Advertisement

Modeling and Control of HVDC Systems

  • Nilanjan Ray Chaudhuri
Chapter

Abstract

This chapter gives a brief overview of modeling and control of high voltage DC (HVDC) systems. First, different configurations of HVDC transmission systems are mentioned, which is followed by the state-space averaged modeling of line-commutated converter (LCC) HVDC systems and their control modes. Next, voltage source converter (VSC) HVDC modeling and control in a synchronously rotating dq reference frame is presented. Both grid-connected and islanded modes of control are discussed. Finally, modeling of multiterminal DC (MTDC) grids is briefly presented. The model of AC-MTDC grids in a unified framework is also given. At the end, different control philosophies of MTDC grid are elaborated. This includes discussion of four control options including DC voltage control, voltage droop control, and frequency droop control.

References

  1. 1.
    Abdel-Khalik, A.S., Abu-Elanien, A.E.B., Elserougi, A.A., Ahmed, S., Massoud, A.M.: A droop control design for multiterminal HVDC of offshore wind farms with three-wire bipolar transmission lines. IEEE Trans. Power Syst. 31(2), 1546–1556 (2016)CrossRefGoogle Scholar
  2. 2.
    Abdelwahed, M.A., El-Saadany, E.F.: Power sharing control strategy of multiterminal VSC-HVDC transmission systems utilizing adaptive voltage droop. IEEE Trans. Sustainable Energy 8(2), 605–615 (2017)CrossRefGoogle Scholar
  3. 3.
    Ainsworth, J.D.: Proposed benchmark model for study of HVDC controls by simulator or digital computer. In: Proceedings of the CIGRE SC-14 Colloquium HVDC With Weak AC Systems, Maidstone (1985)Google Scholar
  4. 4.
    Arrillaga, J., Smith, B.D.: AC-DC power system analysis. Institution of Electrical Engineers, Stevenage (1998)Google Scholar
  5. 5.
    Arrillaga, J., Liu, Y.H., Watson, N.R.: Flexible Power Transmission: The HVDC Options. Wiley, Chichester (2007)CrossRefGoogle Scholar
  6. 6.
    Atighechi, H., Chiniforoosh, S., Jatskevich, J., Davoudi, A., Martinez, J.A., Faruque, M.O., Sood, V., Saeedifard, M., Cano, J.M., Mahseredjian, J., Aliprantis, D.C., Strunz, K.: Dynamic average-value modeling of CIGRE HVDC benchmark system. IEEE Trans. Power Delivery 29(5), 2046–2054 (2014). https://doi.org/10.1109/TPWRD.2014.2340870 CrossRefGoogle Scholar
  7. 7.
    Beerten, J., Belmans, R.: Analysis of power sharing and voltage deviations in droop-controlled DC grids. IEEE Trans. Power Syst. 28(4), 4588–4597 (2013)CrossRefGoogle Scholar
  8. 8.
    Beerten, J., D’Arco, S., Suul, J.A.: Frequency-dependent cable modelling for small-signal stability analysis of VSC-HVDC systems. IET Gener. Transm. Distrib. 10(6), 1370–1381 (2016)CrossRefGoogle Scholar
  9. 9.
    Berggren, B., Majumder, R., Sao, C., Lindén, K.: Method and control device for controlling power flow within a DC power transmission network, Assignee: ABB, Filed: 06/30/2010, US8553437 B2, issued Oct 08, 2013Google Scholar
  10. 10.
    Berggren, B., Lindén, K., Majumder, R.: DC grid control through the pilot voltage droop concept - methodology for establishing droop constants. IEEE Trans. Power Syst. 30(5), 2312–2320 (2015)CrossRefGoogle Scholar
  11. 11.
    Brandt, R.M., Annakkage, U.D., Brandt, D.P., Kshatriya, N.: Validation of a two-time step HVDC transient stability simulation model including detailed HVDC controls and DC line L/R dynamics. In: 2006 IEEE Power Engineering Society General Meeting, pp. 6 (2006). https://doi.org/10.1109/PES.2006.1708868
  12. 12.
    Chaudhuri, N.R., Majumder, R., Chaudhuri, B., Pan, J.: Stability analysis of VSC MTDC grids connected to multimachine AC systems. IEEE Trans. Power Delivery 26(4), 2774–2784 (2011)CrossRefGoogle Scholar
