Advertisement

Deployment by Construction for Multicore Architectures

  • Shiji Bijo
  • Einar Broch Johnsen
  • Ka I Pun
  • Christoph Seidl
  • Silvia Lizeth Tapia Tarifa
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11244)

Abstract

In stepwise program development, abstract specifications can be transformed into (parallel) programs which preserve functional correctness. Although tackling bad performance after a program’s deployment may require a costly redesign, deployment decisions are usually made very late in program development. This paper argues for the introduction of deployment decisions as an integrated part of a development-by-construction process: Deployment decisions should be expressed as part of a program’s high-level model and evaluated by how they affect program performance, using metrics at an appropriate level of abstraction. To illustrate such a deployment-by-construction process, we sketch how deployment decisions may be modelled and evaluated, concerning data layout in shared memory for parallel programs targeting shared-memory multicore architectures with caches. For simplicity, we use an abstract metric of data access penalties and simulate data accesses on a memory system which internally ensures data coherency between cores.

References

  1. 1.
    Abrial, J.-R.: The B-Book: Assigning Programs to Meanings. Cambridge University Press, Cambridge (1996)CrossRefGoogle Scholar
  2. 2.
    Aldrich, J., Chambers, C., Notkin, D.: ArchJava: connecting software architecture to implementation. In: Tracz, W., Young, M., Magee, J. (eds.), Proceedings of the 24th International Conference on Software Engineering (ICSE 2002), pp. 187–197. ACM (2002)Google Scholar
  3. 3.
    Andrews, G.R.: Foundations of Multithreaded, Parallel, and Distributed Programming. Addison Wesley, Reading (2000)Google Scholar
  4. 4.
    Bac, R., Kurki-Suonio, R.: Decentralization of process nets with centralized control. In: Probert, R.L., Lynch, N.A., Santoro, N. (eds.), Proceedings of the Second Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, pp. 131–142. ACM (1983)Google Scholar
  5. 5.
    Back, R., Sere, K.: Stepwise refinement of parallel algorithms. Sci. Comput. Program. 13(1), 133–180 (1989)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Back, R.-J.J., Wright, J.V.: Refinement Calculus: A Systematic Introduction, 1st edn. Springer, New York (1998).  https://doi.org/10.1007/978-1-4612-1674-2CrossRefzbMATHGoogle Scholar
  7. 7.
    Balsamo, S., Marco, A.D., Inverardi, P., Simeoni, M.: Model-based performance prediction in software development: a survey. IEEE Trans. Softw. Eng. 30(5), 295–310 (2004)CrossRefGoogle Scholar
  8. 8.
    Bijo, S., Johnsen, E.B., Pun, K.I., Tapia Tarifa, S.L.: A formal model of parallel execution in multicore architectures with multilevel caches (long version). Research report, Department of Informatics, University of Oslo (2017). http://violet.at.ifi.uio.no/papers/mc-rr.pdf
  9. 9.
    Bijo, S., Johnsen, E.B., Pun, K.I., Tapia Tarifa, S.L.: A formal model of parallel execution on multicore architectures with multilevel caches. In: Proença, J., Lumpe, M. (eds.) FACS 2017. LNCS, vol. 10487, pp. 58–77. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-68034-7_4CrossRefGoogle Scholar
  10. 10.
    Bijo, S., Pun, K.I., Tapia Tarifa, S.L.: Modelling data access patterns with atomic sections for multicore architectures (long version). Research report, Department of Informatics, University of Oslo (2017). http://violet.at.ifi.uio.no/papers/mc-lock-rr.pdf
  11. 11.
    Binkert, N., et al.: The gem5 simulator. SIGARCH Comput. Arch. News 39(2), 1–7 (2011)CrossRefGoogle Scholar
  12. 12.
    Carlson, T.E., Heirman, W., Eeckhout, L.: Sniper: exploring the level of abstraction for scalable and accurate parallel multi-core simulation. In: Proceedings of International Conference for High Performance Computing, Networking, Storage and Analysis (SC), pp. 52:1–52:12. ACM (2011)Google Scholar
