Advertisement

Propositions on Big Data Business Value

  • Emma Pirskanen
  • Heli Hallikainen
  • Tommi Laukkanen
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 886)

Abstract

This study synthesizes the earlier literature on big data and draws theoretical propositions on the value of big data in organizational decision-making. The authors explain how big data contributes to business decision-making and propose the steps of a process from collecting data to implementing decisions. They further suggest value gaps affecting the use of big data in different phases of the process. The authors conclude that big data can indeed be turned into data-driven knowledge and further utilized as a basis for improved decision-making. This would, however, require a more systematic approach to utilizing big data in order to leverage big data and turn it into real business value. The study helps organizations to further plan their big data projects and to evaluate how they should prepare for the possible challenges hindering the utilization of big data.

Keywords

Big data Business value Data management Business decision-making 

References

  1. 1.
    Abbasi, A., Sarker, S., Chiang, R.H.: Big data research in information systems: toward an inclusive research agenda. J. Assoc. Inf. Syst. 17(2), 1–32 (2016)Google Scholar
  2. 2.
    Akter, S., Wamba, S.F., Gunasekaran, A., Dubey, R., Childe, S.J.: How to improve firm performance using big data analytics capability and business strategy alignment? Int. J. Prod. Econ. 182, 113–131 (2016)CrossRefGoogle Scholar
  3. 3.
    Alharthi, A., Krotov, V., Bowman, M.: Addressing barriers to big data. Bus. Horiz. 60(3), 285–292 (2017)CrossRefGoogle Scholar
  4. 4.
    Assunção, M.D., Calheiros, R.N., Bianchi, S., Netto, M.A., Buyya, R.: Big data computing and clouds: trends and future directions. J. Parallel Distrib. Comput. 79, 3–15 (2015)CrossRefGoogle Scholar
  5. 5.
    Auschitzky, E., Hammer, M., Rajagopaul, A.: How Big Data Can Improve Manufacturing. McKinsey & Company, New York (2014)Google Scholar
  6. 6.
    Bello-Orgaz, G., Jung, J.J., Camacho, D.: Social big data: recent achievements and new challenges. Inf. Fusion 28, 45–59 (2016)CrossRefGoogle Scholar
  7. 7.
    Buytendijk, F.: Hype cycle for big data 2014, Gartner (2014)Google Scholar
  8. 8.
    Chen, H., Chiang, R.H., Storey, V.C.: Business intelligence and analytics: from big data to big impact. MIS Q. 36(4), 1165–1188 (2012)CrossRefGoogle Scholar
  9. 9.
    Chen, M., Mao, S., Liu, Y.: Big data: a survey. Mob. Netw. Appl. 19(2), 171–209 (2014)CrossRefGoogle Scholar
  10. 10.
    Chen, J., Chen, Y., Du, X., Li, C., Lu, J., Zhao, S., Zhou, X.: Big data challenge: a data management perspective. Front. Comput. Sci. 7(2), 157–164 (2013)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Côrte-Real, N., Oliveira, T., Ruivo, P.: Assessing business value of big data analytics in European firms. J. Bus. Res. 70, 379–390 (2017)CrossRefGoogle Scholar
  12. 12.
    Davenport, T.H.: Big Data at Work: Dispelling the Myths, Uncovering the Opportunities. Harvard Business review Press, Boston (2014)CrossRefGoogle Scholar
  13. 13.
    Davenport, T.H., Harris, J.G.: Competing on Analytics: The New Science of Winning. Harvard Business Press, Boston (2007)Google Scholar
  14. 14.
    Elragal, A.: ERP and big data: the inept couple. Procedia Technol. 16, 242–249 (2014)CrossRefGoogle Scholar
  15. 15.
    Erevelles, S., Fukawa, N., Swayne, L.: Big data consumer analytics and the transformation of marketing. J. Bus. Res. 69(2), 897–904 (2016)CrossRefGoogle Scholar
  16. 16.
    Fang, B., Zhang, P.: Big data in finance. In: Big Data Concepts, Theories, and Applications, pp. 391–412. Springer (2016)Google Scholar
  17. 17.
    Frizzo-Barker, J., Chow-White, P.A., Mozafari, M., Ha, D.: An empirical study of the rise of big data in business scholarship. Int. J. Inf. Manag. 36(3), 403–413 (2016)CrossRefGoogle Scholar
