Advertisement

The Impact of Hurricane Otto on Baird’s Tapir Movement in Nicaragua’s Indio Maíz Biological Reserve

  • Christopher A. JordanEmail author
  • Brendan Hoover
  • Armando J. Dans
  • Cody Schank
  • Jennifer A. Miller
Chapter

Abstract

Future climate change scenarios suggest that hurricanes could become stronger and more frequent across the Caribbean over the current century. While there are many studies on the impact of hurricanes on forest regeneration, there are limited studies on the effects of hurricanes on the recovery of neotropical fauna communities, and the impact of hurricanes on the spatial behavior and movement of large mammals is essentially unknown. In this chapter we investigate the movement of two adult Baird’s tapirs that were equipped with GPS collars before and after 2016’s Hurricane Otto in Nicaragua’s Indio Maíz Biological Reserve. The collar data revealed that tapir’s habitat use, home range size, and movement patterns were significantly altered by the damage to the primary forest caused by the hurricane. Post-hurricane, both home ranges decreased significantly, movement velocity decreased for both individuals, and both tapirs restricted their movements to habitat that allowed them to move more efficiently around their home ranges. While food is likely to be abundant post-hurricane in the rapidly regenerating forest, both tapirs appeared to limit their use of available habitat to maximize the efficiency of their movements, which may reduce carrying capacity in the short term for the species and limit potential for population growth.

