Advertisement

Differential Equivalence Yields Network Centrality

  • Stefano TognazziEmail author
  • Mirco Tribastone
  • Max Tschaikowski
  • Andrea Vandin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11246)

Abstract

One of the most distinctive features of collective adaptive systems (CAS) is the presence of many individuals which interact with each other and with the environment, giving rise to a system-level behaviour that cannot be analyzed by studying the single agents in isolation. The interaction structure among the individuals of CAS is often captured by networks where nodes denote individuals and edges interactions. Understanding the interplay between the network topology and the CAS dynamics calls for tools from network theory in order, for instance, to identify the most important nodes of a network. Centrality measures address this task by assigning an importance measure to each node, a possible example being the famous PageRank algorithm of Google. In this paper we investigate the relationship between centrality measures and model reduction techniques, such as lumpability of Markov chains, which seek to reduce a model into a smaller one that can be processed more efficiently, while preserving information of interest. In particular, we focus on the relation between network centrality and backward differential equivalence, a generalization of lumpability to general dynamical systems. We show that any two backward differential equivalent nodes enjoy identical centrality measures. By efficiently obtaining substantial reductions of real-world networks from biochemistry, social sciences and computer engineering, we demonstrate the applicability of the result.

Keywords

Networks Centrality measures Model reduction Efficient algorithms 

References

  1. 1.
    Arora, S., Rao, S., Vazirani, U.V.: Expander flows, geometric embeddings and graph partitioning. J. ACM 56(2), 5:1–5:37 (2009)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Baier, C., Engelen, B., Majster-Cederbaum, M.E.: Deciding bisimilarity and similarity for probabilistic processes. J. Comput. Syst. Sci. 60(1), 187–231 (2000)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Barabasi, A.-L., Dezso, Z., Regan, E., Yook, S.-H., Oltvai, Z.: Scale-free and hierarchical structures in complex networks, vol. 661, no. 1 (2003)Google Scholar
  4. 4.
    Batagelj, V., Mrvar, A.: Pajek datasets, June 2006. http://vlado.fmf.uni-lj.si/pub/networks/data/
  5. 5.
    Bobbio, A., Gribaudo, M., Telek, M.: Analysis of large scale interacting systems by mean field method. In: QEST, pp. 215–224 (2008)Google Scholar
  6. 6.
    Bortolussi, L., Gast, N.: Mean field approximation of uncertain stochastic models. In: DSN, pp. 287–298 (2016)Google Scholar
  7. 7.
    Buchholz, P.: Exact and ordinary lumpability in finite Markov chains. J. Appl. Probab. 31, 59–74 (1994)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Cardelli, L., Csikász-Nagy, A., Dalchau, N., Tribastone, M., Tschaikowski, M.: Noise Reduction in complex biological switches. Sci. Rep. (2016)Google Scholar
  9. 9.
    Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Efficient syntax-driven lumping of differential equations. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 93–111. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49674-9_6CrossRefzbMATHGoogle Scholar
  10. 10.
    Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Forward and backward bisimulations for chemical reaction networks. In: CONCUR, pp. 226–239 (2015)Google Scholar
  11. 11.
    Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Comparing chemical reaction networks: a categorical and algorithmic perspective. In: LICS, pp. 485–494 (2016)Google Scholar
  12. 12.
    Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Symbolic computation of differential equivalences. In: 43rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL) (2016)Google Scholar
  13. 13.
    Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: ERODE: a tool for the evaluation and reduction of ordinary differential equations. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10206, pp. 310–328. Springer, Heidelberg (2017).  https://doi.org/10.1007/978-3-662-54580-5_19CrossRefzbMATHGoogle Scholar
  14. 14.
    Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Maximal aggregation of polynomial dynamical systems. PNAS 114(38), 10029–10034 (2017)CrossRefGoogle Scholar
  15. 15.
