Advertisement

The Meaning of Big Data in the Support of Managerial Decisions in Contemporary Organizations: Review of Selected Research

  • Dorota Jelonek
  • Cezary Stępniak
  • Leszek Ziora
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 886)

Abstract

The purpose of the paper is presentation of the role of big data methods, techniques and tools application in the support of managerial decisions. The paper characterizes the notion of big data solutions, its key components with fundamental analyses applied within the area of big data, types of decisions which can be supported with its usage, and benefits resulting from big data application in the support of managerial decisions in contemporary organizations. The practical examples and case studies were presented on the basis of research review.

Keywords

Big data Data mining Business intelligence Business analytics Decision making support 

References

  1. 1.
    Akoka, J., Comyn-Wattiau, I., Laoufi, N.: Research on big data – a systematic mapping study. Comput. Stand. Interfaces 54, 105–115 (2017)CrossRefGoogle Scholar
  2. 2.
    Baesens, B.: Analytics in a Big Data World. The Essential Guide to Data Science and its Applications. Wiley, New Jersey (2014)Google Scholar
  3. 3.
    Berman, J.: Principles of Big Data. Morgan Kaufmann Elsevier, Waltham (2013)Google Scholar
  4. 4.
    Big Data Executive Survey (2013). New Vantage Partners, Boston. http://dev.gentoo.org/~dberkholz/osbc/NVP-Big-Data-Survey-2013Summary-Report.pdf
  5. 5.
    Brynjolfsson, E., McAfee, A.: Big data: the management revolution. Harvard Bus. Rev. 90(10), 60–68 (2012)Google Scholar
  6. 6.
    Brzozowska, A., Ziora, L., Sałek, R., Wiśniewska-Sałek, A.: The possibilities of big data solutions application in logistics. In: XXX. microCAD International Multidisciplinary Scientific Conference University of Miskolc, Miskolc, Hungary (2016)Google Scholar
  7. 7.
  8. 8.
    Chluski, A., Ziora, L.: The role of big data solutions in the management of organizations. Review of selected practical examples. In: International Conference on Communication, Management and Information Technology (ICCMIT 2015). Elsevier. Procedia Comput. Sci. 65, 1006–1012 (2015). www.sciencedirect.com
  9. 9.
    Chluski, A., Ziora, L.: The application of big data in the management of healthcare organizations. A review of selected practical solutions. Bus. Inform. – (Informatyka Ekonomiczna) 1(35), 9–18 (2015)Google Scholar
  10. 10.
    Fonseca, A., Cabral, B.: Prototyping a GPGPU neural network for deep-learning big data analysis. Big Data Res. 8, 50–56 (2017)CrossRefGoogle Scholar
  11. 11.
    Janssen, M., van der Voort, H., Wahyudi, A.: Factors influencing big data decision-making quality. J. Bus. Res. 70, 338–345 (2017)CrossRefGoogle Scholar
  12. 12.
    Jelonek, D.: Challenges for strategic management in the age of big data. In: Sopińska, A., Wachowiak, P. (eds.) Challenges of Contemporary Strategic Management, pp. 161–175. Warsaw School of Economics Publishing House, Warsaw (2017). (in Polish)Google Scholar
  13. 13.
    Jelonek, D.: Big data and management in metallurgical enterprises. In: 26th Anniversary International Conference on Metallurgy and Materials (METAL 2017), Brno, Czech Republic, 24–26 May 2017 (invited lecture, in press)Google Scholar
  14. 14.
    EY insights on governance, risk and compliance. Big data. Changing the way businesses compete and operate, April 2014Google Scholar
  15. 15.
    Gartner’s IT glossary. http://www.gartner.com/it-glossary/big-data/. Accessed 24 July 2017
  16. 16.
    IBM case study: how big data is giving Hertz a big advantage. https://www01.ibm.com/software/ebusiness/jstart/portfolio/hertzCaseStudy.pdf
  17. 17.
    Liebowitz, J.: Big Data and Business Analytics. CRC Press, Taylor & Francis Group, Boca Raton FL [etc.] (2013)Google Scholar
  18. 18.
    Manyika, J., et al.: McKinsey Global Institute, Big data: the next frontier for innovation, competition, and productivity, May 2011Google Scholar
  19. 19.
    Morabito, V.: Big Data and Analytics. Springer International Publishing, Cham (2015)Google Scholar
  20. 20.
  21. 21.
    The Massachusetts Big Data report 2014: A foundation for global leadership. http://www.masstech.org/sites/mtc/files/documents/Full%20Report%202014%20Mass%20Big%20Data%20Report_0.pdf
  22. 22.
    Ohlhorst, F.: Big Data Analytics. Turning Big Data into Big Money. Wiley, Hoboken (2013)Google Scholar
  23. 23.
    Provost, F., Fawcett, T.: Data Science for Business. What You Need to Know About Data Mining and Data-Analytic Thinking. O’Reilly, Sebastopol (2013)Google Scholar
  24. 24.
    Samuelson, W.F., Marks, S.G.: Managerial Economics. PWE, Warsaw (1998). (in Polish)Google Scholar
  25. 25.
    Schmarzo, B.: Big Data. Understanding How Data Powers Big Businesses. Wiley, Hoboken (2013)Google Scholar
  26. 26.
    Seth, T., Chaudhary, V.: Big data in finance. In: Li, K.-C., Jiang, H., Yang, L.T., Cuzzocrea, A. (eds.) Big Data: Algorithms, Analytics, and Applications, 1 edn., Chap. 17. CRC Big Data Series, p. 29. Chapman & HallGoogle Scholar
  27. 27.
  28. 28.
    Siemens: Using Big Data and Analytics to Design a Successful Future, February 2015. http://blogs.teradata.com/customers/author/tcset/page/4/
  29. 29.
    Stępniak, C.: Use of process performance indicators as part of knowledge management in organization. In: Proceedings of KM Conference 2016. Knowledge Management, Learning, Information Technology, Lizbona, Portugal, 20–25 June 2016, pp. 64–75 (2016)Google Scholar
  30. 30.
    Ziora, L.: The Sentiment Analysis as a Tool of Business Analytics in Contemporary Organizations. Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach no 281, Katowice, pp. 234–241 (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Dorota Jelonek
    • 1
  • Cezary Stępniak
    • 1
  • Leszek Ziora
    • 1
  1. 1.Faculty of ManagementCzestochowa University of TechnologyCzestochowaPoland

Personalised recommendations