Advertisement

The LIDORT and VLIDORT Linearized Scalar and Vector Discrete Ordinate Radiative Transfer Models: Updates in the Last 10 Years

  • Robert SpurrEmail author
  • Matt Christi
Chapter
Part of the Springer Series in Light Scattering book series (SSLS)

Abstract

It has been 10 years since the last major review paper on the LIDORT and VLIDORT radiative transfer models; this paper appeared in Light Scattering Reviews, Volume 3 (Spurr in Light scattering reviews. Springer, Berlin, 2008), hereinafter referenced as [R1]).

References

  1. Anderson E, Bai Z, Bischof C, Demmel J, Dongarra J, Du Croz J, Greenbaum A, Hammarling S, McKenney A, Ostrouchov A, Sorensen D (1995) LAPACK User’s Guide, 2nd edn. Philadephia, Society for Industrial and Applied MathematicsGoogle Scholar
  2. Chandrasekhar S (1960) Radiative transfer. Dover Publications Inc., New YorkGoogle Scholar
  3. Chami M, Santer R, Dilligeard E (2001) Radiative transfer model for the computation of radiance and polarization in an ocean-atmosphere system: polarization properties of suspended matter for remote sensing. Appl Opt 40:2398–2416ADSCrossRefGoogle Scholar
  4. Coulson K, Dave J, Sekera D (1960) Tables related to radiation emerging from planetary atmosphere with Rayleigh scattering. University of California Press, BerkeleyGoogle Scholar
  5. Cox C, Munk W (1954a) Statistics of the sea surface derived from sun glitter. J Mar Res 13:198–227Google Scholar
  6. Cox C, Munk W (1954b) Measurement of the roughness of the sea surface from photographs of the sun’s glitter. J Opt Soc Am 44:838–850ADSCrossRefGoogle Scholar
  7. de Rooij WA, Van der Stap CCAH (1984) Expansion of Mie scattering matrices in generalized spherical functions, Astron Astrophys 131:237–248Google Scholar
  8. Doicu A, Trautmann T (2009) Two linearization methods for atmospheric remote sensing. J Quant Spectrosc Radiat Transf 110:477–490ADSCrossRefGoogle Scholar
  9. Efremenko D, Doicu A, Loyola D, Trautmann T (2013) Acceleration techniques for the discrete ordinate method. J Quant Spectrosc Radiat Transf 114:73–81ADSCrossRefGoogle Scholar
  10. Frankenberg C, O’Dell C, Guanter L, McDuffie J (2012) Remote sensing of near-infrared chlorophyll fluorescence from space in scattering atmospheres: implications for its retrieval and interferences with atmospheric CO2 retrievals. Atmos Meas Tech 5:2081–2094CrossRefGoogle Scholar
  11. Garcia RDM, Siewert CE (1989) The FN method for radiative transfer models that include polarization. J Quant Spectrosc Radiat Transf 41:117–145ADSCrossRefGoogle Scholar
  12. Hapke B (1993) Theory of reflectance and emittance spectroscopy. Cambridge University Press, Cambridge, UKCrossRefGoogle Scholar
  13. Hasekamp OP, Landgraf J (2002) A linearized vector radiative transfer model for atmospheric trace gas retrieval. J Quant Spectrosc Radiat Transf 75:221–238ADSCrossRefGoogle Scholar
  14. Hovenier JW, Van der Mee C, Domke H (2004) Transfer of polarized light in planetary atmospheres: Basic concepts and practical methods, Kluwer, DordrechtGoogle Scholar
  15. Huang H, Qin W, Spurr RJ, Liu Q (2017) Evaluation of atmospheric effects on land surface directional reflectance with the coupled RAPID and VLIDORT models. Geosci Remote Sens Lett 14:916–920ADSCrossRefGoogle Scholar
  16. Jin Z, Charlock T, Rutledge K, Stamnes K, Wang Y (2006) Analytic solution of radiative transfer in the coupled atmosphere-ocean system with a rough surface. Appl Opt 45:7433–7455ADSCrossRefGoogle Scholar
  17. Kotchenova SY, Vermote EF, Matarrese R, Klemm FJ (2006) Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: Path Radiance Appl Opt 45:6762–6774ADSGoogle Scholar
  18. Lucht W, Schaaf C, Strahler A (2000) An algorithm for the retrieval of Albedo from space using semi-empirical BRDF models. IEEE Trans Geosci Remote Sens 38:977ADSCrossRefGoogle Scholar
  19. Lucht W, Roujean J-L (2000) Considerations in the Parametric modeling of BRDF and Albedo from multiangular satellite sensor observations. Remote Sens Rev 18:343–379CrossRefGoogle Scholar
