Advertisement

DSLs for Decision Services: A Tutorial Introduction to Language-Driven Engineering

  • Frederik Gossen
  • Tiziana Margaria
  • Alnis Murtovi
  • Stefan NaujokatEmail author
  • Bernhard Steffen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11244)

Abstract

Language-Driven Engineering (LDE) is a new paradigm that aims at involving stakeholders, including the application experts, in the system development and evolution process using dedicated domains-specific languages (DSLs) tailored to match the stakeholders’ mindsets. The interplay between the involved DSLs is realized in a service-oriented fashion, with corresponding Mindset-Supporting Integrated Development Environments (mIDEs). This organization eases product line and system evolution, because one can introduce and exchange entire DSLs as if they were services. Using as example a smart email classification system that highlights important emails in the inbox, we model its decision procedure in a tailored graphical domain-specific language based on Binary Decision Diagrams. BDDs are a compact form of the popular decision trees and thus a mindset natural to many application experts. We then evolve this language and its mIDE to meet the new users’ wish to model some uncertainty in the classification. To evolve the language, we first manually adapt its metamodel and code generator. Subsequently we show, how this step can be automated by refining the BDD DSL with a dedicated DSL for defining algebraic structures. As this exchange happens in a service-oriented fashion, it does not impair the optimization potential and nicely follows the successive refinement of the users’ mindset.

Keywords

Domain-specific languages Language-Driven Engineering Language evolution Code generation Abstract tool specification Binary Decision Diagrams Algebraic Decision Diagrams 

References

  1. 1.
  2. 2.
    Bahar, R., et al.: Algebric decision diagrams and their applications. Form. Methods Syst. Des. 10(2), 171–206 (1997)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Boßelmann, S., Naujokat, S., Steffen, B.: On the difficulty of drawing the line. In: Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11244, pp. 340–356. Springer, Heidelberg (2018)Google Scholar
  4. 4.
    Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Trans. Comput. 35(8), 677–691 (1986)CrossRefGoogle Scholar
  5. 5.
    Drechsler, R., Sieling, D.: Binary decision diagrams in theory and practice. Softw. Tools Technol. Transf. (STTT) 3(2), 112–136 (2001)zbMATHGoogle Scholar
  6. 6.
    Fowler, M., Parsons, R.: Domain-Specific Languages. Addison-Wesley/ACM Press (2011)Google Scholar
  7. 7.
    Gossen, F., Margaria, T.: Generating optimal decision functions from rule specifications. In: Electronic Communications of the EASST, vol. 74 (2017)Google Scholar
  8. 8.
    Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice-Hall Inc., Upper Saddle River (1995)zbMATHGoogle Scholar
  9. 9.
    Kosko, B., Isaka, S.: Fuzzy logic. Sci. Am. 269, 76–81 (1993)CrossRefGoogle Scholar
  10. 10.
    Margaria, T., Steffen, B.: From the how to the what. In: Meyer, B., Woodcock, J. (eds.) VSTTE 2005. LNCS, vol. 4171, pp. 448–459. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-69149-5_48CrossRefGoogle Scholar
  11. 11.
    Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific languages. ACM Comput. Surv. 37(4), 316–344 (2005)CrossRefGoogle Scholar
  12. 12.
    Naujokat, S.: Heavy Meta. Model-Driven Domain-Specific Generation of Generative Domain-Specific Modeling Tools. Dissertation, TU Dortmund, Dortmund, August 2017. http://hdl.handle.net/2003/36060
  13. 13.
    Naujokat, S., Lybecait, M., Kopetzki, D., Steffen, B.: CINCO: a simplicity-driven approach to full generation of domain-specific graphical modeling tools. Softw. Tools Technol. Transf. 20(3), 327–354 (2017)CrossRefGoogle Scholar
  14. 14.
    Naujokat, S., Neubauer, J., Margaria, T., Steffen, B.: Meta-level reuse for mastering domain specialization. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016, Part II. LNCS, vol. 9953, pp. 218–237. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-47169-3_16CrossRefGoogle Scholar
  15. 15.
    Naur, P., Randell, B. (eds.): Software Engineering: Report of a Conference Sponsored by the NATO Science Committee, Garmisch, 7–11 October 1968. Scientific Affairs Division, NATO, Brussels 39 Belgium (1969)Google Scholar
  16. 16.
    Somenzi, F.: Efficient manipulation of decision diagrams. Int. J. Softw. Tools Technol. Transf. 3(2), 171–181 (2001)zbMATHGoogle Scholar
  17. 17.
    Steffen, B., Gossen, F., Naujokat, S., Margaria, T.: Language-driven engineering: from general-purpose to purpose-specific languages. In: Steffen, B., Woeginger, G. (eds.) Computing and Software Science: State of the Art and Perspectives. LNCS, vol. 10000. Springer (2018, to appear)Google Scholar
  18. 18.
    Steffen, B., Naujokat, S.: Archimedean points: the essence for mastering change. In: Steffen, B. (ed.) FoMaC 2016. LNCS, vol. 9960, pp. 22–46. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46508-1_3CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Frederik Gossen
    • 1
    • 2
  • Tiziana Margaria
    • 2
  • Alnis Murtovi
    • 1
  • Stefan Naujokat
    • 1
    Email author
  • Bernhard Steffen
    • 1
  1. 1.Chair for Programming SystemsTU Dortmund UniversityDortmundGermany
  2. 2.CSISUniversity of LimerickLimerickIreland

Personalised recommendations