  13. 13.
    Chaudhuri, N.R., Chaudhuri, B., Majumder, R., Yazdani, A.: Multi-Terminal Direct-Current Grids: Modeling, Analysis, and Control. Wiley (2014)Google Scholar
  14. 14.
    Chen, X., Wang, L., Sun, H., Chen, Y.: Fuzzy logic based adaptive droop control in multiterminal HVDC for wind power integration. IEEE Trans. Energy Convers. 32(3), 1200–1208 (2017)CrossRefGoogle Scholar
  15. 15.
    Chung, S.K.: A phase tracking system for three phase utility interface inverters. IEEE Trans. on Power Electron. 15(3), 431–438 (2000)CrossRefGoogle Scholar
  16. 16.
    Daryabak, M., Filizadeh, S., Jatskevich, J., Davoudi, A., Saeedifard, M., Sood, V.K., Martinez, J.A., Aliprantis, D., Cano, J., Mehrizi-Sani, A.: Modeling of LCC-HVDC systems using dynamic phasors. IEEE Trans. Power Delivery 29(4), 1989–1998 (2014). https://doi.org/10.1109/TPWRD.2014.2308431 CrossRefGoogle Scholar
  17. 17.
    Dong, H., Xu, Z., Song, P., Tang, G., Xu, Q., Sun, L.: Optimized power redistribution of offshore wind farms integrated VSC-MTDC transmissions after onshore converter outage. IEEE Trans. Ind. Electron. 64(11), 8948–8958 (2017)CrossRefGoogle Scholar
  18. 18.
    Eriksson, R., Beerten, J., Ghandhari, M., Belmans, R.: Optimizing DC voltage droop settings for AC/DC system interactions. IEEE Trans. Power Delivery 29(1), 362–369 (2014)CrossRefGoogle Scholar
  19. 19.
    Gavriluta, C., Candela, J.I., Rocabert, J., Luna, A., Rodriguez, P.: Adaptive droop for control of multiterminal DC bus integrating energy storage. IEEE Trans. Power Delivery 30(1), 16–24 (2015)CrossRefGoogle Scholar
  20. 20.
    Grund, C.E.: Functional model of two-terminal HVDC systems for transient and steady-state stability IEEE working group on dynamic performance and modeling of DC systems. IEEE Power Eng. Rev. PER-4(6), 36–37 (1984). https://doi.org/10.1109/MPER.1984.5526094 CrossRefGoogle Scholar
  21. 21.
    Hu, L.: Sequence impedance and equivalent circuit of HVDC systems. IEEE Trans. Power Syst. 13(2), 354–360 (1998). https://doi.org/10.1109/59.667351 CrossRefGoogle Scholar
  22. 22.
    Karawita, C., Annakkage, U.D.: Control block diagram representation of an HVDC system for sub-synchronous frequency interaction studies. In: 9th IET International Conference on AC and DC Power Transmission (ACDC 2010), pp. 1–5 (2010). https://doi.org/10.1049/cp.2010.0998
  23. 23.
    Kimbark, E.: Direct Current Transmission, vol. 1. Wiley-Interscience, New York (1971). http://books.google.com/books?id=eMMiAAAAMAAJ. Accessed Feb 2014Google Scholar
  24. 24.
    Kirakosyan, A., El-Saadany, E.F., Moursi, M.S.E., Acharya, S.S., Hosani, K.A.: Control approach for the multi-terminal HVDC system for the accurate power sharing. IEEE Trans. Power Syst. PP(99), 1–1 (2017)Google Scholar
  25. 25.
    Kumar, R., Leibfried, T.: Analytical modelling of HVDC transmission system converter using Matlab/Simulink. In: IEEE Systems Technical Conference on Industrial and Commercial Power 2005, pp. 140–146 (2005). https://doi.org/10.1109/ICPS.2005.1436367 Google Scholar
  26. 26.
    Kundur, P.: Power System Stability and Control. The EPRI Power System Engineering Series. McGraw-Hill, New York (1994)Google Scholar
  27. 27.
    Kwon, D.H., Kim, Y.J., Moon, S.I.: Modeling and analysis of an LCC HVDC system using DC voltage control to improve transient response and short-term power transfer capability. IEEE Trans. Power Delivery 33(4), 1922–1933 (2018). https://doi.org/10.1109/TPWRD.2018.2805905 CrossRefGoogle Scholar
  28. 28.
