Material Characterization Based on Deep Rolling Utilizing Process Dependent Descriptors

Conference paper


Deep rolling is widely applied to plastically deform specimens. The resulting plastic deformation depends on the process parameters and on the material properties of the deformed parts. As the material properties depend e.g. on the microstructure, within this work deep rolling is used to gain information about the influence of the microstructure on the plastic deformation. Therefore, fast and easily determinable material-specific variables, so called descriptors, are determined. The examination of macro samples with different heat treatments shows an influence of the workpiece hardness and a smaller change due to the different microstructures. Considering equivalent stresses, a process parameter independent analysis was performed. The descriptors determined for macro and additionally processed micro samples showed a progressive trend, which is why a scaling from macro to micro descriptors within the framework of subsequent work is conceivable.


Deformation Material Surface analysis 



Financial support of the subproject U04 ‘Mechanical Treatment’ of the Collaborative Research Center SFB 1232 “Farbige Zustände” by the German Research Foundation (DFG) is gratefully acknowledged.


  1. 1.
    Yang, K.H.: Material laws and properties. In: Basic Finite Element Method as Applied to Injury Biomechanics, pp. 231–256 (2017)CrossRefGoogle Scholar
  2. 2.
    Holmes, M.: Aerospace looks to composites for solutions. Reinf. Plast. 61(4), 237–241 (2017)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Macherauch, E., Zoch, H.: Praktikum in Werkstoffkunde, 11th edn. Vieweg+Teubner Verlag/Springer Fachmedien Wiesbaden GmbH Wiesbaden, Wiesbaden (2011)Google Scholar
  4. 4.
    Thelning, K.E. (ed.): Steel and Its Heat Treatment. Butterworth-Heinemann, Oxford (2013)Google Scholar
  5. 5.
    Mädler, L.: Is High-throughput screening for structural materials/metals possible? In: Proceedings of the 4th International Conference on Nanomanufacturing (2014)Google Scholar
  6. 6.
    Ellendt, N., Mädler, L.: High-troughput exploration of evolutionary structural materials. HTM, 175–186 (2018)Google Scholar
  7. 7.
    Schulze, V.: Modern mechanical surface treatment: states, stability, effects, Zugl.: Karlsruhe, Univ., Habil.-Schr., 2004, vol. 1. Wiley-VCH Verl., Weinheim (2006)Google Scholar
  8. 8.
    Meyer, D., Kämmler, J.: Surface integrity of AISI 4140 after deep rolling with varied external and internal loads. Procedia CIRP 45, 363–366 (2016)CrossRefGoogle Scholar
  9. 9.
    Hertz, H.: Ueber die Berührung fester elastischer Körper. Journal für die reine und angewandte Mathematik (Crelle’s Journal) 1882(92) (1881)Google Scholar
  10. 10.
    Czichos, H., Hennecke, M. (eds.): HÜTTE - Das Ingenieurwissen, 32., aktualisierte Auflage ed. Springer, Heidelberg (2012)Google Scholar
  11. 11.
    Ellendt, N., Ciftci, N., Goodreau, C., Uhlenwinkel, V., Mädler, L.: Solidification of single droplets under combined cooling conditions. In: IOP Conference Series: Materials Science and Engineering, vol. 117, p. 12057 (2016)CrossRefGoogle Scholar
  12. 12.
    Röttger, K.: Walzen hartgedrehter Oberflächen, Shaker, Aachen, XI, 154, 6 S. (2003)Google Scholar
  13. 13.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Leibniz Institute for Materials Engineering IWTBremenGermany
  2. 2.MAPEX Center for Materials and ProcessesUniversity of BremenBremenGermany

Personalised recommendations