Advertisement

Experimental Investigation of the Cutting Edge Microshape to Improve the Wear Resistance of Punch and Die Tools for Sheet Metal Punching

  • Alexander Ott
  • Dirk Biermann
Conference paper

Abstract

The wear behaviour of functional surfaces, in particular cutting edges, on punching and die tools represents a limiting factor for tool life. The aim of this study was to investigate the use of air pressurized wet abrasive jet machining for the defined preparation of cutting edges with the aim of eliminating production related microdefects like burrs and chippings. For this purpose, a suitable progressive tool was manufactured and variants of active elements made of cemented carbide with different cutting edge microshapes were compared with a sharp-edged variant. The state of wear was investigated after three iteration stages of 50,000 punch strokes each. Furthermore, the influence of the cutting edge microshape on the resulting process forces and parameters of the shear-cut surfaces of the punching slugs was investigated.

Keywords

Punching Cutting edge Wear 

Notes

Acknowledgement

The authors gratefully thank the company Phoenix Feinbau GmbH & Co. KG for the collaboration with the Institute of Machining Technology at the TU Dortmund University.

References

  1. 1.
    Maeda, T., Matsuno, K.: Wear on shearing tools (wear on cutting edges of blanking tool for square parts). Bull. JSME 10, 197–205 (1967)CrossRefGoogle Scholar
  2. 2.
    Herold, J.: Einfluss der Kantengestaltung von Schneidstempeln beim Scherschneiden auf die Stempelstandzeit, II (2003). www.utfscience.de
  3. 3.
    Hoffmann, H., Kasparbauer, M., Voelkner, W., Jesche, F.: Einfluss von Ringzackengestaltung, Schneidkantengeometrie und Prozesskräften auf das Feinschneiden, EFB-Forschungsbericht (1999)Google Scholar
  4. 4.
    Nothhaft, K., Suh, J., Golle, M., Picas, I., Casellas, D., Volk, W.: Shear cutting of press hardened steel, influence of punch chamfer on process forces, tool stresses and sheared edge qualities. Prod. Eng. 6, 413–420 (2012)CrossRefGoogle Scholar
  5. 5.
    Klocke, F., Wegner, H., Mattfeld, P., Zimmermann, M., Bobzin, K.: Wear reduction of fineblanking tools by high performance PVD tool coating and adapted substrate preparation. In: Tribology of Manufacturing Process Volume 1 - Proceedings of the 4th International Conference on Tribology in Manufacturing Processes, Nizza, pp. 281–292 (2010)Google Scholar
  6. 6.
    Demmel, P., Hoffmann, H., Golle, R., Intra, C., Volk, W.: Interaction of heat generation and material behaviour in sheet metal blanking. CIRP Ann. 64, 249–252 (2015)CrossRefGoogle Scholar
  7. 7.
    Denkena, B., Biermann, D.: Cutting edge geometries. CIRP Ann. Manuf. Technol. 63, 631–653 (2014)CrossRefGoogle Scholar
  8. 8.
    VDI-Richtlinie 2906 Blatt 2, Schnittflächenqualität beim Schneiden, Beschneiden und Lochen von Werkstücken aus Metall Scherschneiden BerlinGoogle Scholar
  9. 9.
    Denkena, B., Reichstein, M., Brodehl, J., de Leon Garcia, L.: Surface preparation, coating and wear performance of geometrically defined cutting edges (2005)Google Scholar
  10. 10.
    Aßmuth, R., Bathe, T., Biermann, D.: Einfluss des Nassstrahlspanens auf die Oberflächentopographie bei Einlippenbohrern. In: Denkena, B., Hoffmeister, H.-W. (eds.) Jahrbuch Schleifen, Honen, Läppen und Polieren, Vulkan, Essen, pp. 268–277 (2016)Google Scholar
  11. 11.
    Biermann, D., Aßmuth, R., Schumann, S., Rieger, M., Kuhlenkötter, B.: Wet abrasive jet machining to prepare and design the cutting edge micro shape. Procedia CIRP 45, 195–198 (2016)CrossRefGoogle Scholar
  12. 12.
    Falconnet, E., Makich, H., Chambert, J., Monteil, G., Picart, P.: Numerical and experimental analyses of punch wear in the blanking of copper alloy thin sheet. Wear 296, 598–606 (2012)CrossRefGoogle Scholar
  13. 13.
    Hambli, R.: Design of experiment based analysis for sheet metal blanking processes optimisation. Int. J. Adv. Manuf. Technol. 19, 403–410 (2002)CrossRefGoogle Scholar
  14. 14.
    Hambli, R.: Blanking tool wear modeling using the finite element method. Int. J. Mach. Tools Manuf. 41, 1815–1829 (2001)CrossRefGoogle Scholar
  15. 15.
    Hambli, R., Guerin, F., Dumon, B.: Numerical evaluation of the tool wear influence on metal-punching processes. Int. J. Adv. Manuf. Technol. 21, 483–493 (2003)CrossRefGoogle Scholar
  16. 16.
    Oehler, G., Kaiser, F.: Schnitt-, Stanz- und Ziehwerkzeuge. Springer, Heidelberg (1993)Google Scholar
  17. 17.
    Mori, K., Abe, Y., Kidoma, Y., Kadarno, P.: Slight clearance punching of ultra-high strength steel sheets using punch having small round edge. Int. J. Mach. Tools Manuf. 65, 41–46 (2013)CrossRefGoogle Scholar
  18. 18.
    Erdmann, C.M.: Mechanismen der Flitterentstehung beim Scherschneiden von Pressteilen aus Aluminiumblech. Hieronymus, München (2004)Google Scholar
  19. 19.
    Panico, T.: Technische Universität München Lehrstuhl für Umformtechnik und Gießereiwesen Beurteilung der Kantenbelastung beim Scherschneiden höchstfester Stahlbleche mit Hilfe der Finiten-Element-Methode. Technische Universität München Dissertation, München (2011)Google Scholar
  20. 20.
    Nothhaft, K.: Scherschneiden höchstfester Blechwerkstoffe im offenen Schnitt, Technische Universität München Dissertation, München (2013)Google Scholar
  21. 21.
    So, H., Hoffmann, H., Golle, R.: Blanking of press hardened ultra high strength steel. In: Oldenburg, M., Steinhoff, K. (eds.) Hot Sheet Metal Forming of High-Performance Steel, Verl. Wiss. Scripten, Auerbach, pp. 137–146 (2009)Google Scholar
  22. 22.
    Uhlmann, E., Scholz, M.: Zerteilen von Aluminiumblechen durch Impulsmagnetfelder. In: Kleiner, M. (eds.) 2. Kolloquium Elektromagnetische Umformung, LFU, Dortmund, pp. 87–94 (2003)Google Scholar
  23. 23.
    Hoffmann, H., Schilp, H., Golle, R., Hoogen, M.: Reduzierung der Flitterbildung durch optimierte Werkzeugparameter beim Beschneiden von Aluminiumblechteilen. In: Siegert, K. (eds.) Neuere Entwicklungen in der Blechumformung, MAT-INFO Werkstoff-Informationsges, Frankfurt am Main, pp. 277–290 (2004)Google Scholar
  24. 24.
    Cheon, S., Kim, N.: Prediction of tool wear in the blanking process using updated geometry. Wear 352–353, 160–170 (2016)CrossRefGoogle Scholar
  25. 25.
    Chumrum, P., Koga, N., Premanond, V.: Experimental investigation of energy and punch wear in piercing of advanced high-strength steel sheet. Int. J. Adv. Manuf. Technol. 79, 1035–1042 (2015)CrossRefGoogle Scholar
  26. 26.
    Bednarz, M.: Entwicklung einer optimierten Messergeometrie für das einstufige Zargenbeschneiden von Strukturbauteilen, Development of an optimized cutting edge geometry for the single staged trimming of structure parts. Technische Universität München Dissertation, München (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Machining TechnologyDortmundGermany

Personalised recommendations