  20. Lyapustin A, Gatebe CK, Kahn R, Brandt R, Redemann J, Russell P, King MD, Pedersen CA, Gerland S, Poudyal R, Marshak A (2010) Analysis of snow bidirectional reflectance from ARCTAS Spring-2008 Campaign. Atmos Chem Phys 10:4359–4375ADSCrossRefGoogle Scholar
  21. Mackowski DW, Mishchenko MI (1996) Calculation of the T matrix and the scattering matrix for ensembles of spheres, J Opt Soc Am A 13:2266–2278ADSCrossRefGoogle Scholar
  22. Maignan F, Bréon F-M, Fédèle E, Bouvier M (2009) Polarized reflectance of natural surfaces: Spaceborne measurements and analytical modeling. Rem Sens Environ 113:2642–2650ADSCrossRefGoogle Scholar
  23. Meng Z, Yang P, Kattawar GW, Bi L, Liou K-N, Lazslo I (2010) Single-scattering properties of tri-axial ellipsoidal mineral dust aerosols: A database for application to radiative transfer calculations. J Aer Sci 41:501–512ADSCrossRefGoogle Scholar
  24. Mishchenko MI, Travis LD (1998) Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers, JQSRT 60:309–324ADSCrossRefGoogle Scholar
  25. Mishchenko MI, Travis LD (1998) Satellite retrieval of aerosol properties over the ocean using polarization as well as intensity of reflected sunlight. J Geophys Res 102:16989CrossRefGoogle Scholar
  26. Mishchenko MI, Travis LD, Lacis LL (2006) Scattering, absorption and emission of light by small particles. Cambridge University Press, Cambridge, U.K.Google Scholar
  27. Mishchenko MI (2014) Electromagnetic scattering by particles and particle groups: an introduction. Cambridge University Press, ISBN 9780521519922Google Scholar
  28. Morel A, Gentili B (2009) A simple band ratio technique to quantify the colored dissolved and detrital organic material from ocean color remotely sensed data. Remote Sens Environ 113ADSCrossRefGoogle Scholar
  29. Nakajima T, Tanaka M (1988) Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation. J Quant Spectrosc Radiat Transf 40:51–69ADSCrossRefGoogle Scholar
  30. Natraj V, Shia RL, Yung YL (2010) On the use of principal component analysis to speed up radiative transfer calculations. J Quant Spectrosc Radiat Transfer 111:810–816,  https://doi.org/10.1016/j.jqsrt.2009.11.004ADSCrossRefGoogle Scholar
  31. Natraj V, Hovenier JW (2012) Polarized light reflected and transmitted by thick rayleigh scattering atmospheres. Astrophys J 748:28ADSCrossRefGoogle Scholar
  32. Rahman H, Pinty B, Verstrate M (1993) Coupled surface-atmospheric reflectance (CSAR) model. 2. Semi-empirical surface model usable with NOAA advanced very high resolution radiometer data. J Geophys Res 98:20791ADSCrossRefGoogle Scholar
  33. Rodgers CD (2000) Inverse Methods for Atmospheric Sounding: Theory and Practice, World Scientific Publishing Co. Pte. Ltd., SingaporeCrossRefGoogle Scholar
  34. Rozanov V, Rozanov A (2007) Relationship between different approaches to derive weighting functions related to atmospheric remote sensing problems. J Quant Spectrosc Radiat Transf 105(2):217–242ADSCrossRefGoogle Scholar
  35. Sancer M (1969) Shadow-corrected electromagnetic scattering from a randomly-rough ocean surface. IEEE Trans Antennas Propag AP-17:557–585Google Scholar
  36. Sayer A, Thomas G, Grainger R (2010) A sea-surface reflectance model for (A)ATSR, and application to aerosol retrievals. Atmos Meas Tech 3:813–838ADSCrossRefGoogle Scholar
  37. Siewert CE (1982) On the phase matrix basic to the scattering of polarized light. Astron Astrophys 109:195–200Google Scholar
  38. Siewert CE (2000a) A concise and accurate solution to Chandrasekhar’s basic problem in radiative transfer. J Quant Spectrosc Radiat Transf 64:109–130ADSCrossRefGoogle Scholar
  39. Siewert CE (2000b) A discrete-ordinates solution for radiative transfer models that include polarization effects. J Quant Spectrosc Radiat Transf 64:227–254ADSCrossRefGoogle Scholar
  40. Spurr R (2002) Simultaneous derivation of intensities and weighting functions in a general pseudo-spherical discrete ordinate radiative transfer treatment. J Quant Spectrosc Radiat Transf 75:129–175ADSCrossRefGoogle Scholar
