEmail author
Chapter
Part of the ICME-13 Monographs book series (ICME13Mo)

Abstract

Comparing groups is a fundamental activity in statistics. Preferably such an activity is embedded in a data analysis cycle and done with real and large datasets. Software enables learners to carve out many differences between the compared distributions. One important aspect in statistics education is how to evaluate these complex intertwined processes of statistical reasoning and the use of software when comparing groups. The primary intention of this chapter is to introduce a framework for evaluating statistical reasoning and software skills when comparing groups and to show an application of this framework to qualitative data collected during a video study of four pairs of preservice teachers comparing groups with TinkerPlots.

Keywords

Frameworks Group comparisons Qualitative content analysis Statistical reasoning TinkerPlots 

References

  1. Arbeitskreis Stochastik der Gesellschaft für Didaktik der Mathematik. (2012). Empfehlungen für die Stochastikausbildung von Lehrkräften an Grundschulen (Recommendations for the statistical education of teachers at primary school), August 23, 2016, Retrieved from http://www.mathematik.uni-dortmund.de/ak-stoch/Empfehlungen_Stochastik_Grundschule.pdf.
  2. Batanero, C., Burrill, G., & Reading, C. (2011). Teaching statistics in school mathematics-challenges for teaching and teacher education. Heidelberg: Springer.CrossRefGoogle Scholar
  3. Ben-Zvi, D. (2004). Reasoning about variability in comparing distributions. Statistics Education Research Journal, 3(2), 42–63.Google Scholar
  4. Biehler, R. (1997). Students’ difficulties in practicing computer supported data analysis—Some hypothetical generalizations from results of two exploratory studies. In J. Garfield & G. Burrill (Eds.), Research on the role of technology in teaching and learning statistics (pp. 169–190). Voorburg: ISI.Google Scholar
  5. Biehler, R. (2001). Statistische Kompetenz von Schülerinnen und Schülern - Konzepte und Ergebnisse empirischer Studien am Beispiel des Vergleichens empirischer Verteilungen [Statistical reasoning of students – concepts and results of empirical studies in the context of group comparisons]. In M. Borovcnik (Ed.), Anregungen zum Stochastikunterricht (pp. 97–114). Franzbecker: Hildesheim.Google Scholar
  6. Biehler, R. (2007). Students’ strategies of comparing distributions in an exploratory data analysis context [Electronic Version]. In CD-ROM Proceedings of 56th Session of the International Statistical Institute. https://www.stat.auckland.ac.nz/~iase/publications/isi56/IPM37_Biehler.pdf.
  7. Biehler, R., & Frischemeier, D. (2015). “Verdienen Männer mehr als Frauen?” - Reale Daten im Stochastikunterricht mit der Software TinkerPlots erforschen [“Do men earn more than women?” Exploring real data in statistics classroom with TinkerPlots]. Stochastik in der Schule, 35(1), 7–18.Google Scholar
  8. Biggs, J. B., & Collis, K. F. (1982). Evaluating the quality of learning: The SOLO taxonomy. New York: Academic Press.Google Scholar
  9. Blum, W., Drüke-Noe, C., Hartung, R., & Köller, O. (2006). Bildungsstandards Mathematik: konkret. Berlin: Cornelsen Verlag.Google Scholar
  10. Breker, R. (2016). Design, Durchführung und Evaluation einer Unterrichtseinheit zur Entwicklung der Kompetenz “Verteilungen zu vergleichen” in einer 4. Klasse unter Verwendung der Software TinkerPlots und neuer Medien [Design, realization and evaluation of a teaching unit to enhance statistical reasoning in regard to comparing groups in grade 4 using TinkerPlots] (Bachelor thesis). Universität Paderborn.Google Scholar
  11. Burrill, G., & Biehler, R. (2011). Fundamental statistical ideas in the school curriculum and in training teachers. In C. Batanero, G. Burrill, & C. Reading (Eds.), Teaching statistics in school mathematics-challenges for teaching and teacher education (pp. 57–69). Heidelberg: Springer.CrossRefGoogle Scholar
  12. Cobb, P., Confrey, J., deSessa, A., Lehrer, R., & Schauble, L. (2003). Design experiments in educational research. Educational Researcher, 32(1), 9–13.CrossRefGoogle Scholar
  13. Frischemeier, D. (2014). Comparing groups by using TinkerPlots as part of a data analysis task—Tertiary students’ strategies and difficulties. In K. Makar, B. de Sousa & R. Gould (Eds.), Sustainability in statistics education. Proceedings of the ninth international conference on teaching statistics (ICOTS9, July, 2014), Flagstaff, Arizona, USA. Voorburg, The Netherlands: International Statistical Institute.Google Scholar
  14. Frischemeier, D. (2017). Statistisch denken und forschen lernen mit der Software TinkerPlots [Developing statistical reasoning and thinking with TinkerPlots]. Wiesbaden: Springer Spektrum.CrossRefGoogle Scholar
  15. Frischemeier, D., & Biehler, R. (2014). Design and exploratory evaluation of a learning trajectory leading to do randomization tests facilitated by TinkerPlots. In B. Ubuz, C. Haser & M. A. Mariotti (Eds.). Proceedings of the eighth congress of the European Society for Research in Mathematics Education (pp. 799–809).Google Scholar