    Davis, T.A., Yifan, H.: The university of florida sparse matrix collection. ACM Trans. Math. Softw. 38(1), 1:1–1:25 (2011)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Derisavi, S., Hermanns, H., Sanders, W.H.: Optimal state-space lumping in Markov chains. Inf. Process. Lett. 87(6), 309–315 (2003)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Feret, J., Danos, V., Krivine, J., Harmer, R., Fontana, W.: Internal coarse-graining of molecular systems. PNAS 106(16), 6453–6458 (2009)CrossRefGoogle Scholar
  18. 18.
    Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)zbMATHGoogle Scholar
  19. 19.
    Iacobelli, G., Tribastone, M.: Lumpability of fluid models with heterogeneous agent types. In: DSN, pp. 1–11 (2013)Google Scholar
  20. 20.
    Iacobelli, G., Tribastone, M., Vandin, A.: Differential bisimulation for a Markovian process algebra. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015. LNCS, vol. 9234, pp. 293–306. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48057-1_23CrossRefGoogle Scholar
  21. 21.
    Jeong, H., Mason, S.P., Barabasi, A.-L., Oltvai, Z.N.: Lethality and centrality in protein networks. Nature 411(6833), 41–42 (2001)CrossRefGoogle Scholar
  22. 22.
    Katoen, J.-P., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins and outs of the probabilistic model checker MRMC. Perform. Eval. 68(2), 90–104 (2011)CrossRefGoogle Scholar
  23. 23.
    Klimt, B., Yang, Y.: The enron corpus: a new dataset for email classification research. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 217–226. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-30115-8_22CrossRefGoogle Scholar
  24. 24.
    Kowal, M., Tschaikowski, M., Tribastone, M., Schaefer, I.: Scaling size and parameter spaces in variability-aware software performance models (T). In: ASE, pp. 407–417 (2015)Google Scholar
  25. 25.
    Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. In: POPL, pp. 344–352 (1989)Google Scholar
  26. 26.
    Lerner, J.: Role assignments. In: Brandes, U., Erlebach, T. (eds.) Network Analysis: Methodological Foundations. LNCS, vol. 3418, pp. 216–252. Springer, Heidelberg (2005).  https://doi.org/10.1007/978-3-540-31955-9_9CrossRefGoogle Scholar
  27. 27.
    Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: densification laws, shrinking diameters and possible explanations. In: KDD 2005, pp. 177–187 (2005)Google Scholar
  28. 28.
    Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: densification and shrinking diameters. ACM Trans. Knowl. Discov. Data 1(1), 2 (2007)CrossRefGoogle Scholar
  29. 29.
    Leskovec, J., Krevl, A.: SNAP datasets: Stanford large network dataset collection, June 2014. http://snap.stanford.edu/data
  30. 30.
    Meila, M., Shi, J.: Learning segmentation by random walks. In: NIPS 2000, Denver, pp. 873–879 (2000)Google Scholar
  31. 31.
    Mislove, A., Marcon, M., Gummadi, K.P., Druschel, P., Bhattacharjee, B.: Measurement and analysis of online social networks. In: Proceedings of the 5th ACM/Usenix Internet Measurement Conference (IMC 2007), San Diego, October 2007Google Scholar
  32. 32.
    Newman, M.: Networks: An Introduction. Oxford University Press Inc., New York (2010)CrossRefGoogle Scholar
  33. 33.
    Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM J. Comput. 16(6), 973–989 (1987)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Ravasz, E., Barabási, A.-L.: Hierarchical organization in complex networks. Phys. Rev. E 67, 026112 (2003)CrossRefGoogle Scholar
  35. 35.
    Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)CrossRefGoogle Scholar
  36. 36.
    Tschaikowski, M., Tribastone, M.: Exact fluid lumpability for markovian process algebra. In: CONCUR, pp. 380–394 (2012)Google Scholar
  37. 37.
    Tschaikowski, M., Tribastone, M.: Approximate reduction of heterogenous nonlinear models with differential hulls. IEEE TAC 61(4), 1099–1104 (2016)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Valmari, A., Franceschinis, G.: Simple O(m logn) time Markov chain lumping. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 38–52. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-12002-2_4CrossRefGoogle Scholar
  39. 39.
    Vinnikov, A., Shalev-Shwartz, S.: K-means recovers ICA filters when independent components are sparse. In: ICML 2014, Beijing, 21–26 June 2014, pp. 712–720 (2014)Google Scholar
  40. 40.
    Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications, vol. 8. Cambridge University Press, Cambridge (1994)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Stefano Tognazzi
    • 1
    Email author
  • Mirco Tribastone
    • 1
  • Max Tschaikowski
    • 1
  • Andrea Vandin
    • 2
  1. 1.IMT School for Advanced StudiesLuccaItaly
  2. 2.DTU Compute CopenhagenLyngbyDenmark

Personalised recommendations