Advertisement

A Methodology for Combinatory Process Synthesis: Process Variability in Clinical Pathways

  • Tristan SchäferEmail author
  • Frederik Möller
  • Anja Burmann
  • Yevgen Pikus
  • Norbert Weißenberg
  • Marcus Hintze
  • Jakob Rehof
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11247)

Abstract

Combinatory Process Synthesis (CPS) is a special case of software synthesis that can be used to manage variability by synthetizing target-specific processes from a repository of components. While conducted CPS research mainly addresses formal aspects of algorithm engineering, no structured methodology is available that enables the broader industrial application. This study addresses this gap and proposes a procedural model for CPS. The presented research bases on the Design Science Research principles. A case study in the healthcare sector shows the successful applicability of the elaborated procedure.

Keywords

Combinatory Process Synthesis Clinical pathways Business process modeling Design Science Research Variability modeling 

Notes

Acknowledgment

The research project presented in this paper stems from the Center of Excellence for Logistics and IT (http://www.leistungszentrum-logistik-it.de/, last accessed: 04.09.2018) located in Dortmund.

References

  1. 1.
    Bessai, J., Dudenhefner, A., Düdder, B., Martens, M., Rehof, J.: Combinatory process synthesis. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952, pp. 266–281. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-47166-2_19CrossRefGoogle Scholar
  2. 2.
    Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S.: A design science research methodology for information systems research. J. Manag. Inf. Syst. 24, 45–77 (2007)CrossRefGoogle Scholar
  3. 3.
    Busse, R.: Diagnosis Related Groups in Europe. Moving Towards Transparency, Efficiency and Quality in Hospitals. McGraw Hill Open University Press, Maidenhead (2011)Google Scholar
  4. 4.
    Sackett, D.L.: Evidence-based medicine. Semin. Perinatol. 21, 3–5 (1997)CrossRefGoogle Scholar
  5. 5.
    Reichert, M., Pryss, R.: Flexible support of healthcare processes. In: Combi, C., Pozzi, G., Veltri, P. (eds.) Process Modeling and Management for Healthcare, pp. 35–66. Taylor & Francis Group, London (2017)Google Scholar
  6. 6.
    Rosa, M.L., van der Aalst, W.M.P., Dumas, M., Milani, F.P.: Business process variability modeling. A survey. ACM Comput. Surv. (CSUR) 50, 2 (2017)CrossRefGoogle Scholar
  7. 7.
    Yin, R.K.: Case Study Research: Design and Methods. Sage Publications, Beverley Hills (2008)Google Scholar
  8. 8.
    Lee, A.S., Baskerville, R.L.: Generalizing generalizability in information systems research. Inf. Syst. Res. 14, 221–243 + 315 (2003)CrossRefGoogle Scholar
  9. 9.
    Broy, M.: From actions, transactions, and processes to services. In: Kordon, F., Moldt, D. (eds.) PETRI NETS 2016. LNCS, vol. 9698, pp. 13–19. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-39086-4_2CrossRefGoogle Scholar
  10. 10.
    Aguilar-Savén, R.S.: Business process modelling. Review and framework. Int. J. Prod. Econ. 90, 129–149 (2004)CrossRefGoogle Scholar
  11. 11.
    Kinsman, L., Rotter, T., James, E., Snow, P., Willis, J.: What is a clinical pathway? Development of a definition to inform the debate. BMC Med. 8, 31 (2010)CrossRefGoogle Scholar
  12. 12.
    Rotter, T., et al.: Clinical pathways: effects on professional practice, patient outcomes, length of stay and hospital costs. Cochrane Database Syst. Rev. CD006632 (2010)Google Scholar
  13. 13.
    ISO: Information technology – Object Management Group Business Process Model and Notation 35.020 Information technology (IT) in general. ISO/IEC 19510:2013 (2013)Google Scholar
  14. 14.
    Chinosi, M., Trombetta, A.: BPMN: an introduction to the standard. Comput. Stand. Interfaces 34, 124–134 (2012)CrossRefGoogle Scholar
  15. 15.
    Muehlen, M., Recker, J.: How much language is enough? Theoretical and practical use of the business process modeling notation. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008. LNCS, vol. 5074, pp. 465–479. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-69534-9_35CrossRefGoogle Scholar
  16. 16.
    Aagesen, G., Krogstie, J.: BPMN 2.0 for modeling business processes. In: vom Brocke, J., Rosemann, M. (eds.) Handbook on Business Process Management 1. IHIS, pp. 219–250. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-642-45100-3_10CrossRefGoogle Scholar
  17. 17.
    Müller, R., Rogge-solti, A. (eds.): BPMN for healthcare processes. CEUR-WS.org (2011)Google Scholar
  18. 18.
    Braun, R., Schlieter, H., Burwitz, M., Esswein, W. (eds.): BPMN4CP: design and implementation of a BPMN extension for clinical pathways. In: 2014 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) (2014)Google Scholar
  19. 19.