  13. 13.
    Chandy, K.M., Misra, J.: Parallel Program Design: A Foundation. Addison-Wesley, Reading (1988)zbMATHGoogle Scholar
  14. 14.
    Chandy, K.M., Taylor, S.: An Introduction to Parallel Programming. Jones and Bartlett, Austin (1991)zbMATHGoogle Scholar
  15. 15.
    Ciccozzi, F., Corcoran, D., Seceleanu, T., Scholle, D.: Smartcore: boosting model-driven engineering of embedded systems for multicore. In: Proceedings of the 12th International Conference on Information Technology - New Generations, pp. 89–94. IEEE Computer Society (2015)Google Scholar
  16. 16.
    Ciccozzi, F., Feljan, J., Carlson, J., Crnković, I.: Architecture optimization: speed or accuracy? both! Softw. Qual. J., November 2016CrossRefGoogle Scholar
  17. 17.
    Clavel, M., et al.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-71999-1CrossRefzbMATHGoogle Scholar
  18. 18.
    Culler, D.E., Gupta, A., Singh, J.P.: Parallel Computer Architecture: A Hardware/Software Approach, 1st edn. Morgan Kaufmann Publishers Inc., San Francisco (1997)Google Scholar
  19. 19.
    Derler, P., Lee, E.A., Sangiovanni-Vincentelli, A.L.: Modeling cyber-physical systems. Proc. IEEE 100(1), 13–28 (2012)CrossRefGoogle Scholar
  20. 20.
    Hähnle, R., Johnsen, E.B.: Designing resource-aware cloud applications. IEEE Comput. 48(6), 72–75 (2015)CrossRefGoogle Scholar
  21. 21.
    Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: a core language for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S., Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-25271-6_8CrossRefGoogle Scholar
  22. 22.
    Johnsen, E.B., Schlatte, R., Tarifa, S.L.T.: Integrating deployment architectures and resource consumption in timed object-oriented models. J. Log. Algebr. Meth. Program. 84(1), 67–91 (2015)CrossRefGoogle Scholar
  23. 23.
    Kourie, D.G., Watson, B.W.: The Correctness-by-Construction Approach to Programming. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-27919-5CrossRefzbMATHGoogle Scholar
  24. 24.
    Miller, J.E., et al.: Graphite: a distributed parallel simulator for multicores. In: Proceedings of the 16th International Symposium on High-Performance Computer Architecture (HPCA), pp. 1–12. IEEE Computer Society (2010)Google Scholar
  25. 25.
    Morgan, C.: Programming from Specifications. Prentice Hall International Series in Computer Science, 2nd edn. Prentice Hall, Upper Saddle River (1994)zbMATHGoogle Scholar
  26. 26.
    Morgan, C.: Programming from Specifications. Prentice-Hall International, Upper Saddle River (1998)zbMATHGoogle Scholar
  27. 27.
    Schmidl, D., Vesterkjær, A., Müller, M.S.: Evaluating OpenMP performance on thousands of cores on the Numascale architecture. In: PARCO, vol. 27 of Advances in Parallel Computing, pp. 83–92. IOS Press (2015)Google Scholar
  28. 28.
    Solihin, Y.: Fundamentals of Parallel Multicore Architecture, 1st edn. Chapman & Hall/CRC, Boca Raton (2015)CrossRefGoogle Scholar
  29. 29.
    Sorin, D.J., Hill, M.D., Wood, D.A.: A Primer on Memory Consistency and Cache Coherence, 1st edn. Morgan & Claypool Publishers, San Francisco (2011)Google Scholar
  30. 30.
    Taylor, R.N., Medvidovic, N., Dashofy, E.M.: Software Architecture: Foundations, Theory, and Practice. Wiley Publishing, Hardcover (2009)CrossRefGoogle Scholar
  31. 31.
    van Ommering, R.C., van der Linden, F., Kramer, J., Magee, J.: The Koala component model for consumer electronics software. IEEE Comput. 33(3), 78–85 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Shiji Bijo
    • 1
  • Einar Broch Johnsen
    • 1
  • Ka I Pun
    • 1
    • 2
  • Christoph Seidl
    • 3
  • Silvia Lizeth Tapia Tarifa
    • 1
  1. 1.Department of InformaticsUniversity of OsloOsloNorway
  2. 2.Western Norway University of Applied SciencesBergenNorway
  3. 3.Technical University of BraunschweigBraunschweigGermany

Personalised recommendations