Keywords

Kernel density estimation Time local convex hall Tapirus bairdii Hurricane Otto 

References

  1. Baldini LM, Baldini JUL, McElwaine JN, Frappier AB, Asmerom Y, Liu K-B, Liu KB, Prufer KM, Ridley HE, Polyak V, Kennett DJ, Macpherson CG (2016) Persistent northward North Atlantic tropical cyclone track migration over the past five centuries. Sci Rep 6:37522CrossRefGoogle Scholar
  2. Brooks DM, Bodmer RE, Matola S (1997) Tapir action plan. IUCN/SSC Tapir Specialist GroupGoogle Scholar
  3. Brown DP (2017). National Hurricane Center Tropical Cyclone Report: Hurricane Otto, 20–26 November 2016. National Hurricane Center. Retrieved from https://www.nhc.noaa.gov/data/tcr/AL162016_Otto.pdf
  4. Centro Humboldt and Fundación del Río (2017) Evaluación de daños socio-ambientales causados por el Huracán Otto en la zona sureste de Nicaragua. Centro Humboldt and Fundación del RíoGoogle Scholar
  5. Foerster CR, Vaughan C (2002) Home range, habitat use, and activity of Baird’s Tapir in Costa Rica. Biotropica 34(3):423–437CrossRefGoogle Scholar
  6. Fragoso J (1983) The ecology and behavior of Baird’s tapir in Belize. Documento del centro de Documentación de la Universidad de Heredia, Costa RicaGoogle Scholar
  7. Garcìa M, Jordan CA, O’Farrill G, Poot C, Meyer N, Estrada N et al (2016) Tapirus bairdii. The IUCN red list of threatened species. https://doi.org/10.2305/IUCN.UK.2016-1.RLTS.T21471A45173340.en
  8. Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A et al (2013) High-resolution global maps of 21st-century forest cover change. Science 342(6160):850–853CrossRefGoogle Scholar
  9. Hemson G, Johnson P, South A, Kenward R, Ripley R, MacDonald D (2005) Are kernels the mustard? Data from global positioning system (GPS) collars suggests problems for kernel home‐range analyses with least‐squares cross‐validation. Journal of Animal Ecology, 74(3), 455–463CrossRefGoogle Scholar
  10. Jordan CA, Galeano MR, Alonzo AS (2014) La Cacería Histórica de Tapires Centroamericanos (Tapirus bairdii) en la RAAS, Nicaragua. Estud Ambient 1(1):73–87Google Scholar
  11. Lyons AJ, Turner WC, Getz WM (2013) Home range plus: a space-time characterization of movement over real landscapes. Movement Ecology 1 (1):2CrossRefGoogle Scholar
  12. Lyons AJ (2014) T-LoCoH for R: tutorial and users guide. Google Scholar, 2–53.Google Scholar
  13. O’Farrill G, Galetti M, Campos-Arceiz A (2013) Frugivory and seed dispersal by tapirs: an insight on their ecological role. Integr Zool 8(1):4–17CrossRefGoogle Scholar
  14. O’Farrill G, Gauthier Schampaert K, Rayfield B, Bodin Ö, Calmé S, Sengupta R, Gonzalez A (2014) The potential connectivity of waterhole networks and the effectiveness of a protected area under various drought scenarios. PLoS One 9(5):e95049CrossRefGoogle Scholar
  15. Overland JE, Dethloff K, Francis JA, Hall RJ, Hanna E, Kim SJ et al (2016) Climate science special report: fourth National Climate Assessment. Clim Dyn 46(7):2115–2122Google Scholar
  16. Patterson TA, Thomas L, Wilcox C, Ovaskainen O, Matthiopoulos J (2008) State–space models of individual animal movement. Trends Ecol Evol 23(2):87–94CrossRefGoogle Scholar
  17. Peres CA, Emilio T, Schietti J, Desmoulière SJM, Levi T (2016) Dispersal limitation induces long-term biomass collapse in overhunted Amazonian forests. Proc Natl Acad Sci 113(4):892–897CrossRefGoogle Scholar
  18. Reyna-Hurtado R, Sanvicente-López M, Pérez-Flores J, Carrillo-Reyna N, Calmé S (2016) Insights into the multiannual home range of a Baird’s tapir (Tapirus bairdii) in the Maya Forest. THERYA 7(2):271–276CrossRefGoogle Scholar
  19. Schank CJ, Cove MV, Kelly MJ, Mendoza E, O’Farrill G, Reyna-Hurtado R et al (2017) Using a novel model approach to assess the distribution and conservation status of the endangered Baird’s tapir. Divers Distrib 23(2):1–13CrossRefGoogle Scholar
  20. Seaman ED, Powell RA (1996) An Evaluation of the Accuracy of Kernel Density Estimators for Home Range Analysis. Ecology 77 (7):2075–2085CrossRefGoogle Scholar
  21. Shepard ELC, Wilson RP, Rees WG, Grundy E, Lambertucci SA, Vosper SB (2013) Energy landscapes shape animal movement ecology. Am Nat 182(3):298–312CrossRefGoogle Scholar
  22. Tachikawa T, Kaku M, Iwasaki A, Gesch DB, Oimoen MJ, Zhang Z, Danielson J, Krieger T, Curtis B, Haase J, Abrams M (2011) ASTER global digital elevation model version 2-summary of validation results. NASA. Retrieved from https://pubs.er.usgs.gov/publication/70005960
  23. Wall J, Douglas-Hamilton I, Vollrath F (2006) Elephants avoid costly mountaineering. Curr Biol 16(14):R527–R529CrossRefGoogle Scholar
  24. Welch RJ, Tambling CJ, Bissett C, Gaylard A, Müller K, Slater K, Parker DM (2015) Brown hyena habitat selection varies among sites in a semi-arid region of southern Africa. J Mammal 97(2):473–482CrossRefGoogle Scholar
  25. Whittington J, St Clair CC, Mercer G (2005) Spatial responses of wolves to roads and trails in mountain valleys. Ecol Appl 15(2):543–553CrossRefGoogle Scholar
  26. Will T (1991) Birds of a severely hurricane-damaged Atlantic Coast rain forest in Nicaragua. Biotropica 23(4):497–507CrossRefGoogle Scholar
  27. Worton BJ (1989) Kernel Methods for Estimating the Utilization Distribution in Home-Range Studies. Ecology 70 (1):164–168CrossRefGoogle Scholar
  28. Worton BJ (1995) Using Monte Carlo Simulation to Evaluate Kernel-Based Home Range Estimators. The Journal of Wildlife Management 59 (4):794CrossRefGoogle Scholar
  29. Yih K, Boucher DH, Vandermeer JH, Zamora N (1991) Recovery of the rain forest of Southeastern Nicaragua after destruction by Hurricane Joan. Biotropica 23(2):106–113CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Christopher A. Jordan
    • 1
    • 2
    Email author
  • Brendan Hoover
    • 3
  • Armando J. Dans
    • 1
  • Cody Schank
    • 3
  • Jennifer A. Miller
    • 3
  1. 1.Global Wildlife ConservationAustinUSA
  2. 2.PantheraNew YorkUSA
  3. 3.Department of Geography and The EnvironmentThe University of Texas at AustinAustinUSA

Personalised recommendations