    Scheuerlein, H., et al.: New methods for clinical pathways-business process modeling notation (BPMN) and tangible business process modeling (t.BPM). Langenbeck’s Arch. Surg. 397, 755–761 (2012)CrossRefGoogle Scholar
  20. 20.
    Blaine, L., Gilham, L., Liu, J., Smith, D.R., Westfold, S.: Planware-domain-specific synthesis of high-performance schedulers. In: Proceedings of 13th IEEE International Conference on Automated Software Engineering, pp. 270–279 (1998)Google Scholar
  21. 21.
    Becker, M., Gilham, L., Smith, D.R., et al: Planware II: synthesis of schedulers for complex resource systems (2003)Google Scholar
  22. 22.
    Lamprecht, A.-L., Naujokat, S., Margaria, T., Steffen, B.: Synthesis-based loose programming. In: 2010 Seventh International Conference on the Quality of Information and Communications Technology (QUATIC), pp. 262–267 (2010)Google Scholar
  23. 23.
    Yu, J., Han, Y.-B., Han, J., Jin, Y., Falcarin, P., Morisio, M.: Synthesizing service composition models on the basis of temporal business rules. J. Comput. Sci. Technol. 23, 885–894 (2008)CrossRefGoogle Scholar
  24. 24.
    Grambow, G., Oberhauser, R., Reichert, M.: Semantically-driven workflow generation using declarative modeling for processes in software engineering. In: Proceedings of EDOCW 2011, pp. 164–173. IEEE Computer Society (2011)Google Scholar
  25. 25.
    Dadam, P., Reichert, M.: The ADEPT project: a decade of research and development for robust and flexible process support. Comput. Sci.-Res. Dev. 23, 81–97 (2009)CrossRefGoogle Scholar
  26. 26.
    Reichert, M., Dadam, P.: ADEPT flex—supporting dynamic changes of workflows without losing control. J. Intell. Inf. Syst. 10, 93–129 (1998)CrossRefGoogle Scholar
  27. 27.
    Roser, S., Lautenbacher, F., Bauer, B.: Generation of workflow code from DSMs. In: Proceedings of OOPSLA 2007 (2007)Google Scholar
  28. 28.
    Bessai, J., Dudenhefner, A., Düdder, B., Martens, M., Rehof, J.: Combinatory logic synthesizer. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014. LNCS, vol. 8802, pp. 26–40. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-45234-9_3CrossRefGoogle Scholar
  29. 29.
    Curry, H.B.: Functionality in combinatory logic. Proc. Natl. Acad. Sci. 20, 584–590 (1934)CrossRefGoogle Scholar
  30. 30.
    Howard, W.A.: The formulae-as-types notion of construction. HB Curry Essays Comb. Log. Lambda Calc. Form. 44, 479–490 (1980)Google Scholar
  31. 31.
    Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems research. MIS Q. Manag. Inf. Syst. 28, 75–105 (2004)CrossRefGoogle Scholar
  32. 32.
    Carlsson, S.A., Henningsson, S., Hrastinski, S., Keller, C.: Socio-technical IS design science research: developing design theory for IS integration management. Inf. Syst. e-Bus. Manag. 9, 109–131 (2011)CrossRefGoogle Scholar
  33. 33.
    Gutzwiller, T.A.: Das CC RIM-Referenzmodell für den Entwurf von betrieblichen, transaktionsorientierten Informationssystemen. Physica-Verlag HD, Heidelberg (2013)Google Scholar
  34. 34.
    Gerring, J.: What is a case study and what is it good for? APSR 98, 341–354 (2004)CrossRefGoogle Scholar
  35. 35.
    Eisenhardt, K.M., Graebner, M.E.: Theory building from cases: opportunities and challenges. Acad. Manag. J. 50, 25–32 (2007)CrossRefGoogle Scholar
  36. 36.
    Flyvbjerg, B.: Five misunderstandings about case-study research. Qual. Inq. 12, 219–245 (2006)CrossRefGoogle Scholar
  37. 37.
    Hallerbach, A., Bauer, T., Reichert, M.: Capturing variability in business process models: the Provop approach. J. Softw. Evol. Process. 22, 519–546 (2010)CrossRefGoogle Scholar
  38. 38.
    Kumar, A., Yao, W.: Design and management of flexible process variants using templates and rules. Comput. Ind. 63, 112–130 (2012)CrossRefGoogle Scholar
  39. 39.
    Hallerbach, A., Bauer, T., Reichert, M.: Managing process variants in the process lifecycle (2008)Google Scholar
  40. 40.
    Reuter, C.: Modellierung und dynamische Adaption klinischer Pfade auf Basis semantischer Prozessfragmente. Shaker, Aachen (2012)Google Scholar
  41. 41.
    Weber, B., Reichert, M., Mendling, J., Reijers, H.A.: Refactoring large process model repositories. Comput. Ind. 62, 467–486 (2011)CrossRefGoogle Scholar
  42. 42.
    van der Aalst, W.M.P., Ter Hofstede, A.H.M.: YAWL: yet another workflow language. Inf. Syst. 30, 245–275 (2005)CrossRefGoogle Scholar
  43. 43.
    Reichert, M., Rinderle, S., Kreher, U., Dadam, P.: Adaptive process management with ADEPT2. In: 2005 Proceedings of 21st International Conference on Data Engineering, ICDE 2005, pp. 1113–1114 (2005)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Tristan Schäfer
    • 1
    Email author
  • Frederik Möller
    • 1
  • Anja Burmann
    • 2
  • Yevgen Pikus
    • 2
  • Norbert Weißenberg
    • 2
  • Marcus Hintze
    • 3
  • Jakob Rehof
    • 1
    • 2
  1. 1.TU Dortmund UniversityDortmundGermany
  2. 2.Fraunhofer ISSTDortmundGermany
  3. 3.Fraunhofer IMLDortmundGermany

Personalised recommendations