  18. 18.
    Gandomi, A., Haider, M.: Beyond the hype: big data concepts, methods, and analytics. Int. J. Inf. Manag. 35(2), 137–144 (2015)CrossRefGoogle Scholar
  19. 19.
    Germann, F., Lilien, G.L., Rangaswamy, A.: Performance implications of deploying marketing analytics. Int. J. Res. Mark. 30(2), 114–128 (2013)CrossRefGoogle Scholar
  20. 20.
    Hardy, K., Maurushat, A.: Opening up government data for big data analysis and public benefit. Comput. Law Secur. Rev. 33(1), 30–37 (2017)CrossRefGoogle Scholar
  21. 21.
    Herschel, R., Miori, V.M.: Ethics & big data. Technol. Soc. 49, 31–36 (2017)CrossRefGoogle Scholar
  22. 22.
    Hilbert, M.: Big data for development: a review of promises and challenges. Dev. Policy Rev. 34(1), 135–174 (2016)CrossRefGoogle Scholar
  23. 23.
    Hofacker, C.F., Malthouse, E.C., Sultan, F.: Big data and consumer behavior: imminent opportunities. J. Consum. Mark. 33(2), 89–97 (2016)CrossRefGoogle Scholar
  24. 24.
    Huijboom, N., Van den Broek, T.: Open data: an international comparison of strategies. Eur. J. ePractice 12(1), 4–16 (2011)Google Scholar
  25. 25.
    Janssen, M., Charalabidis, Y., Zuiderwijk, A.: Benefits, adoption barriers and myths of open data and open government. Inf. Syst. Manag. 29(4), 258–268 (2012)CrossRefGoogle Scholar
  26. 26.
    Kaushik, A.: Web Analytics 2.0: The Art of Online Accountability and Science of Customer Centricity. Wiley, Indianapolis (2009)Google Scholar
  27. 27.
    Khalilzadeh, J., Tasci, A.D.: Large sample size, significance level, and the effect size: solutions to perils of using big data for academic research. Tour. Manag. 62, 89–96 (2017)CrossRefGoogle Scholar
  28. 28.
    Kiron, D., Prentice, P.K., Ferguson, R.B.: Raising the bar with analytics. MIT Sloan Manag. Rev. 55(2), 29–33 (2014)Google Scholar
  29. 29.
    Kohli, A.K., Jaworski, B.J.: Market orientation: the construct, research propositions, and managerial implications. J. Mark. 54(2), 1–18 (1990)CrossRefGoogle Scholar
  30. 30.
    LaValle, S., Lesser, E., Shockley, R., Hopkins, M.S., Kruschwitz, N.: Big data, analytics and the path from insights to value. MIT Sloan Manag. Rev. 52(2), 21–32 (2011)Google Scholar
  31. 31.
    Lee, I.: Big data: dimensions, evolution, impacts, and challenges. Bus. Horiz. 60(3), 293–303 (2017)CrossRefGoogle Scholar
  32. 32.
    Li, J., Tao, F., Cheng, Y., Zhao, L.: Big data in product lifecycle management. Int. J. Adv. Manuf. Technol. 81(1–4), 667–684 (2015)CrossRefGoogle Scholar
  33. 33.
    Lien, D.: Business finance and enterprise management in the era of big data: an introduction. N. Am. J. Econ. Financ. 39, 143–144 (2017)CrossRefGoogle Scholar
  34. 34.
    Lohr, S.: Big data, trying to build better workers. The New York Times, p. BU4 (2013)Google Scholar
  35. 35.
    Lycett, M.: ‘Datafication’: making sense of (big) data in a complex world. Eur. J. Inf. Syst. 22(4), 381–386 (2013)CrossRefGoogle Scholar
  36. 36.
    Matthias, O., Fouweather, I., Gregory, I., Vernon, A.: Making sense of big data–can it transform operations management? Int. J. Oper. Prod. Manag. 37(1), 37–55 (2017)CrossRefGoogle Scholar
  37. 37.
    Mayer-Schönberger, V., Cukier, K.: Big Data: A Revolution That Will Transform How We Live, Work, and Think. Houghton Mifflin Harcourt, New York (2013)Google Scholar
  38. 38.
    McAbee, S.T., Landis, R.S., Burke, M.I.: Inductive reasoning: the promise of big data. Hum. Resour. Manag. Rev. 27(2), 277–290 (2017)CrossRefGoogle Scholar
  39. 39.
    Mehmood, A., Natgunanathan, I., Xiang, Y., Hua, G., Guo, S.: Protection of big data privacy. IEEE Access 4, 1821–1834 (2016)CrossRefGoogle Scholar
  40. 40.
    Mehta, B.B., Rao, U.P.: Privacy preserving unstructured big data analytics: issues and challenges. Procedia Comput. Sci. 78, 120–124 (2016)CrossRefGoogle Scholar
  41. 41.