  41. Spurr RJD (2004) A New approach to the retrieval of surface properties from earthshine measurements. J Quant Spectrosc Radiat Transf 83:15–46ADSCrossRefGoogle Scholar
  42. Spurr RJD (2006) VLIDORT: a linearized pseudo-spherical vector discrete ordinate radiative transfer code for forward model and retrieval studies in multilayer multiple scattering media. J Quant Spectrosc Radiat Transf 102(2):316–342.  https://doi.org/10.1016/j/jqsrt.2006.05.005ADSCrossRefGoogle Scholar
  43. Spurr R (2008) LIDORT and VLIDORT: Linearized pseudo-spherical scalar and vector discrete ordinate radiative transfer models for use in remote sensing retrieval problems. In: Kokhanovsky A (ed) Light scatter reviews, vol 3. Springer, BerlinGoogle Scholar
  44. Spurr R, Natraj V (2011) A linearized two-stream radiative transfer code for fast approximation of multiple-scatter fields. J Quant Spectrosc Radiat Transfer 112:2630–2637ADSCrossRefGoogle Scholar
  45. Spurr R, Christi M (2014) On the generation of atmospheric property Jacobians from the (V)LIDORT linearized radiative transfer models. J Quant Spectrosc Radiat Transf.  https://doi.org/10.1016/j.jqsrt.2014.03.011ADSCrossRefGoogle Scholar
  46. Spurr R, Christi M (2018) LIDORT-RRS: a linearized discrete ordinate radiative transfer model with first order rotational raman scattering, paper in preparationGoogle Scholar
  47. Spurr R, Kurosu T, Chance K (2001) A linearized discrete ordinate radiative transfer model for atmospheric remote sensing retrieval. J Quant Spectrosc Radiat Transf 68:689–735ADSCrossRefGoogle Scholar
  48. Spurr RJD, de Haan J, van Oss R, Vasilkov A (2008) Discrete ordinate theory in a stratified medium with first order rotational raman scattering; a general quasi-analytic solution. J Quant Spectrosc Radiat Transfer 109:404–425.  https://doi.org/10.1016/j.jqsrt.2007.08.011ADSCrossRefGoogle Scholar
  49. Spurr R, Wang J, Zeng J, Mishchenko M (2012) Linearized T-Matrix and Mie scattering computations. J Quant Spectrosc Radiat Transfer 113:425–439ADSCrossRefGoogle Scholar
  50. Spurr R, Natraj V, Kopparla P, Christi M (2016) Application of principal component analysis (PCA) to performance enhancement of hyperspectral radiative transfer computations, in “Principal Component Analysis: Methods, Applications and Technology”, NOVA publishersGoogle Scholar
  51. Stamnes K, Conklin P (1984) A new multi-layer discrete ordinate approach to radiative transfer in vertically inhomogeneous atmospheres. J Quant Spectrosc Radiat Transfer 31:273ADSCrossRefGoogle Scholar
  52. Stamnes K, Tsay S-C, Nakajima T (1988) Computation of eigenvalues and eigenvectors for discrete ordinate and matrix operator method radiative transfer. J Quant Spectrosc Radiat Transf 39:415–419Google Scholar
  53. Ustinov EA (2005) Atmospheric weighting functions and surface partial derivatives for remote sensing of scattering planetary atmospheres in thermal spectral region: General adjoint approach. J Quant Spectrosc Radiat Transf 92:351–371ADSCrossRefGoogle Scholar
  54. Van Oss RF, Spurr RJD (2002) Fast and accurate 4 and 6 stream linearized discrete ordinate radiative transfer models for ozone profile retrieval. J Quant Spectrosc Radiat Transf 75:177–220ADSCrossRefGoogle Scholar
  55. Vermote EF, Tanré D, Deuzé JL, Herman M, Morcrette JJ (1997) Second simulation of the satellite signal in the solar spectrum, 6S: an overview. IEEE Trans Geosci Remote Sens 35:675–686ADSCrossRefGoogle Scholar
  56. Vestrucci M, Siewert CE (1984) A numerical evaluation of an analytical representation of the components in a Fourier decomposition of the phase matrix for the scattering of polarized light. JQSRT 31:177–183ADSCrossRefGoogle Scholar
  57. Wanner W, Li X, Strahler A (1995) On the derivation of kernels for kernel-driven models of bidirectional reflectance. J Geophys Res 100:21077ADSCrossRefGoogle Scholar
  58. Wiscombe W (1977) The delta-M method: rapid yet accurate radiative flux calculations for strongly asymmetric phase functionGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.RT Solutions, Inc.CambridgeUSA
  2. 2.Fort CollinsColoradoUSA

Personalised recommendations