Multi-sensors 3D Fusion in the Presence of Sensor Biases

  • Cong Dan Pham
  • Bao Ngoc Bui Tang
  • Quang Bang Nguyen
  • Su Le Tran
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 886)


In this paper, we study the problem fusion data from multi-sensors in presence of biases. We discuss both approaches, measurement data level, and track sensor level. A previous algorithm for local track fusion using a pseudo-equation with Jacobian matrix is presented for 2D sensors. In 2D case, this algorithm worked well and gave an equivalent performance and higher computational efficiency comparing with exact Kalman filter method. We extend the algorithm to 3D sensors to know how it works in this case. It is not totally straightforward when the computation of Jacobian matrix in 3D is very complex. We give the computation true Jacobian matrix for pseudo-equation using MATLAB and also give a simpler approximation Jacobian matrix. This helps to improve computational efficiency. The simulation compares the performance of the methods: Local track fusion and measurement fusion in the other cases as two sensors, four sensors, track fusion using Jacobian matrix, approximate Jacobian matrix.


Local track Measurement fusion Track fusion Biases sensors Jacobian matrix 


  1. 1.
    Bar-Shalom, Y.: On the track-to-track correlation problem. IEEE Trans. Autom. Control. 26(2), 571–572 (1981)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bar-Shalom, Y., Blair, W.D.: Multitarget-Multisensor Tracking: Applications and Advances, vol. III. Artech House Inc., Norwood (2000)Google Scholar
  3. 3.
    Bar-Shalom, Y., Campo, L.: The effect of the common process noise on the two-sensor fused-track covariance. IEEE Trans. Aerosp. Electron. Syst. 6, 803–805 (1986)CrossRefGoogle Scholar
  4. 4.
    Bar-Shalom, Y., Li, X.R.: Multitarget-Multisensor Tracking: Principles and Techniques, vol. 19. YBs, London (1995)Google Scholar
  5. 5.
    Bar-Shalom, Y., Li, X.R., Kirubarajan, T.: Estimation with Applications to Tracking and Navigation: Theory Algorithms and Software. Wiley, Hoboken (2004)Google Scholar
  6. 6.
    El-Badawy, E., Abd-ElShahid, T., Hafez, A.: A real time 3d multi target data fusion for multistatic radar network tracking. Session 1P0, p. 331 (2014)Google Scholar
  7. 7.
    Friedland, B.: Treatment of bias in recursive filtering. IEEE Trans. Autom. Control. 14(4), 359–367 (1969)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Ignagni, M.: An alternate derivation and extension of friendland’s two-stage kalman estimator. IEEE Trans. Autom. Control. 26(3), 746–750 (1981)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Ignagni, M.: Optimal and suboptimal separate-bias kalman estimators for a stochastic bias. IEEE Trans. Autom. Control. 45(3), 547–551 (2000)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Lin, X., Bar-Shalom, Y., Kirubarajan, T.: Exact multisensor dynamic bias estimation with local tracks. IEEE Trans. Aerosp. Electron. Syst. 40(2), 576–590 (2004)CrossRefGoogle Scholar
  11. 11.
    Lin, X., Bar-Shalom, Y., Kirubarajan, T.: Multisensor multitarget bias estimation for general asynchronous sensors. IEEE Trans. Aerosp. Electron. Syst. 41(3), 899–921 (2005)CrossRefGoogle Scholar
  12. 12.
    Nabaa, N., Bishop, R.: Solution to a multisensor tracking problem with sensor registration errors. IEEE Trans. Aerosp. Electron. Syst. 35(1), 354–363 (1999)CrossRefGoogle Scholar
  13. 13.
    Okello, N.N., Challa, S.: Joint sensor registration and track-to-track fusion for distributed trackers. IEEE Trans. Aerosp. Electron. Syst. 40(3), 808–823 (2004)CrossRefGoogle Scholar
  14. 14.
    Raol, J.R.:. Multi-sensor Data Fusion with MATLAB®. CRC Press, Boca Raton (2009)Google Scholar
  15. 15.
    Taghavi, E., Tharmarasa, R., Kirubarajan, T., Bar-Shalom, Y., Mcdonald, M.: A practical bias estimation algorithm for multisensor-multitarget tracking. IEEE Trans. Aerosp. Electron. Syst. 52(1), 2–19 (2016)CrossRefGoogle Scholar
  16. 16.
    van Doorn, B., Blom, H.: Systematic error estimation in multisensor fusion systems. In: Optical Engineering and Photonics in Aerospace Sensing, pp. 450–461. International Society for Optics and Photonics (1993)Google Scholar
  17. 17.
    Zhu, H., Chen, S.: Track fusion in the presence of sensor biases. IET Signal Process. 8(9), 958–967 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Cong Dan Pham
    • 1
  • Bao Ngoc Bui Tang
    • 1
  • Quang Bang Nguyen
    • 1
  • Su Le Tran
    • 1
  1. 1.C4I, Viettel Research and Development InstituteViettel GroupHanoiVietnam

Personalised recommendations