    Narver, J.C., Slater, S.F.: The effect of a market orientation on business profitability. J. Mark. 54(4), 20–35 (1990)CrossRefGoogle Scholar
  42. 42.
    Orenga-Roglá, S., Chalmeta, R.: Social customer relationship management: taking advantage of Web 2.0 and big data technologies. SpringerPlus 5(1), 1462–1478 (2016)CrossRefGoogle Scholar
  43. 43.
    Ram, J., Zhang, C., Koronios, A.: The implications of big data analytics on business intelligence: a qualitative study in China. Procedia Comput. Sci. 87, 221–226 (2016)CrossRefGoogle Scholar
  44. 44.
    Sabarmathi, G., Chinnaiyan, R., Ilango, V.: Big data analytics research opportunities and challenges: a review. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 6(10), 227–231 (2016)Google Scholar
  45. 45.
    Saravanan, V., Pushpalatha, C., Ranjithkumar, C.: Data mining open source tools-review. Int. J. Adv. Res. Comput. Sci. 5(6), 231–235 (2014)Google Scholar
  46. 46.
    Schroeder, R.: Big data business models: challenges and opportunities. Cogent Soc. Sci. 2(1) (2016).  https://doi.org/10.1080/23311886.2016.1166924
  47. 47.
    Shah, N., Irani, Z., Sharif, A.M.: Big data in an HR context: exploring organizational change readiness, employee attitudes and behaviors. J. Bus. Res. 70, 366–378 (2017)CrossRefGoogle Scholar
  48. 48.
    Sharma, S., Tim, U.S., Wong, J., Gadia, S., Sharma, S.: A brief review on leading big data models. Data Sci. J. 13, 138–157 (2014)CrossRefGoogle Scholar
  49. 49.
    Shin, D.H.: Demystifying big data: anatomy of big data developmental process. Telecommun. Policy 40(9), 837–854 (2016)CrossRefGoogle Scholar
  50. 50.
    Shu, H.: Big data analytics: six techniques. Geo-Spat. Inf. Sci. 19(2), 119–128 (2016)CrossRefGoogle Scholar
  51. 51.
    Simon, P.: Too Big to Ignore: The Business Case for Big Data. Wiley, Hoboken (2013)Google Scholar
  52. 52.
    Sivarajah, U., Kamal, M.M., Irani, Z., Weerakkody, V.: Critical analysis of big data challenges and analytical methods. J. Bus. Res. 70, 263–286 (2017)CrossRefGoogle Scholar
  53. 53.
    Van Dijck, J.: Datafication, dataism and dataveillance: big data between scientific paradigm and ideology. Surveill. Soc. 12(2), 197–208 (2014)CrossRefGoogle Scholar
  54. 54.
    Wamba, S.F., Akter, S., Edwards, A., Chopin, G., Gnanzou, D.: How ‘big data’can make big impact: findings from a systematic review and a longitudinal case study. Int. J. Prod. Econ. 165, 234–246 (2015)CrossRefGoogle Scholar
  55. 55.
    Wang, Y., Wiebe, V.J.: Big data analytics on the characteristic equilibrium of collective opinions in social networks. In: Big Data: Concepts, Methodologies, Tools, and Applications, pp. 1403–1420. IGI Global (2016)Google Scholar
  56. 56.
    Wang, H., Xu, Z., Fujita, H., Liu, S.: Towards felicitous decision making: an overview on challenges and trends of big data. Inf. Sci. 367, 747–765 (2016)CrossRefGoogle Scholar
  57. 57.
    Xu, Z., Frankwick, G.L., Ramirez, E.: Effects of big data analytics and traditional marketing analytics on new product success: a knowledge fusion perspective. J. Bus. Res. 69(5), 1562–1566 (2016)CrossRefGoogle Scholar
  58. 58.
    Yaqoob, I., Hashem, I.A.T., Gani, A., Mokhtar, S., Ahmed, E., Anuar, N.B., Vasilakos, A.V.: Big data: from beginning to future. Int. J. Inf. Manag. 36(6), 1231–1247 (2016)CrossRefGoogle Scholar
  59. 59.
    Zhang, S., Xiong, W., Ni, W., Li, X.: Value of big data to finance: observations on an internet credit service company in China. Financ. Innov. 1(1), 17–34 (2015)CrossRefGoogle Scholar
  60. 60.
    Ziora, A.C.L.: The role of big data solutions in the management of organizations. Review of selected practical examples. Procedia Comput. Sci. 65, 1006–1112 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Emma Pirskanen
    • 1
  • Heli Hallikainen
    • 1
  • Tommi Laukkanen
    • 1
  1. 1.Business SchoolUniversity of Eastern FinlandJoensuuFinland

Personalised recommendations