Effect of Manganese on Nitriding and Softening Behaviour of Steel AISI H10 Under Cyclic Thermal Loads

  • Martin SiegmundEmail author
  • Oleksandr Golovko
  • Jan Puppa
  • Alexander Chugreev
  • Florian Nürnberger
  • Bernd-Arno Behrens
Conference paper


Hot forging dies are exposed to high mechanical, thermal, chemical and tribological loads during hot forming processes. Near surface tool layers are prone to wear and have to withstand high loads. To reduce forging dies temperature as well as friction due to contact with heated workpieces, cooling lubricants are commonly used. Considering the advantageous hardness of martensite, a material inherent surface rehardening under these conditions would be beneficial to reduce tool wear. This study aims for an optimisation of surface layer properties to improve the service lifetime of tools by both alloying the hot-working tool steel AISI H10 with manganese and by plasma nitriding. Manganese alloying decreases the austenitising temperature (Ac1b temperature) and thereby facilitates rehardening effects. In addition, surface layer thickness and hardness gradients were adjusted by varying nitriding parameters to further increase the surface rehardening effect. Dilatometer tests were carried out to physically model cyclic thermal loading of forging dies. Finally, near surface tool layers were characterized by Vickers hardness measurements in different depths. Cyclic thermal loading resulted in hardness decreases for AISI H10 hot-working tool steel. Both alloying with manganese as well as nitriding using a comparatively thick nitride layer featuring a low hardness gradient resulted in a hardness increase of 50–150 HV0.05 up to 0.2 mm below the surface compared to common AISI H10 steel. In a distance from surface of 100–200 µm the hardness increased by 100 HV0.05 compared to the unloaded state and can be explained by the formation of martensite.


Tool steel Thermal effects Nitriding 



The authors thank the German Research Foundation (DFG) for its financial support of the project “FE-based development of highly wear resistant hot working tools by alloy modification in combination with a process- and material adapted nitriding layer” with the project number 260050454.


  1. 1.
    Bílik, J., Pompurová, A., Ridzoň, M.: Increasing the lifetime of forming tools. In: 8th International DAAAM Baltic Conference “Industrial Engineering”, vol. 8, pp. 193–197 (2012)Google Scholar
  2. 2.
    Lange, K., Cser, L., Geiger, M., Kals, J.A.G.: Tool life and tool quality in bulk metal forming. CIRP Ann. 41, 667–675 (1992)CrossRefGoogle Scholar
  3. 3.
    Paschke, H., Yilkiran, T., Lippold, L., Brunotte, K., Weber, M., Braeuer, G., Behrens, B.-A.: Adapted surface properties of hot forging tools using plasma technology for an effective wear reduction. Wear 330, 429–438 (2015)CrossRefGoogle Scholar
  4. 4.
    Paschke, H., Nienhaus, A., Brunotte, K., Petersen, T., Siegmund, M., Lippold, L., Weber, M., Mejauschek, M., Landgraf, P., Braeuer, G., Behrens, B.-A., Lampke, T.: Adapted diffusion processes for effective forging dies. In: AIP Conference Proceedings, vol. 1960, 040016 (2018)Google Scholar
  5. 5.
    Gronostajski, Z., Kaszuba, M., Polak, S., Zwierzchowski, M., Niechajowicz, A., Hawryluk, M.: The failure mechanisms of hot forging dies. Mater. Sci. Eng. 657, 147–160 (2016)CrossRefGoogle Scholar
  6. 6.
    Bayer, R.G.: Mechanical Wear Fundamentals and Testing. Marcel Dekker Inc., New York (2004)Google Scholar
  7. 7.
    Pant, M., Bleck, W.: Continuous impact wear resistance of duplex surface-modified hot work tool steel H10. Wear 259, 377–382 (2005)CrossRefGoogle Scholar
  8. 8.
    Turk, A., Bindal, C.: Characterization of Plasma Nitrided X32CrMoV33 Die Steel. Mater. Manuf. Process. 24, 898–902 (2009)CrossRefGoogle Scholar
  9. 9.
    Behrens, B.-A., Bach, F.-W., Puchert, A., Pfahl, A.: Increasing the wear resistance of hot work tool steel by lowering the eutectoid temperature. Adv. Metal Mater. Technol. 46–56 (2009)Google Scholar
  10. 10.
    Podgrajšek, M., Glodež, S., Ren, Z.: Failure analysis of forging die insert protected with diffusion layer and PVD coating. Surf. Coat. Technol. 276, 521–528 (2015)CrossRefGoogle Scholar
  11. 11.
    Hasmi, S., Batalha, G.F., Van Tyne, C.J., Yilbas, B.: Comprehensive Materials Processing. Elsevier, Amsterdam (2014)Google Scholar
  12. 12.
    Alves de Sousa, R.J.: Metal Forming: Surface Quality of Products, Reference Module in Materials Science and Materials Engineering. Elsevier, Amsterdam (2015)Google Scholar
  13. 13.
    Herrmann, M., et al.: Forming without lubricant – funktionalized tool surfaces for dry forming applications. Proc. Manuf. 8, 533–540 (2017)Google Scholar
  14. 14.
    Behrens, B.-A., Lippold, L., Kazhai, M., Bouguecha, A., Vucetic, M., Hübsch, C., Möhwald, K.: Prediction and detection of wear mechanisms on an industry-oriented hot forging die. Adv. Mater. Res. 1140, 91–98 (2016)Google Scholar
  15. 15.
    Xu, L., Clough, S., Howard, P., Stjohn, D.: Laboratory assessment of the effect of white layers on wear resistant for digger teeth. Wear 181–183, 112–117 (1995)CrossRefGoogle Scholar
  16. 16.
    Behrens, B.-A., Bräuer, G., Paschke, H., Bistron, M.: Reduction of wear at hot forging dies by using coating systems containing boron. Prod. Eng. Res. Dev. 5, 497–506 (2011)CrossRefGoogle Scholar
  17. 17.
    Pfahl, A., Puchert, A., Behrens, B.-A., Bach, F.-W.: Legierungsentwicklung zur Verschleißreduzierung von Schmiedegesenken – Einfluss von Mangan auf die Absenkung der Ac1b-Temperatur. HTM J. Heat Treatment Mater. 64, 5 (2009)Google Scholar
  18. 18.
    Grabke, H.J., Iyer, S.K., Srinivasan, S.R.: The solubility of nitrogen in austenitic iron-manganese and iron-chromium alloys. Zeitschrift für Metallkunde. 66, 286–292 (1975)Google Scholar
  19. 19.
    Hagymási, L.: Modellierung der Stoffübertragung beim Niederdruckcarbonitrieren mit Ammoniak und Acetylen, Ph.D. thesis, Universität Karlsruhe (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Martin Siegmund
    • 1
    Email author
  • Oleksandr Golovko
    • 2
  • Jan Puppa
    • 1
  • Alexander Chugreev
    • 1
  • Florian Nürnberger
    • 2
  • Bernd-Arno Behrens
    • 1
  1. 1.Institute of Forming Technology and MachinesLeibniz Universität HannoverGarbsenGermany
  2. 2.Institute of Materials ScienceLeibniz Universität HannoverGarbsenGermany

Personalised recommendations