Advertisement

BDDs on the Run

  • Klaus HavelundEmail author
  • Doron Peled
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11247)

Abstract

Runtime verification (RV) of first-order temporal logic must handle a potentially large amount of data, accumulated during the monitoring of an execution. The DejaVu RV system represents data elements and relations using BDDs. This achieves a compact representation, which allows monitoring long executions. However, the potentially unbounded, and frequently very large amounts of data values can, ultimately, limit the executions that can be monitored. We present an automatic method for “forgetting” data values when they no longer affect the RV verdict on an observed execution. We describe the algorithm and illustrate its operation through an example.

References

  1. 1.
    Allan, C., et al.: Adding trace matching with free variables to AspectJ. In: OOPSLA 2005, SIGPLAN Notes, vol. 40, no. 10, pp. 345–364. ACM (2005)Google Scholar
  2. 2.
    D’Angelo, B.: LOLA: runtime monitoring of synchronous systems. In: TIME 2005, pp. 166–174. IEEE Computer Society (2005)Google Scholar
  3. 3.
    Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Rule-based runtime verification. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 44–57. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24622-0_5CrossRefzbMATHGoogle Scholar
  4. 4.
    Barringer, H., Havelund, K.: TraceContract: a Scala DSL for trace analysis. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 57–72. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-21437-0_7CrossRefGoogle Scholar
  5. 5.
    Barringer, H., Rydeheard, D., Havelund, K.: Rule systems for run-time monitoring: from Eagle to RuleR. In: Sokolsky, O., Taşıran, S. (eds.) RV 2007. LNCS, vol. 4839, pp. 111–125. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-77395-5_10CrossRefGoogle Scholar
  6. 6.
    Basin, D.A., Klaedtke, F., Müller, S., Zalinescu, E.: Monitoring metric first-order temporal properties. J. ACM 62(2), 1–45 (2015)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bauer, A., Küster, J.-C., Vegliach, G.: From propositional to first-order monitoring. In: Legay, A., Bensalem, S. (eds.) RV 2013. LNCS, vol. 8174, pp. 59–75. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40787-1_4CrossRefzbMATHGoogle Scholar
  8. 8.
    Bryant, R.E.: Symbolic Boolean manipulation with ordered binary-decision diagrams. ACM Comput. Surv. 24(3), 293–318 (1992)CrossRefGoogle Scholar
  9. 9.
    Colombo, C., Pace, G.J., Schneider, G.: LARVA - safer monitoring of real-time Java programs (Tool Paper). In: SEFM 2009, pp. 33–37. IEEE Computer Society (2009)Google Scholar
  10. 10.
    Decker, N., Leucker, M., Thoma, D.: Monitoring modulo theories. Int. J. Softw. Tools Technol. Transf. 18(2), 205–225 (2016)CrossRefGoogle Scholar
  11. 11.
    Goubault-Larrecq, J., Olivain, J.: A smell of ORCHIDS. In: Leucker, M. (ed.) RV 2008. LNCS, vol. 5289, pp. 1–20. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-89247-2_1CrossRefGoogle Scholar
  12. 12.
    Hallé, S., Villemaire, R.: Runtime enforcement of web service message contracts with data. IEEE Trans. Serv. Comput. 5(2), 192–206 (2012)CrossRefGoogle Scholar
  13. 13.
    Havelund, K.: Rule-based runtime verification revisited. Int. J. Softw. Tools Technol. Transf. 17(2), 143–170 (2015)CrossRefGoogle Scholar
  14. 14.
    Havelund, K., Peled, D., Ulus, D.: First-order temporal logic monitoring with BDDs. In: FMCAD 2017, pp. 116–123. IEEE (2017)Google Scholar
  15. 15.
    Havelund, K., Roşu, G.: Synthesizing monitors for safety properties. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 342–356. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-46002-0_24CrossRefzbMATHGoogle Scholar
  16. 16.
    Kim, M., Kannan, S., Lee, I., Sokolsky, O.: Java-MaC, a run-time assurance tool for Java. In: RV 2001, ENTCS, vol. 55, no. 2, pp. 218–235. Elsevier (2001)Google Scholar
  17. 17.
    Meredith, P.O., Jin, D., Griffith, D., Chen, F., Rosu, G.: An overview of the MOP runtime verification framework. Int. J. Softw. Tools Technol. Transf. 14(3), 249–289 (2012)CrossRefGoogle Scholar
  18. 18.
    Reger, G., Cruz, H.C., Rydeheard, D.: MarQ: monitoring at runtime with QEA. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 596–610. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46681-0_55CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Department of Computer ScienceBar Ilan UniversityRamat GanIsrael

Personalised recommendations