    Li, G., Du, Z., Shen, C., Yuan, Z., Wu, G.: Coordinated design of droop control in MTDC grid based on model predictive control. IEEE Trans. Power Syst. 33(3), 2816–2828 (2017)CrossRefGoogle Scholar
  29. 29.
    Marten, A.K., Sass, F., Westermann, D.: Continuous p-v-characteristic parameterization for multi-terminal HVDC systems. IEEE Trans. Power Delivery 32(4), 1665–1673 (2017)CrossRefGoogle Scholar
  30. 30.
    Nicolau, V.: On PID controller design by combining pole placement technique with symmetrical optimum criterion. In: 2008 IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century, pp. 1–5 (2013)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Osauskas, C., Wood, A.: Small-signal dynamic modeling of HVDC systems. IEEE Trans. Power Delivery 18(1), 220–225 (2003). https://doi.org/10.1109/TPWRD.2002.803843 CrossRefGoogle Scholar
  32. 32.
    Padiyar, K.R.: HVDC power Transmission Systems. New Age International, New Delhi (2012)Google Scholar
  33. 33.
    Prieto-Araujo, E., Bianchi, F.D., Junyent-Ferre, A., Gomis-Bellmunt, O.: Methodology for droop control dynamic analysis of multiterminal VSC-HVDC grids for offshore wind farms. IEEE Trans. Power Delivery 26(4), 2476–2485 (2011)CrossRefGoogle Scholar
  34. 34.
    Rouzbehi, K., Miranian, A., Luna, A., Rodriguez, P.: DC voltage control and power sharing in multiterminal DC grids based on optimal DC power flow and voltage-droop strategy. IEEE J. Emerg. Sel. Top. Power Electron. 2(4), 1171–1180 (2014)CrossRefGoogle Scholar
  35. 35.
    Sauer, P.W., Pai, M.A.: Power system dynamics and stability. Prentice Hall, Upper Saddle River (1998)Google Scholar
  36. 36.
    Sharifabadi, K., Harnefors, L., Nee, H., Norrga, S., Teodorescu, R.: Design, Control, and Application of Modular Multilevel Converters for HVDC Transmission Systems. Wiley, Newark (2016)CrossRefGoogle Scholar
  37. 37.
    Thams, F., Eriksson, R., Molinas, M.: Interaction of droop control structures and its inherent effect on the power transfer limits in multiterminal VSC-HVDC. IEEE Trans. Power Delivery 32(1), 182–192 (2017)CrossRefGoogle Scholar
  38. 38.
    Toledo, P.F.D., Angquist, L., H.-p. Nee: Frequency domain model of an HVDC link with a line-commutated current-source converter. Part I: fixed overlap. IET Gener. Transm. Distrib. 3(8), 757–770 (2009). https://doi.org/10.1049/iet-gtd.2008.0587 CrossRefGoogle Scholar
  39. 39.
    Toledo, P.F.D., Angquist, L., H.-p. Nee: Frequency domain model of an HVDC link with a line-commutated current-source converter. Part II: varying overlap. IET Gener. Transm. Distrib. 3(8), 771–782 (2009). https://doi.org/10.1049/iet-gtd.2008.0588 CrossRefGoogle Scholar
  40. 40.
    Yang, X., Chen, C.: HVDC dynamic modelling for small signal analysis. IEE Proc. Gener. Transm. Distrib. 151(6), 740–746 (2004). https://doi.org/10.1049/ip-gtd:20040798 CrossRefGoogle Scholar
  41. 41.
    Yazdani, A., Iravani, R.: Voltage-Sourced Converters in Power Systems: Modeling, Control, and Applications. Wiley, Oxford (2010)CrossRefGoogle Scholar
  42. 42.
    Zhang, M., Yuan, X.: Modeling of LCC HVDC system based on mass-damping-spring concept. In: 2016 IEEE Power and Energy Society General Meeting (PESGM), pp. 1–5 (2016). https://doi.org/10.1109/PESGM.2016.7741661
  43. 43.
    Zhao, X., Li, K.: Adaptive backstepping droop controller design for multi-terminal high-voltage direct current systems. IET Gener. Transm. Distrib. 9(10), 975–983 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nilanjan Ray Chaudhuri
    • 1
  1. 1.School of Electrical Engineering and Computer ScienceThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations