Advertisement

Automated and Flexible Production of Inductive Charging Systems as an Enabler for the Breakthrough of Electric Mobility

  • Michael WeigeltEmail author
  • Michael Masuch
  • Andreas Mayr
  • Johannes Seefried
  • Alexander Kühl
  • Jörg Franke
Conference paper

Abstract

Despite numerous purchase incentives, the spread of electric mobility in Germany is lagging behind expectations and political targets. The main reasons are the high acquisition costs, the limited vehicle driving range and the uncomfortable charging process. With regard to the last two challenges, inductive power transfer (IPT) systems promise great potential. These offer a considerably improved charging comfort, better user safety and the possibility of road charging which allows practically unlimited driving range while reducing battery capacity. Thus, this paper points out, how the application of IPT technology overcomes the main obstacles of electric mobility and why production automation is needed to make use of its huge value-adding potential. The production process chain is analyzed and the individual challenges for the coil production are presented.

Keywords

Electric vehicle Inductive charging system Production Design 

References

  1. 1.
    Greenwood, D.: Roadmapping the EV future: Battery technology, mass manufacturing and the prospects ahead, 26 June 2017Google Scholar
  2. 2.
    Weigelt, M., Mayr, A., Böhm, R., Kühl, A., Franke, J.: Quo vehis, Elektromobilität? ZWF, pp. 59–63, 2 March 2018CrossRefGoogle Scholar
  3. 3.
    International Energy Agency, Global EV outlook 2017: Two million and counting. IEA, Paris (2017)Google Scholar
  4. 4.
    B.S., How wireless charging could change the car industry: It offers convenient top-ups, but also the potential for charging while on the move. The Economist explains. https://www.economist.com/the-economist-explains/2017/11/08/how-wireless-charging-could-change-the-car-industry
  5. 5.
    Risch, F.: Planning and production concepts for contactless power transfer systems for electric vehicles. Zugl.: Erlangen-Nürnberg, Univ., Diss., Bamberg: Meisenbach (2014)Google Scholar
  6. 6.
    Keeling, N.A., Boheemen, E.V., Kissin, M., Beaver, J.: Wireless power charging pad and method of construction, US 9653206 B2, 16 May 2017Google Scholar
  7. 7.
  8. 8.
    Hagedorn, J., Sell-Le Blanc, F., Fleischer, J.: Handbuch der Wickeltechnik für hocheffiziente Spulen und Motoren: Ein Beitrag zur Energieeffizienz. Springer Vieweg, Heidelberg (2016)CrossRefGoogle Scholar
  9. 9.
    Maryniak, B., Saathoff, T., Fleischer, M., Claßen, T., Waagenaar, C.: Device for Inductively Removing the Insulation from Wires and/or Profiles, WO2012110475 A2Google Scholar
  10. 10.
    Buchhalla, H., Meyer, C.: Process for Electric Bonding of an Aluminum Wire, US2013327814 A1Google Scholar
  11. 11.
    Kim, J., et al.: Coil design and shielding methods for a magnetic resonant wireless power transfer system. Proc. IEEE 101(6), 1332–1342 (2013)CrossRefGoogle Scholar
  12. 12.
    Aasselin, P., Green, A., Wechlin, M.: Device for inductively transferring electrical energy, EP 2769391 B1Google Scholar
  13. 13.
    Krammer, J., Müller, T., Eggers, H., Keil, C.J.K., Opl, S.: Induction coil unit having a fiber reinforced ferrite core, WO 2017050491 A1Google Scholar
  14. 14.
    Elektrisola Dr. Gerd Schildbach GmbH & Co. KG, Hochfrequenzlitzen von Elektrisola. https://www.elektrisola.com/de/hf-litze-litze-litz-wire.html. Accessed 1 Oct 2018
  15. 15.
    Amditis, A., Karaseitanidis, G., Damousis, I., Guglielmi, P., Cirimele, V.: Dynamic Wireless Charging for More Efficient FEVs: The Fabric Project Concept. In: MedPower 2014, Athens, Greece, vol. 29(6), November 2014Google Scholar
  16. 16.
    Spreng, S., Glassel, T., Franke, J.: Adaption of the ultrasonic welding technique to the process of joining insulated copper wires with standardized tubular cable lugs. In: 2015 IEEE 61st Holm Conference on Electrical Contacts (Holm), San Diego, CA, USA, pp. 147–153, October 2015Google Scholar
  17. 17.
    Gläßel, T., Franke, J.: Kontaktierung von Antrieben für die Elektromobilität. ZWF 112(5), 322–326 (2017)CrossRefGoogle Scholar
  18. 18.
    Weigelt, M., Mayr, A., Seefried, J., Franke, J.: Conceptual design of an intelligent ultrasonic crimping process using machine learning algorithms. In: 28th International Conference on Flexible Automation and Intelligent Manufacturing (FAIM 2018), Columbus, OH, USA (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Michael Weigelt
    • 1
    Email author
  • Michael Masuch
    • 1
  • Andreas Mayr
    • 1
  • Johannes Seefried
    • 1
  • Alexander Kühl
    • 1
  • Jörg Franke
    • 1
  1. 1.Institute for Factory Automation and Production Systems (FAPS)Friedrich-Alexander University Erlangen-Nuremberg (FAU)NurembergGermany

Personalised recommendations