  16. Frischemeier, D., & Biehler, R. (2016). Preservice teachers’ statistical reasoning when comparing groups facilitated by software. In K. Krainer & N. Vondrova (Eds.), Proceedings of the ninth congress of the European Society for Research in Mathematics Education (pp. 643–650). Charles University in Prague, Faculty of Education and ERME.Google Scholar
  17. Garfield, J., & Ben-Zvi, D. (2008). Developing students’ statistical reasoning. Connecting research and teaching practice. The Netherlands: Springer.Google Scholar
  18. Hasemann, K., & Mirwald, E. (2012). Daten, häufigkeit und wahrscheinlichkeit [Data, frequency and probability]. In G. Walther, M. van den Heuvel-Panhuizen, D. Granzer & O. Köller (Eds.), Bildungsstandards für die Grundschule: Mathematik konkret. Cornelsen Verlag Scriptor (pp. 141–161). Berlin.Google Scholar
  19. Konold, C., & Higgins, T. (2003). Reasoning about data. A research companion to principles and standards for school mathematics (pp. 193–215). Reston VA: National Council of Teachers of Mathematics.Google Scholar
  20. Konold, C., & Miller, C. (2011). TinkerPlotsTM Version 2 [computer software]. Emeryville, CA: KCP.Google Scholar
  21. Kuckartz, U. (2012). Qualitative inhaltsanalyse: Methoden, praxis, computerunterstützung [Qualitative content analysis: Methods, practice, computer assistance]. Beltz Juventa.Google Scholar
  22. Lee, H. S., & Hollebrands, K. F. (2011). Characterising and developing teachers’ knowledge for teaching statistics with technology. In C. Batanero, G. Burrill, & C. Reading (Eds.), Teaching statistics in school mathematics-challenges for teaching and teacher education (pp. 359–370). Dordrecht: Springer.CrossRefGoogle Scholar
  23. Makar, K., & Confrey, J. (2002). Comparing two distributions: Investigating secondary teachers´ statistical thinking. In Paper presented at the Sixth International Conference on Teaching Statistics, Cape Town, South Africa. International Association for Statistical Education.Google Scholar
  24. Makar, K., & Confrey, J. (2004). Secondary teachers’ statistical reasoning in comparing two groups. In D. Ben-Zvi & J. Garfield (Eds.), The challenge of developing statistical literacy, reasoning and thinking (pp. 353–374). Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  25. Maxara, C. (2009). Stochastische simulation von zufallsexperimenten mit Fathom - Eine theoretische werkzeuganalyse und explorative fallstudie [Stochastic simulation of chance experiments – A theoretical tool analysis and an exploratory case study]. Hildesheim: Franz Becker.Google Scholar
  26. Maxara, C. (2014). Konzeptualisierung unterschiedlicher kompetenzen und ihrer wechselwirkungen, wie sie bei der bearbeitung von stochastischen simulationsaufgaben mit dem computer auftreten [Conceptualization of different competencies and their interdependencies when doing stochastical simulations with computers]. In T. Wassong, D. Frischemeier, P. R. Fischer, R. Hochmuth, & P. Bender (Eds.), Mit werkzeugen mathematik und stochastik lernen - Using tools for learning mathematics and statistics (pp. 321–336). Wiesbaden: Springer Spektrum.CrossRefGoogle Scholar
  27. Mayring, P. (2001). Combination and integration of qualitative and quantitative analysis. Paper presented at the Forum Qualitative Sozialforschung/Forum, Qualitative Social Research.Google Scholar
  28. Mayring, P. (2010). Qualitative inhaltsanalyse: Grundlagen und techniken [Qualitative content analysis: Groundwork and techniques]. Wiesbaden: Beltz.Google Scholar
  29. Mayring, P. (2015). Qualitative content analysis: Theoretical background and procedures. In A. Bikner-Ahsbahs, C. Knipping, & N. Presmeg (Eds.), Approaches to qualitative research in mathematics education (pp. 365–380). The Netherlands: Springer.Google Scholar
  30. Pfannkuch, M. (2007). Year 11 students’ informal inferential reasoning: A case study about the interpretation of boxplots. International Electronic Journal of Mathematics Education, 2(3), 149–167.Google Scholar
  31. Pfannkuch, M., Budgett, S., Parsonage, R., & Horring, J. (2004). Comparison of data plots: Building a pedagogical framework. Paper presented at the Tenth International Congress on Mathematics Education (ICME-10), Copenhagen, Denmark.Google Scholar
  32. Roseth, C. J., Garfield, J. B., & Ben-Zvi, D. (2008). Collaboration in learning and teaching statistics. Journal of Statistics Education, 16(1), 1–15.CrossRefGoogle Scholar
  33. Rossman, A. J., Chance, B. L., & Lock, R. H. (2001). Workshop statistics: Discovery with data and Fathom. Emeryville, CA: Key College Publishing.Google Scholar
  34. Watson, J. M., & Moritz, J. B. (1999). The beginnings of statistical inference: Comparing two data sets. Educational Studies in Mathematics, 37, 145–168.CrossRefGoogle Scholar
  35. Wild, C. J., & Pfannkuch, M. (1999). Statistical thinking in empirical enquiry. International Statistical Review, 67(3), 223–265.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Paderborn UniversityPaderbornGermany

Personalised recommendations