Advertisement

Prediction Model for Prevalence of Type-2 Diabetes Complications with ANN Approach Combining with K-Fold Cross Validation and K-Means Clustering

  • Md. Tahsir Ahmed Munna
  • Mirza Mohtashim Alam
  • Shaikh Muhammad Allayear
  • Kaushik Sarker
  • Sheikh Joly Ferdaus Ara
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 886)

Abstract

In today’s era, most of the people are suffering with chronic diseases because of their lifestyle, food habits and reduction in physical activities. Diabetes is one of the most common chronic diseases which has affected to the people of all ages. Diabetes complication arises in human body due to increase of blood glucose (sugar) level than the normal level. Type-2 diabetes is considered as one of the most prevalent endocrine disorders. In this circumstance, we have tried to apply Machine learning algorithm to create the statistical prediction based model that people having diabetes can be aware of their prevalence. The aim of this paper is to detect the prevalence of diabetes relevant complications among patients with Type-2 diabetes mellitus. The processing and statistical analysis we used are Scikit-Learn, and Pandas for Python. We also have used unsupervised Machine Learning approaches known as Artificial Neural Network (ANN) and K-means Clustering for developing classification system based prediction model to judge Type-2 diabetes mellitus chronic diseases.

Keywords

Healthcare Machine learning Artificial Neural Network (ANN) Diabetes type-2 Prediction K-means clustering Classification model 

References

  1. 1.
    Arena, J.G.: Behavioral medicine consulation. In: Handbook of Clinical Interviewing with Adults, p. 446 (2007)Google Scholar
  2. 2.
    Mahmoodi,M., Hosseini-Zijoud, S.M., Hassan Shahi, G.H., Nabati, S., Modarresi, M., Mehrabian, M., Sayyadi, A.R., Hajizadeh, M.R.: J. Diabetes Endocrinol. 4(1), 1–5, January 2013. ISSN 2141-2685- Academic JournalGoogle Scholar
  3. 3.
    What is Diabetes? (n.d.). https://www.diabetesresearch.org/what-is-diabetes. Accessed 28 Aug 2017
  4. 4.
    The State of Diabetes in Bangladesh, 05 October 2016. http://futurestartup.com/2016/07/27/the-state-of-diabetes-in-bangladesh/. Accessed 28 Aug 2017
  5. 5.
    Vaz, N.C., Ferreira, A.M., Kulkarni, M.S., Vaz, F.S., Pintondian, N.R.: Prevalence of diabetic complications in rural Goa, India. J. Community Med. 36(4), 283–286 (2011).  https://doi.org/10.4103/0970-0218.91330CrossRefGoogle Scholar
  6. 6.
    Cao, H.B., Liu, P.A., Jiang, X.G., Jiang, Y.Y., Wang, J.P., Zheng, H., Zhang, H., Bennett, P.H., Howard, B.V.: Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance: the Da Qing IGT and diabetes study. Diabetes Care 20, 537–544 (1997)CrossRefGoogle Scholar
  7. 7.
    Nicole, R.: Title of paper with only first word capitalized. J. Name Stand. Abbrev. (in press)Google Scholar
  8. 8.
    Yorozu, Y., Hirano, M., Oka, K., Tagawa, Y.: Electron spectroscopy studies on magneto-optical media and plastic substrate interface. IEEE Transl. J. Magn. Japan 2, 740–741 (1987). [Digests 9th Annual Conf. Magnetics Japan, p. 301, 1982]CrossRefGoogle Scholar
  9. 9.
    Rajesh, K., Sangeetha, V.: Application of data mining methods and techniques for diabetes diagnosis. Int. J. Eng. Innov. Technol. 2(3), 224–229 (2012)Google Scholar
  10. 10.
    Wang, C., Li, L., Wang, L., Ping, Z., Flory, M.T., Wang, G., Li, W.: Evaluating the risk of type 2 diabetes mellitus using artificial neural network: an effective classification approach. Diabetes Res. Clin. Pract. 100(1), 111–118 (2013)CrossRefGoogle Scholar
  11. 11.
    Smith, A.E., Nugent, C.D., McClean, S.I.: Evaluation of inherent performance of intelligent medical decision support systems: utilising neural networks as an example. Artif. Intell. Med. 27(1), 1–27 (2003)CrossRefGoogle Scholar
  12. 12.
    Lin, C.S., Chiu, J.S., Hsieh, M.H., Mok, M.S., Li, Y.C., Chiu, H.W.: Predicting hypotensive episodes during spinal anesthesia with the application of artificial neural networks. Comput. Methods Programs Biomed. 92(2), 193–197 (2008)CrossRefGoogle Scholar
  13. 13.
    Wolk, R., Berger, P., Lennon, R.J., Brilakis, E.S., Somers, V.K.: Body mass index. Circulation 108(18), 2206–2211 (2003)CrossRefGoogle Scholar
  14. 14.
    Tsoumakas, G., Katakis, I.: Multi-label classification: an overview. Int. J. Data Warehous. Min. 3(3), 1–13 (2006)CrossRefGoogle Scholar
  15. 15.
    Garreta, R., Moncecchi, G.: Learning Scikit-Learn: Machine Learning in Python. Packt Publishing Ltd., Birmingham (2013)Google Scholar
  16. 16.
    Hackeling, G.: Mastering Machine Learning with Scikit-Learn. Packt Publishing Ltd., Birmingham (2014)Google Scholar
  17. 17.
    Guo, C., Berkhahn, F.: Entity Embeddings of Categorical Variables. arXiv preprint arXiv:1604.06737 (2016)
  18. 18.
    Principe, J.C., Fancourt, C.L.: Artificial neural networks. In: Handbook of Global Optimization, vol. 2, pp. 363–386 (2013)Google Scholar
  19. 19.
    Likas, A., Vlassis, N., Verbeek, J.J.: The global k-means clustering algorithm. Pattern Recognit. 36(2), 451–461 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Md. Tahsir Ahmed Munna
    • 1
  • Mirza Mohtashim Alam
    • 1
  • Shaikh Muhammad Allayear
    • 1
  • Kaushik Sarker
    • 1
  • Sheikh Joly Ferdaus Ara
    • 2
  1. 1.Department of Multimedia and Creative Technology, Department of Software EngineeringDaffodil International UniversityDhakaBangladesh
  2. 2.Department of Microbiology and ImmunologyBangabandhu Sheikh Mujib Medical UniversityDhakaBangladesh

Personalised recommendations